
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2018, VOL. 64, NO. 2, PP. 249-254

Manuscript received May 9, 2017; revised April, 2018. DOI: 10.24425/119584

̀

Abstract—There exist numerous modelling techniques and

representation methods for digital control algorithms, aimed to

achieve required system or process parameters, e.g. precision of

process modelling, control quality, fulfilling the time constrains,

optimisation of consumption of system resources, or achieving a

trade-off between number of parameters.

This work illustrates usage of Finite State Machines (FSM)

modelling technique to solve a control problem with

parameterized external variables. The structure of this work

comprises six elements. The FSM is presented in brief and

discrete control algorithm modelling is discussed. The modelled

object and control problem is described and variables are

identified. The FSM model is presented and control algorithm is

described. The parameterization problem is identified and

addressed, and the implementation in PLC programming LAD

language is presented. Finally, the conclusion is given and future

work areas are identified.

Keywords—Finite State Machine, parameterised discrete

control, process modelling, Ladder Diagram, TIA Portal

I. FINITE STATE MACHINE

NITE State Machine, FSM, or Finite State Automaton, or in

short Finite Automaton, is a mathematical apparatus

allowing to model the behaviour of processes that can be

described by discrete values of parameters (variables) and by

distinguishing particular states of the system, in which the

discrete variables take particular values. In other words, it is

a mathematical model of behaviour of the system described by

a finite number of discrete states and activities (transitions),

triggered by certain conditions and changing one or more of

discrete variables or parameters of the system.

The FSM model describes the state of an object by

specifying the values of particular system variables or

parameters at certain moments or intervals of time (states), and

by defining the table of changes of system variables in

subsequent discrete states (the transition table).

Let's define the Finite State Machine with Moore type

outputs as in equation (1) [1]:

  ,,,,, YXFSFSM  (1)

where:

S={s1,…,sj} is non-empty and finite set of states;

F is non-empty set of directed arcs such that F(SS);

X={x1,…,xi} is a finite and non-empty set of inputs;

Authors are with The Jacob of Paradies University, Gorzów Wielkopolski,

Poland (e-mails: {GAndrzejewski; WZajac}@ajp.edu.pl).

Y={y1,…,yk} is a finite set of outputs;

 is a function assigning to each arc of a subset of the input :

F  X;

 is a function assigning to each state a subset of the output :

S  Y.

II. MODELLING THE FSM AUTOMATON

To model of the Finite Automaton operation algorithm it is

necessary to identify and describe the components of equation

(1). An example of the FSM algorithm is presented in Fig. 1.

Fig. 1. An example of FSM algorithm.

For the algorithm to change a state it is necessary to fulfil a

certain transition condition: setting or resetting a discrete input

variable, occurrence of a particular combination of signals, etc.

Changing the state of the automate causes changes in values of

discrete output variable.

The FSM example in the Fig. 1. After starting, it waits in the

state s1 for trigger condition x1 to be fulfilled. In this state, the

y1 output signal is active. Activation of x1 input causes FSM to

change the state to s2, in which there are activated y2 and y3

outputs. If the input x2 is set, the machine changes the state to

s3, with y4 and y5 are active.

The transition condition for the system to change the state

from s3 to s4 is that x3 input is not active. In s4 the y6 output is

activated. Finally, the occurrence of x4 input signal will cause

the machine to go to s5 state, reset all outputs and stop the

operation.

Modelling of Parameterized Discrete Control

Algorithms With Use of Finite State Machines

in TIA Portal Environment
Grzegorz Andrzejewski and Wojciech Zając

F

s1

s3

s4

s5

START

y1

x1

s2 y2, y3

x2

y4, y5

~x3

y6

x4

250 G. ANDRZEJEWSKI, W. ZAJĄC

III. CONTROL OBJECT

As an example of control object with parameterized

variables, there was taken a cross-roads model with two traffic

flows and corresponding streetlights (Fig. 2), according to

appropriate regulations [2, 3].

The streetlights are controlled by signals as follows:

• Red A - red light in A flow,

• Yellow A - yellow light in A flow,

• Green A - green light in A flow,

• Red B - red light in B flow,

• Yellow B - yellow light in B flow,

• Green B - green light in B flow.

Fig. 2. Cross-roads model as control object.

In FMS description of the object control algorithm there can

be identified seven states s1 to s7. Each state has individual set

of active outputs. In Table I there is presented relation between

states and activated output signals.

 Table II presents logical values of particular discrete

outputs in subsequent states of FSM.

In Fig. 3. there is presented a FSM graph, modelling the

control object behaviour.

Fig. 3. FSM graph of streetlights control.

The presented system changes the FMS states on the timing

conditions. Therefore it was necessary to introduce timing

signals T1 to T6.

For research purposes, there were assigned short times, 2 and

5 seconds, as convenient for implementation verification. They

will be transformed to variables on further research steps and

changed.

Except for T1-T6 input signals, there was introduced

Operation Enable (OE) input signal. If it is active, the FMS,

once started, performs the control algorithm in infinite loop.

Deactivation of the OE causes the algorithm to change the

FSM state to s7 and to reset all output signals.

Presented algorithm was modeled in Ladder Diagram

language [3, 4, 5] and implemented on PLC platform (Siemens

SIMATIC S7-1200 series) [6, 7].

Traffic flow A

Traffic flow B

Streetlight A

Streetlight B

s1

s3

s4

s7

START

Green A, Red B

T1=5s

s2 Yellow A, Red B

T2=2s

Red A, Red B, Yellow B

T3=2s

Red A, Green B

T4=5s

s5 Red A, Yellow B

T5=2

s6 Red A, Yellow A, Red B

T6=2s

~OE

~OE

~OE

~OE

~OE

~OE

~OE

~OE

~OE

~OE

~OE

~OE

 TABLE I
FSM STATES AND ACTIVE SIGNALS

State s1 s2 s3 s4 s5 s6 s7

Active

Signals
Green A

Red B

Yellow A

Red B

Red A

Yellow B

Red B

Red A

Green B

Red A

Yellow B

Red A

Yellow A

Red B

-

TABLE II
LOGICAL VALUES OF SYSTEM OUTPUTS IN PARTICULAR FSM STATES

Signals/states s1 s2 s3 s4 s5 s6 s7

Red A 0 0 1 1 1 1 0

Yellow A 0 1 0 0 0 1 0

Green A 1 0 0 0 0 0 0

Red B 1 1 1 0 0 1 0

Yellow B 0 0 1 0 1 0 0

Green B 0 0 0 1 0 0 0

MODELLING OF PARAMETERIZED DISCRETE CONTROL ALGORITHMS WITH USE OF FINITE STATE MACHINES IN TIA PORTAL ENVIRONMENT 251

Fig. 4. Control network for streetlight signals.

252 G. ANDRZEJEWSKI, W. ZAJĄC

Fig. 5. Control network for system stop.

Fig. 6. Startup block of modified program.

IV. LAD IMPLEMENTATION

The FMS algorithm was implemented as Step7 LAD program

in SIEMENS Totally Integrated Automation Portal

environment, for target platform Siemens SIMATIS S7-1200

PLC. The initial version with no parameterisation is presented

in Fig. 4. and 5.

Fig. 4. presents main control network for streetlight signals.

The "Operation Enable" signal allows the system to be set into

a state of being ready to start operation. When the signal is

active, the "Start" signal initiates transition of the system to

the s1 state, by starting the timer "Time Pulse for State 1".

When started, the timer enables its output and invokes "Set"

coils for "Green Signal A" and "Red Signal B" and Reset coils

for "Yellow Signal A", "Red Signal A", "Green Signal B" and

"Yellow Signal B". The length of time pulse is determined by

PT field of the "Time Pulse for State1" data block (DB1).

When the time elapses, the timer disables its output.

"Time Pulse for State 2" timer is initiated by LAD language

N contact, detecting negative edge of the Q output signal of

"Time Pulse for State1" data block. When the "Time Pulse for

State1" disables the output, "Time Pulse for State2" timer

starts, enabling the Set coils for "Yellow Signal A" and "Red

Signal B" and Reset coils for "Green Signal A", "Red Signal

A", "Green Signal B" and "Yellow Signal B". This is

equivalent to putting the system into s2 state. The length of

time pulse is determined by PT field of the "Time Pulse for

State2" data block (DB2).

The s3 state is initiated by negative edge detection on "Time

Pulse for State 2.Q" data field. It starts "Time Pulse for State

3", lasting for the time defined in the timer PT field. It enables

"Red Signal A", "Yellow Signal B" and "Red Signal B" and

disables signals "Green Signal A", "Yellow Signal A" and

"Green Signal B".

MODELLING OF PARAMETERIZED DISCRETE CONTROL ALGORITHMS WITH USE OF FINITE STATE MACHINES IN TIA PORTAL ENVIRONMENT 253

Fig. 7. Screenshot of modified program in operation.

"Time Pulse for State4", initiated by disabling the "Time

Pulse for State3.Q" field, puts the system into s4 state ("Green

Signal A" disabled, "Yellow Signal A" disabled, "Red Signal

A" enabled, "Green Signal B" enabled, "Yellow Signal B"

disabled , "Red signal B" disabled).

The s5 state is controlled by "Time Pulse for State5" timer,

initiated by resetting "Time Pulse for State4.Q" signal. The

timer sets "Red Signal A" and "Yellow Signal B and resets

"Green Signal A", "Yellow Signal A",", "Green Signal B" and

"Red signal B".

The next state, s6, is initiated by negative edge of "Time

Pulse for State5.Q" signal, starting "Time Pulse for State6"

timer. In this state there are enabled "Yellow Signal A", "Red

Signal A" and "Red signal B" and "Green Signal A", "Green

Signal B" and "Yellow Signal B" are disabled.

When "Time Pulse for State6" disables its Q output, negative

edge detection contact initiates "Time Pulse for State 1" timer

and the operation cycle is repeated.

V. FSM PARAMETERISATION

To allow introducing variable times to the FMS algorithm, it

is necessary to define six memory data blocks, for variables

defining times for particular states. In the example, the

variables are :

• "Time Value for State1",

• "Time Value for State2",

• "Time Value for State3",

• "Time Value for State4",

• "Time Value for State5",

• "Time Value for State6".

The time values are initially determined in the program. In

the example, for the FSM to initially fill the data with time

values there was user a special Startup Block of LAD

language. If present in the program, the block is performed

only once, as the first block of program. In the example in Fig.

6. the time variables are initiated with appropriate data (time in

milliseconds).

In Fig. 7. there is presented a screenshot of a modified

program during operation, with time values as PT input

parameters of timer blocks.

During operation of the control system, time values can be

changed manually by system operator or calculated by

dedicated algorithms, e.g. of adaptive flow control [8].

The PLC platform used in this example, similarly to other

modern PLCs, allows the operator to monitor the control

process state and change the system variables with use of

Human-Machine Interface panel. This can be used in the given

example, to monitor or to change the states time values.

The other possibility is to employ the WWW server of PLC

unit and create Web page that will allow to monitor and/or

modify the system parameters with use of any popular web

browser on PC/PG system connected via network to PLC.

VI. CONCLUSION AND FUTURE WORK

The paper gives an example of Finite State Machines (FSM)

modelling technique to solve a control problem with

parameterized external variables. The example was

implemented and tested in PLC environment. The method

proved to be efficient and straightforward to implement in

LAD language.

Further research will be aimed to apply the technique in a

system for adaptive traffic flow control.

References

254 G. ANDRZEJEWSKI, W. ZAJĄC

[1] M. Adamski, A. Barkalov, „Architectural and sequential synthesis of
digital devices”, University of Zielona Góra, 2006

[2] Regulation of the Ministry of Infrastructure dated 3 July 2003 of detailed

technical specifications for signs and traffic signals and traffic safety
equipment and conditions of their placing on the roads, OJ 2003 No. 220,

item. 2181 (in Polish)

[3] K. Małecki, S. Jaszczak, R. Sokołowski, "Synthesis of Hardware and
Software Traffic Control Simulator for a Particular Area", Measurement

Automation and Control (Pomiary, Automatyka, Kontrola), no 7/2012,

pp. 608-610 (in Polish) (2012)
[4] T. Łuba (red.), M. Rawski, P. Tomaszewicz, B. Zbierzchowski:

„Programowalne Układy Przetwarzania Sygnałów i Informacji”,
Wydawnictwa Komunikacji i Łączności, Warszawa 2008

[5] M. Adamski, J. Tkacz, Formal reasoning in logic design of

reconfigurable controllers Proceedings of 11th IFAC/IEEE International
Conference on Programmable Devices and Embedded Systems - PDeS

2012. Brno, Czech Republic (2012)

[6] A. Barkalov, L. Titarenko: „Logic synthesis for FSM-based control
units”, Springer-Verlag, Berlin 2009, in Lecture Notes in Electrical

Engineering, Vol. 53

[7] A. Barkalov, L. Titarenko, M. Kołopieńczyk, K. Mielcarek, G. Bazydło
"Logic synthesis for FPGA-based finite state machines", Cham

Heidelberg : Springer International Publishing Switzerland, 2016,

Studies in Systems, Decision and Control, Vol. 38
[8] S. Iwan, K. Małecki, "Data Flows in the Integrated Urban Freight

Transport Telematics System", Communications in Computer and

Information Science, no. 0329, pp. 79-86 (2012)

