
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2015, VOL. 61, NO. 2, PP. 199–204

Manuscript received March 20, 2015; revised June 2015. DOI: 10.1515/eletel-2015-0026



Abstract—Today, cryptographic security depends primarily on

having strong keys and keeping them secret. The keys should be

produced by a reliable and robust to external manipulations

generators of random numbers. To hamper different attacks, the

generators should be implemented in the same chip as a

cryptographic system using random numbers. It forces a designer

to create a random number generator purely digitally.

Unfortunately, the obtained sequences are biased and do not pass

many statistical tests. Therefore an output of the random number

generator has to be subjected to a transformation called post-

processing. In this paper the hash function SHA-256 as post-

processing of bits produced by a combined random bit generator

using jitter observed in ring oscillators (ROs) is proposed. All

components – the random number generator and the SHA-256,

are implemented in a single Field Programmable Gate Array

(FPGA). We expect that the proposed solution, implemented in

the same FPGA together with a cryptographic system, is more

attack-resistant owing to many sources of randomness with

significantly different nominal frequencies.

Keywords—random numbers, cryptography, ring oscillators,

hash functions, field-programmable gate arrays

I. INTRODUCTION

S it was noted in [1] “True randomness can’t be left to

chance”. This sentence reflects the importance of

randomness for cryptography. Currently, there exist several

technically useful sources of randomness. They are: noise

generated by a physical system [1]-[5], metastable states [7]-

[11], the chaos phenomenon [12]-[20] or jitter produced by

ring oscillators [21]-[30]. Mixed solutions that combine

various properties of these basic techniques also exist. Such

sources are known as random bit generators (RBGs). They

produce bits with bit rate of the order of several Mbit/s and

they are not resistant to external attacks. Due to this issue,

a good solution of a RBG needs to have an additional circuit or

devices, dedicated to detect and disable a potential attack or

simply shut off a random source after detecting an attack. The

second main problem is the lack of possibility to integrate an

 The presented work has been funded by the Polish Ministry of Science and

Higher Education within the status activity task 08/83/DSPB/4707 in 2014.

Szymon Łoza is with Poznan University of Technology, Faculty of
Electronics and Telecommunications, ul. Polanka 3, 61-131 Poznan, Poland

(Correspondence: e-mail: szymon.piotr.loza@gmail.com; tel: 695 564 375).

Lukasz Matuszewski is with Poznan University of Technology, Faculty of
Electronics and Telecommunications, ul. Polanka 3, 61-131 Poznan, Poland

(e-mail: lukasz.matuszewski@et.put.poznan.pl).

Mieczyslaw Jessa is with Poznan University of Technology, Faculty of
Electronics and Telecommunications, ul. Polanka 3, 61-131 Poznan, Poland

(e-mail: mjessa@ et.put.poznan.pl)

analog random number generator in one microchip in order to

be used in encryption/decryption process in dedicated

solutions. Most of cryptographic systems are digital

constructions. Therefore, it is expected that random number

generators should be purely digital constructions, simply

integrated in one chip. Nowadays there is a trend to find in

digital circuits some behaviors or methods that will give

possibility to produce random bit sequences “on demand”,

with high bit rate, without any possibility to having access to

elements of these sequences. It is proposed to use generators

with jitter, constructed by using reprogrammable digital

circuits or constructions based on meta-stability [31], [32].

Because the latter phenomenon, although interesting, is rather

impractical for producing random bits in contemporary FPGAs

[33], the most significant are concepts using ring oscillators or

Galois Ring Oscillators (GARO). In both approaches jitter is

used for signal generation [27], [31]. Random bit sequence is

obtained by sampling signal generated by RO or GARO with

rectangular wave with lower frequency. To obtain unbiased

sequence that pass all known statistical tests for random

sequences, e.g. NIST 800-22 test suite, Diehard, TestU01 or

UC1, we need to combine bit streams produced by many RO-

based random bit generators [34]-[39]. The ring oscillators

must also have significantly different nominal frequencies to

prevent the injection attack [40]. It forces to use delay lines

built into FPGAs instead of inverters or latches [39].

To decrease the number of RO-based random bit generators

necessary to pass all statistical tests, it is proposed in this paper

to use SHA-256 hash function as post-processing. Both

elements – RBG and SHA-256, were implemented in the same

Virtex 5 FPGA (XL5VLX50T). Through experiments it has

been shown that the minimal number of ROs that should be

used for building a random bit generator with SHA-256 as

post-processing is equal to eight.

The paper is organized as follows. The idea of producing

random bits with a combined RBG with SHA-256 as post-

processing is presented in Section II. The quality of sequences

produced with the proposed generator is discussed in Section

III. The last Section are conclusions.

II. POST-PROCESSING WITH SHA-256 HASH FUNCTION

A. A Combined RO-Based Random Bit Generator

The simplest RBG that can be completely integrated with
any digital system in the same FPGA uses a ring oscillator
which output signal is sampled with a D flip-flop. Such kind of
RBG is shown in Figure 1.

A Random Number Generator Using Ring

Oscillators and SHA-256 as Post-Processing

Szymon Łoza, Łukasz Matuszewski, and Mieczysław Jessa

A

mailto:szymon.piotr.loza@gmail.com
mailto:lukasz.matuszewski@et.put.poznan.pl

S. ŁOZA, Ł. MATUSZEWSKI, M. JESSA

200

Generator uses jitter and frequency drift found in CMOS ring

oscillator for random bit generation. A D-type flip-flop is

triggered by a quartz oscillator signal which establishes the bit

rate. Frequency fH is greater than quartz oscillator frequency fL.

The fH of a single ring oscillator is equal to

1 1

2
H

k k

f
d

  , (1)

where dk is a delay of the k-th component of RO. The

expression is true if all components are ideal and delays related

with interconnections are ignored. In a real circuit delays

caused by inner connections cannot be ignored [36]. Moreover,

propagation delays in all circuit paths and gates vary in time,

because of shot noise, thermal noise and supply voltage

instability [28], [41]. Taking into account these factors the

more realistic formula for fH is the following [28], [39]:

1 1

2
H

k k k a

f
d di J


  

 , (2)

where

a k k k

k

J dt dv dr     (3)

is an accumulated jitter during previous half period of signal

with frequency of fH and k delay elements. Parameter dik is the

delay of the k-th interconnections in ring oscillator, Δdtk is the

variation of the delay in the k-th component and

interconnection caused by variation of temperature, Δdvk

represents the variation of the delay in the k-th component and

interconnection caused by supply voltage instability and Δdrk

define others random delays in the k-th element and path in the

ring oscillator, e.g., transition spacing or crosstalk’s. The

accumulated jitter can be divided into deterministic component

and nondeterministic one [28], [39]:

a an adJ J J    , (4)

where

an nk nk nk

k

J t dv dr     (5)

denotes an accumulated nondeterministic jitter and

ad dk dk dk

k

J p t v dr     

represents an accumulated deterministic jitter with proportion

factor of p.

Realization of the delay element τ can be done with even

number of inverters, a latches chain or a delay line that is built-

in many FPGAs. The greater delay τ, the lower frequency fH is

obtained. Due to insufficient nondeterministic factor in a single

RO, it is necessary to combine XOR many independent

sources of randomness [31], [34], [37]. The combined RBG

(CRBG) is shown in Figure 2.

(6)

Fig. 1. Uniformly sampled ring oscillator (RO) as a RBG

When all rings are built in the same way, they have similar

frequencies and the RO-based RBG is sensitive to injection

attack [40]. To ensure the robustness to this attack, we have to

construct ROs with significantly different nominal frequencies.

We can choose an even number of inverters, a chain of laches

or delay lines available in FPGAs. The comparison of nominal

frequencies of ROs using different types of delays is available

in [39]. In this article, the chain of latches was used as τ. In the

first RO – one latch, in the second RO – two latches, and in the

Nth - N latches.

B. SHA-256

The output bits from the combined RBG may still be biased

and correlated for small N [34], [37]. To overcome this

problem we can use a post-processing [44]. The scheme of

CRBG with SHA-256 as post-processing is shown in Figure 3.

Random bits from the combined RBG are collected in

blocks of 8 bits. Afterwards, each byte is stored in FIFO buffer

which is 64 byte width. This is made to prepare 512 random

bits that are processed by SHA-256. Hash functions are used in

cryptography mainly to check integrity and in digital signature

schemes. The definition of hash function says that “A hash

function is a computationally efficient function mapping

binary strings of arbitrary length to binary strings of some

fixed length, called hash-values” [45]. Input can consist of

such data like text file, binary file, message, data block etc. In

general, the length of input is not limited. A general schema

that illustrates how does a hash function works is shown in

Figure 4.

A family of hash functions SHA-2 includes SHA-256, SHA-

384 and SHA-512. In this paper it was used the SHA-256. The

algorithm comes from paper [46]. In its first step, input is

processing by adding bit 1, next to the last significant bit and

any number of bits 0 that L ⊕ 512 = 488, where L is length of

the message. A family of hash functions SHA-2 includes SHA-

256, SHA-384 and SHA-512. In this paper it was used the

SHA-256. The algorithm comes from paper [46]. In its first

step, input is processing by adding bit 1, next to the last

significant bit and any number of bits 0 that L ⊕ 512 = 488,

where L is length of the message. After that L is added as 64-

bits big-edian representation. Next step is that 512 blocks split

into smaller 32-bits blocks M (i
j
) where j = 0, 1, 63, and

i = 0, 1, N, where N is a number of divided massage block.

After splitting, the SHA-256 algorithm prepares initial values

for H (0) – sequences of 32 bits which

Fig. 2. Combined RBG block diagram.

A RANDOM NUMBER GENERATOR USING RING OSCILLATORS AND SHA-256 AS POST-PROCESSING

201

Fig. 3. A combined random bit generator with SHA-256 as post-processing

Fig. 4. A concept of a hash function.

were obtained as fractional parts of the square roots of the first

eight primes. H (0) values are the following:

H (0)
1 = 6a09e667,

H (0)
2 = bb67ae85,

H (0)
3 = 3c6ef372,

H (0)
4 = a54ff53a, (1)

H (0)
5 = 510e527f,

H (0)
6 = 9b05688c,

H (0)
7 = 1f83d9ab,

H (0)
8 = 5be0cd19.

After preparation initial register values, the algorithm updates

registers: a, b, c, d, e, f, g, and h. This update is calculated in

64 steps from j = 0 to j = 63 and it goes as following:

T1 ← h + ∑1 (e) + Ch (e, f, g) + Kj + Wj

T2 ← ∑0 (a) + Maj (a, b, c)

h ← g

g ← f

f ← e

e ← d + T1 (2)

d ← c

c ← b

b ← a

a ← T1 + T2

where:

Ch(x, y, z) = (x ^ y) ⊕ (¬x ^ z)

Maj(x, y, z) = (x ^ y) ⊕ (x ^ z) ⊕ (y ^ z)

∑0(x) = S2(x) ⊕ S13(x) ⊕ S22(x)

∑1(x) = S6(x) ⊕ S11(x) ⊕ S25(x) (3)

σ0(x) = S7(x) ⊕ S18(x) ⊕ R3(x)

σ1(x) = S17(x) ⊕ S19(x) ⊕ R10(x)

Sn – right n-bit shift

Rn – right n-bit rotation.

Wj – message blocks are determined as follows:

1. for first 16 blocks: Wj = Mj
(i)

2. for rest of blocks: Wj = σ1(Wj-2)+Wj-7 +σ0(Wj-15)+Wj-16

Kj - 32-bit words determined as fractional parts of the cube

roots of the first sixty four primes.

⊕ bitwise XOR

^ bitwise AND

¬ bitwise complement

+ mod 232 addition
Sn right shift by n bits

Rn right rotation by n bits

The next step is a calculation of intermediate hash value H (i):

H(i)
1 ← a + H1

(i-1)

H(i)
2 ← a + H2

(i-1)

· (4)

·

·

H(i)
8 ← a + H8

(i-1)

As an output, we obtain hash value H(N) of message M

generated as:

H(N) = {H(N)
1, H(N)

2, H(N)
3, H(N)

4, H(N)
5, H(N)

6, H(N)
7, H(N)

8}.

Hash function returns eight 32-bit words. The bits are sent

via buffer and USB interface to a personal computer (PC). In

PC the quality of generated sequence is assessed using

statistical tests and the restarts mechanism [37], [38]. In all

experiments the sampling frequency fL is equal to 100 MHz.

III. THE STATISTICAL PROPERTIES OF BIT SEQUENCES

PRODUCED BY A CRBG USING ROS AND THE SHA-256

To assess the minimal number of source generators of

CRBG with SHA-256 as post-processing “A statistical Test

Suite for Random and Pseudo-Random Number Generators for

Cryptographic Applications”, document 800-22 prepared by

the National Institute of Standards and Technology (NIST)

was used [47]. These tests are often referred to as the NIST

800-22 statistical test suite or, simply, the NIST 800-22 tests.

During testing, we applied two approaches proposed by NIST:

(1) we examined the proportion R of sequences that passed

a statistical test, and (2) we examined the distribution of

S. ŁOZA, Ł. MATUSZEWSKI, M. JESSA

202

P  values computed by the software; that is, we examined the

value of
TP [47].

In the first step only one RO was connected to SHA-256

block. The sequence of 1 Gbit length was collected and

examined with the NIST 800-22 test suite. The results of

experiment were unsatisfactory because most of the tests were

failed (Table I).

TABLE I
THE RESULTS OF THE NIST 800-22 TESTS FOR THE CRBG WITHOUT SHA-256

AND WITH SHA-256

Type of test
CRBG-1 CRBG-1 + SHA-256

Rβ PT Rβ PT

Frequency 0.000 0.000 0.000 0.980

Block Frequency 0.000 0.056 0.000 0.491

Cumulative Sums* 0.000 0.000 0.000 0.976

Runs 0.000 0.000 0.061 0.982

Longest Run of Ones 0.000 0.000 0.000 0.977

Rank 0.000 0.000 0.000 0.000

Spectral DFT 0.000 0.000 0.000 0.000

Non-overlapping
Temp.*

0.000 0.000 0.000 0.954

Overlapping

Templates
0.000 0.000 0.000 0.757

Universal 0.000 0.000 0.311 0.986

Approximate Entropy 0.000 0.000 0.000 0.064

Random Excursions* 1.000 --- 0.242 0.564

Random Exc. Var.** 1.000 --- 0.097 0.565

Serial* 0.000 0.000 0.000 0.000

Linear Complexity 0.236 0.995 0.651 0.994

TABLE II
FREQUENCIES OF ROS IN THE COMBINED RBG

RO number Frequency [MHz]

1. 702

2. 555

3. 312

4. 220

5. 202

6. 164

7. 145

8. 111

TABLE III
THE RESULTS OF THE NIST 800-22 TESTS FOR THE CRBG WITHOUT SHA-256

AND WITH SHA-256

Type of test
CRBG-8 CRBG-8 + SHA-256

Rβ PT Rβ PT

Frequency 0.792 0.993 0.989 0.848027

Block Frequency 0.000 0.949 0.991 0.630872

Cumulative Sums* 0.994 0.058 0.988 0.653773

Runs 0.000 0.803 0.991 0.680755

Longest Run of Ones 0.000 0.906 0.992 0.908760

Rank 0.781 0.989 0.995 0.699313

Spectral DFT 0.000 0.885 0.988 0.216713

Non-overlapping

Temp.*
0.000 0.584 0.982 0.021554

Overlapping Templates 0.000 0.299 0.986 0.530120

Universal 0.000 0.937 0.987 0.649612

Approximate Entropy 0.000 0.000 0.988 0.446556

Random Excursions* 0.595 0.976 0.986 0.199785

Random Exc. Var.** 0.863 0.984 0.984 0.238697

Serial* 0.000 0.000 0.989 0.308561

Linear Complexity 0.147 0.989 0.922 0.431754

TABLE IV
THE RESULTS OF THE RESTARTS FOR THE CRBG WITHOUT SHA-256 AND

WITH SHA-256

 CRBG-8 CRBG-8 + SHA-256

mmin 36 1

TABLE V
IMPLEMENTATION ISSUES

Number of Slice Registers 2540

Number of Slice LUTs 2467

Number of LUT Flip Flops pairs 2824

Max Clock Frequency 263 MHz

The experiment was repeated for CRBGs that uses two, three,

etc. source bit streams, till the all tests from NIST 800-22 were

passed. Each source bit stream was produced by a single RO-

based RBG. The source generators differed only the delay τ in

the ROs. During analysis, the final report file from NIST 800-

22 package were used. The tests passed a combined RBG

using eight or more RO-based source generators. The

frequencies of eight ROs are shown in Table II.

 During testing the standard set of parameters proposed by

NIST in v. 2.1.1 was assumed. The significance level was

β = 0.01. The minimum passing value for the standard set of

parameters was approximately 0.9805. The minimum TP

value was 0.0001. An asterisk * denotes that this test consists

of several subtests and that the worst result is shown. For tests

marked with **, the minimum passing value for the standard

set of parameters was approximately 0.9777. The results of the

NIST statistical tests are shown in Table III.

In the next step of the experiment it was performed a test

based on restarts mechanism [37], [38]. This test is based on

multiple restarts of the combined generator with the same

initial conditions. It helps to assess the amount of randomness

and pseudo-randomness in generated sequences. If during

producing bits the amount of deterministic factor is prevalent,

the sequences will be almost the same or exactly the same.

When the non-deterministic phenomena prevails, the generated

sequences will vary.

 During the restarts N = 2084 sequences were generated and

M = 19968 bits were send to PC for each restart. Next,

M=19968 chi-square tests were performed. If a single bit in the

sequences was produced in a non-deterministic process then

chi-square test is passed. A computer program searches the

results of 19968 chi-square tests for the greatest m for which the

sequences failed the chi-square test for three successive indices,

i.e., m, m-1 and m-2, where m=1,2,…,M. For j m and a given

significance level of the test, there is no reason to reject the

hypothesis that zeros and ones occur with the same probability

in 19968 bit sequences. The smallest j is equal to 1m and

denoted by mmin [37]-[39]. The results of the restarts are shown

in Table IV.

The described generator was implemented in Virtex-5

(XL5VLX50T). Used resources are specified in Table IV.

Those resources are about 9% of all resources available in

Virtex-5 (XL5VLX50T) FPGA. The remaining 91% can be

used for monitoring on-line the quality of random bits to detect

any disturbances caused, e.g., by an attack and for

implementing a cryptosystem that exploits random bits. The

strings of bits can be produced on demand or in random

instances, hampering cryptographic attacks.

A RANDOM NUMBER GENERATOR USING RING OSCILLATORS AND SHA-256 AS POST-PROCESSING

203

IV. CONCLUSIONS

It is known from the literature that combining XOR bits

produced at the same time by many independent random

number generators is an efficient method for producing

random sequences that pass every statistical test. This method

requires relatively large resources, and excellent statistical

properties can be observed for both deterministic and

nondeterministic systems. The proposed true random number

generator is able to provide random bits with average bit rate

of 36 Mbit/s. The minimal number of RO that should be used

when building the combined RBG with SHA-256 as post-

processing is eight. For smaller number of RO-based source

generators the combined RBG does not pass all NIST 800-22

tests. The use of SHA-256 function as post-processing

enhances significantly the statistical properties of the output

sequences and reduces the mmin value, but it works up to a

certain level. When a generator produces sequences with very

poor statistical properties, post-processing with SHA-256 does

not improve sufficiently the statistical properties. The expected

robustness to the injection attack results from significantly

different frequencies of eight RO-based source generators. The

use of ROs with significantly different frequencies hampers

also mutual synchronization between ROs implemented in the

same FPGA, preventing the quality degradation of RO-based

combined RBGs implemented in various FPGAs.

REFERENCES

[1] A. Vassilev and T. A. Hall, “The importance of entropy to information

security,”, IEEE Computer, pp. 78-81, February 2014.

[2] W. T. Holman, J. A. Connelly, and A. B. Downlatabadi, “An integrated
analog/digital random noise source,” IEEE Trans. Circuits and Syst. I,

Fundam. Theory Appl., vol. 44, pp. 521-528, June 1997.

[3] V. Bagini and M. Bucci, “A Design of reliable true random number
generator for cryptographic applications,” in Proc. Workshop

Cryptograph. Hardware Embed. Syst. CHES’1999, Heidelberg, 1999,

LNCS 1717, pp. 204-218.
[4] C. S. Petrie, J. A. Connelly, “The sampling of noise for random

generation,” in Proceedings of the 50th International Symposium on

Circuits and Systems ISCAS’1999, vol. 6, pp. VI-26-VI-29, 1999.
[5] M. Bucci, L. Germani, R. Luzzi, P. Tommasimo, A. Trifiletti, and M.

Varanonuovo, “A high-speed IC random-number source for smartcard

microcontrollers,” IEEE Trans. Circuits and Syst. I, Fundam. Theory
Appl., vol. 50, pp. 1373-1380, Nov. 2003.

[6] J. Holleman, S. Bridges, B. P. Otis, and Ch. Diorio “A 3 μW CMOS true

random number generator with adaptive floating-gate offset cancellation,
IEEE J. of Solid-State Circuits,” vol. 43, pp. 1324-1336, May 2008.

[7] M. J. Bellido et al., “A simple binary random number generator: New

appoaches for CMOS VLSI,” in Proc. 35th Midwest Symp. Circuits Syst.,
vol. 1, pp. 127-129, 1992.

[8] M. Epstein, L. Hars, R. Krasinski, M. Rosner, and H. Zheng, “Design

and implementation of a true random number generator based on digital
circuit artifacts,” in Proc. Workshop Cryptograph. Hardware Embed.

Syst. CHES’2003, LNCS 2779, pp. 152-165, 2003.

[9] I. Vasyltsov, E. Hambardzumyan, Y.-S. Kim, and B. Karpinskyy “Fast
digital RBG based on metastable ring oscillator,” in Proc. Workshop

Cryptograph. Hardware Embed. Syst. CHES’2008, LNCS 5154, pp. 164-

180, 2008.
[10] S. Srinivasan, S. Mathew, V. Erraguntla, and Krishnamurthy, “A 4Gbps

0.57pJ/bit Process-Voltage-Temperature Variation Tolerant All-Digital

True Random Number Generator in 45nm CMOS,” in Proc. 22nd
International Conference on VLSI Design, pp. 301-306, 2009.

[11] M. Varchola and M. Drutarovsky, “New high entropy element for FPGA
based true random number generators,” in Proc. Workshop

Cryptograph. Hardware Embed. Syst. CHES’2010, LNCS 6225, pp. 351-

365, 2010.

[12] G. Bernstein and M. A. Lieberman, “Secure random number generation
using chaotic circuits,” IEEE Trans. Circuits and Syst. vol. 37, pp. 1157-

1164, Sept. 1990.

[13] R. Bernardini and G. Cortelazzo, “Tools for designing chaotic systems
for secure random number generation,” IEEE Trans. Circuits and Syst. I,

Fundam. Theory Appl., vol. 48, pp. 552-564, May 2001.

[14] T. Stojanovski and L. Kocarev, “Chaos-based random number generators
– Part I: Analysis,” IEEE Trans. Circuits and Syst. I, Fundam. Theory

Appl., vol. 48, pp. 281-288, March 2001.

[15] T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number
generators – Part II: Practical realization,” IEEE Trans. Circuits and

Syst. I, Fundam. Theory Appl., vol. 48, pp. 382-385, March 2001.

[16] M. E. Yalçin, J. A. K. Suykens, and J. Vandewalle, “True bit generation
from a double-scroll attractor,” IEEE Trans. Circuits and Syst. I, Regular

Papers., vol. 51, pp. 1395-1404, July 2004.

[17] S. Callegari, R. Rovatti, and G. Setti, “Embeddable ADC-based true
random number generator for cryptographic applications exploiting

nonlinear signal processing and chaos,” IEEE Trans. Signal Processing,

vol. 53, pp. 793-805, Feb. 2005.
[18] S. Callegari, R. Rovatti, and G. Setti, “First direct implementation of true

random source on programmable hardware,” Int. J. Circ. Theor. Appl.

vol. 33, pp. 1-16, 2005.

[19] M. Drutarovsky and P. Galajda, “Chaos-based true random number

generator embedded in a mixed-signal reconfigurable hardware,” J.
Electrical Engineering, vol. 57, pp. 218-225, April 2006.

[20] S. Ergün and S. Özog, “Truly random number generator based on a non-

autonomous chaotic oscillator,” Int. J. Electronics and Commun., vol. 61,
pp. 235-242, April 2007.

[21] C. S. Petrie, J. A. Connelly, “Modelling and simulation of oscillator-

based random number generators,” in Proceedings of the 47th
International Symposium on Circuits and Systems ISCAS’1996, vol. 4,

pp. 324-327, 1996.

[22] C. S. Petrie and J. L. Connelly, “A noise-based IC rndom number
generator for applications in Cryptography,” IEEE Trans. Circuits and

Syst. I, Fundam. Theory Appl., vol. 47, pp. 615-621, May 2000.

[23] M. Bucci, L. Germani, R. Luzzi, A. Trifiletti M. Varnonuovo, “A high-
speed oscillator-based truly random number source for cryptographic

applications on a smartcard IC,” IEEE Trans. on Computers, vol. 52, pp.

403-409, April 2003.
[24] B. Jun, B. Kocher, “The Intel random number generator,” Cryptography

Research Inc., San Francisco, CA, white paper for Intel Corp., April

1999. Available at:
http://www.cryptography.com/resources,whitepapers/IntelRNG.pdf.

[25] P. Kohlbrenner and K. Gay, “An embedded true random number

generator for FPGAs,” in Proc. of the 2004 ACM/SIGDA 12th
International Symposium on FPGAs, FPGA’04, pp. 71-77, 2004.

[26] J. D. Golić, “New methods for digital generation and postprocessing of

random data,” IEEE Trans., Comput., vol. 55, pp. 1217-1229, Oct. 2006.
[27] M. Dichtl and J. D. Golić, „High speed true random number generation

with logic gates only, in Proc. Workshop Cryptograph. Hardware

Embed. Syst. CHES’2007, LNCS 4727, pp. 45-62, 2007.
[28] B. Valtchanov, A. Aubert, F. Bernard, and V. Fischer, “Modeling and

observing the jitter in ring oscillators implemented in FPGAs,” in Proc.

of IEEE Workshop on Design and Diagnostics of Electronic Circuits and
Systems, DDECS’08, pp. 1-6, 2008.

[29] B. Valtchanov, V. Fischer, A. Aubert, and F. Bernard, “Characterization

of randomness sources in ring oscillator-based true random number
generators in FPGAs,” in Proc. of IEEE Workshop on Design and

Diagnostics of Electronic Circuits and Systems, DDECS’10, pp. 48-53,

2010.

[30] M. Baudet, D. Lubicz, J. Micolod, and A. Tassiaux, “On the security of

oscillator-based random number generators,” J. Cryptology, vol. 24, pp.

398-425, 2011.
[31] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true

random number generator with built-in tolerance to active attacks,”

IEEE Trans., Comput., vol. 56, pp. 109-119, Jan. 2007.
[32] P. Wieczorek and K. Golofit, “Dual-Metastability Time-Competitive

True Random Number Generator”, IEEE Trans. On Circuits and
Systems, vol. 61, I. No. 1, pp. 134-145, 2014.

[33] P. Kubczak, M. Jessa, and L. Matuszewski, “Random number generator

exploiting metastability implemented in Xilinx FPGA,” Mesurement
Automation and Monitoring (PAK), vol. 60, No. 7, pp. 450-452, 2014.

[34] K. Wold and C. H. Tan, “Analysis and enhancement of random number

generator in FPGA based on oscillator rings,” Int. J. of Reconfiugurable
Computing, vol. 2009, pp. 1-8, 2009.

http://www.cryptography.com/resources,whitepapers/IntelRNG.pdf

S. ŁOZA, Ł. MATUSZEWSKI, M. JESSA

204

[35] K. Wold and S. Petrović, “Optimizing speed of a true random number
generator in FPGA by spectral analysis,” in Proc. of Fourth International

Conference on Computer Sciences and Convergence Information

Technology, ICCIT’09, pp. 1105-1110, 2009.
[36] K. Wold and S. Petrović, “Security properties of oscillator rings in true

random number generators,” in Proc. of 15th International Symposium on

Components, Circuits, Devices and Systems, pp. 145-150, 2012.
[37] M. Jessa and M. Jaworski, “Randomness of a combined RBG based on

the ring oscillator sampling method,” Proc. of International Conference

on Signals and Electronic Systems, ICSES’10, pp. 323-326, 2010.
[38] M. Jessa and L. Matuszewski, “Enhancing the Randomness of a

Combined True Random Number Generator Based on the Ring

Oscillator Sampling Method,” Proc. of International Conference on
ReConFigurable Computing and FPGAs, ReConFig’2011, , 2011, pp.

274-279, 2011.

[39] M. Jessa and L. Matuszewski, “Producing random bits with delay-line-
based ring oscillators,” Int. Journal of Electronics and

Telecommunications, vol. 59, No. 1, pp. 41-50, 2013.

[40] A. T. Markettos and S. M. Moore, “The frequency injection attack on
ring-oscillator-based true random number generators,” in Proc.

Workshop Cryptograph. Hardware Embed. Syst. CHES’2009, Sept.,

2009, LNCS 5747, pp. 317-331.

[41] Ü. Güler, S. Ergün, and G. Dündar, “A digital IC random number

generator with logic gates only,” Proc. of 17th IEEE International
Conference on Electronics, Circuits, and Systems (ICECS), Dec. 2010,

pp. 239-242.

[42] N. Bochard, F. Bernard, and V. Fischer, “Observing the randomness in
RO-based RBG,“ in Proc. of International Conference on

Reconfigurable Computing and FPGAs, ReConFig 2009, pp. 237-242,

2009.
[43] S Markovski, ,D. Gligoroski, and L. Kocarev, “Unbiased Random

Sequences from Quasigroup String Transformations”, 12th International

Workshop, FSE 2005, Paris, France, February 21-23, 2005.
[44] M. Bucci and R. Luzzi, “Fully digital random bit generators for

cryptographic applications,” IEEE Trans. Circuits and Syst. I: Regular
Papers, vol. 55, pp. 861-875, April 2008.

[45] A. J. Menezes, P. C. van Oorschot, and S. C. Vanstone, Handbook of

Applied Cryptography. Boca Raton: CRC, 1997.
[46] Descriptions of SHA-256, SHA-384, and SHA-512

http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-

512.pdf.
[47] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M.

Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, “A

statistical test suite for random and pseudorandom number generators for
cryptographic applications,” NIST special publication 800-22, Revised:

April 2010, Available at: http://csrc.nist.gov/rng/.

http://link.springer.com/search?facet-author=%22Smile+Markovski%22
http://link.springer.com/search?facet-author=%22Danilo+Gligoroski%22
http://link.springer.com/search?facet-author=%22Ljupco+Kocarev%22
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
http://csrc.nist.gov/rng/

