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Contemporary Methods for Graph Coloring as an
Example of Discrete Optimization

Adrian Bilski

Abstract—The following paper provides an insight into appli-
cation of the contemporary heuristic methods to graph coloring
problem. Variety of algorithmic solutions for the Graph Coloring
Problem (GCP) are discussed and recommendations for their
implementation provided. The GCP is the NP-hard problem,
aiming at finding the minimum number of colors for vertices
in such a way that none of two adjacent vertices are marked
with the same color. With the advent of modern processing units
metaheuristic approaches to solve GCP were extended to discrete
optimization here. To explain the phenomenon of these methods,
a thorough survey of AI-based algorithms for GCP is provided,
with the main differences between specific techniques pointed
out.
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I. INTRODUCTION

THE graph coloring problems (GCP) are considered to
be the most difficult combinatorial problems because of

their high computational complexity. Simple graph models,
consisting of a set of vertices and edges connecting them, are
often insufficient to describe various dependencies between
objects in practical applications. It is necessary to show that
no more than k distinct colors are used. The construction
of the approximation algorithm that has a polylogarithmical
goodness function is NP-complete, unless P=NP [1]. Therefore
the key issue is to define a boundary between computationally
simple cases (Polynomial, i.e. form the P class), and those
difficult, i.e. NP-complete (NPC). The question whether P=NP
is currently the most pressing issue of computer science.
The purpose of this paper is to present methodologies for
compression (minimization) of colors when solving GCP. The
adaptation of known probabilistic algorithms to graph coloring
tasks is explained. Applications of GPC for telecommunication
tasks are presented as well.
The graph coloring problem started with Francis Guthries’
attempt to color all countries on the map of England, which
gave birth to the four color conjecture. It was initially assumed,
that four colors are sufficient to process the world map, so
that no two neighboring countries would be associated with
the same color. This task is only one of over 200 problems
collected in [2], concerning the area of chromatic graph
analysis.
The paper is organized as follows. The second section intro-
duces terminology utilized for the GCP. In section 3 bounds
of the chromatic number are defined. In Section 4, different
representations of graph coloring are considered. The cost
function is defined there. Section 5 is devoted to circular
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coloring, while Section 6 describes common approximation
methods utilized to solve GCP. Section 7 covers novel meta-
heuristic methods in GCP. These include Simulated Annealing
(SA), Ant Colony Optimization (ACO) or Neural Networks
(NN). Section 8 introduces the concept of on-line coloring.
Finally, conclusions regarding utilization of contemporary AI
algorithms in graph coloring are presented.

II. TERMINOLOGY

In computer science colors are denoted by natural numbers.
The proof of the 4-colored theorem for any number of
countries on a world map has come with the eve of the
computer technology, thanks to Appel and Haken [3] (1977).
In 1981 Holyer proved that the discussed theorem is NP-
complete [4], which can be expanded to the whole GCP.
The minimum positive integer k (the number of different
colors) for which the graph (map) is k-colorable is the
chromatic number of G denoted as χ(G) [5]. The aim of the
coloring process is to minimize the number of colors utilized,
equal to the chromatic number (optimal coloring). For planar
graphs the chromatic number has been precisely estimated.
It is easy to prove that the chromatic number for this class
of graphs is not greater than 6. The most complex class, for
which the polynomial algorithms exist, are the perfect graphs
(in which the chromatic number of every subgraph equals
the size of the largest clique of that subgraph). The simplest
NP-complete class contains planar graphs.
Issues in GCP the most often examined include vertex and
edge coloring. The former is the method of coloring such that
no two adjacent vertices are of the same color. Similarly, edge
coloring assigns a particular color to each edge of the graph,
so that no two adjacent edges are of the same color. Vertex
coloring can be considered as entry point of graph coloring.
Other coloring problems can be transformed into a vertex
variant, i.e. edge coloring of a graph is a vertex coloring
of its line graph. Even though vertex and edge coloring are
both considered NP-problems, usage of approximate methods
make the process of edge coloring easier to execute. This is
because in the case of edge coloring the Vizing theorem must
be considered [6].
The task of edge coloring so all edges adjacent to any vertex
are assigned different colors, has been formulated by Tait in
1880 [7]. He proved that the 4-color problem is equivalent to
3-coloring problem of edge coloring for any cubic map, thus
formulating the Vizing Theorem regarding the multigraph
chromatic index χ′(G) - the minimal number of colors
sufficient to color the edges of G.
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Theorem 1 (Vizing’s Theorem): for every nonempty graph
G, χ′(G) ≤ 1 + ∆(G)

The value of the chromatic index of the simple graph does
not exceed ∆(G) + 1, where ∆(G) is the graph maximum
degree. This bound is almost tight, i.e. the edge chromatic
number is either ∆(G) or ∆(G) + 1. When χ′(G) = ∆(G),
G is said to be of class 1. Otherwise it is of class 2.
The minimal chromatic number is a minimal number of
independent sets into which V (G) (a vector containing graph
vertices) can be partitioned. In an independent (stable) set of
vertices, in which no two vertices are adjacent, coloring can
be considered as mapping c : V (G) → N (where N is the
set of positive integers) such that c(u) 6= c(v), if u and v are
adjacent in G. A k-chromatic graph has a chromatic number
k. A graph G is k-colorable only if χ(G) ≤ k. Typically all
k colors are used in k-coloring process.

III. BOUNDS OF THE CHROMATIC NUMBER

The lower and upper bound are defined for the chromatic
number of a graph, regarding the numbers’ order or indepen-
dence. Some bounds are a consequence of the greedy coloring
algorithm, which shows that every graph can be colored with
one more color than the maximum vertex degree of a colored
graph:

χ(G) ≤ ∆(G) + 1 (1)

The relation between the chromatic number and the graph
size is as follows:

1 ≤ χ(G) ≤ n (2)

This shows that the only graph to be colored with one color
is the edgeless one, while a complete graph constructed of n
vertices requires n colors to be colored. Graphs that can be
colored using only two colors are exactly bipartite. According
to the Vizing theorem, every planar graph can be 4-colored.
Fig. 1 shows the graph with all of its vertices colored using a
minimum of 3 colors (Roman numerals) and all of its edges
colored using a minimum of 4 colors (Arabic numerals).

Fig. 1. An example of vertex coloring using a minimum of 3 colors and
edges coloring using a minimum of 4 colors.

Even though the dependency between the large cliques of
graphs and their chromatic number can be found, Mycielski’s

theorem states it does not work for small cliques [5].

Theorem 2 (Mycielski’s theorem): For every positive integer
k, there exists a triangle-free k-chromatic graph.

This theorem refers to the chromatic number 3 and larger,
since graphs with chromatic numbers 1 or 2 do not contain
triangles.

The clique number (i.e. the number of subsets of graphs
vertices where every two vertices in the subset are connected
by an edge) can be considered as a lower bound for the
chromatic number of a graph [5]. The best upper bound can
be found using the estimation methods of coloring graphs.

There are different criteria of graph coloring, like minimiz-
ing the number of used colors. There are non-standard methods
of coloring, introducing subsequent bounds on colors, like
allowing to associate a particular vertex/edge with more than
one color (multicoloring) or allowing the division of colors.

The polynomial rough algorithms have a linear goodness
function in the worst case or the sublime goodness function.
There best heuristic is the Halldorsson algorithm, which has
O(n(loglogn)2/(logn)3) goodness function [9].

The Vizing theorem evaluates the chromatic index. Its proof
shows how to color a graph with a given number of colors
in the polynomial time. That is why researchers concentrate
on more difficult edge coloring of multigraphs. The most
complicated class of graph, for which the polynomial coloring
algorithms exist are dual graphs (Fig. 2), while the simplest
one, for which the coloring process is yet NP-hard are cubic
graphs (Fig. 2).

Fig. 2. a) Dual graphs b) Petersen (Cubic) graph.

Edge coloring is equivalent to vertex coloring of the edge
graph. The process consists of two stages. The first one
concentrates on constructing the appropriate edge graph, the
second one is aimed at coloring graph vertices using any
approximation method. Unfortunately, this generic approach
is uneconomic. For the edge coloring problem dedicated
techniques exist. More information on this topic can be found
in [10].

Another aspect is total coloring of a graph, focusing on
simultaneous coloring of vertices and edges. No two adjoining
vertices, adjoining edges or edge incidental with a vertex
can receive the same color. The smallest number of colors
that allows for such coloring is the total chromatic number
symbolized by χ′′(G). Subsequently, χ′′(G) ≤ 2∆(G) + 1. It
was proven, that χ′′(G) ≤ ∆(G) + 1026.

Hence, all simple graphs can be divided into three types.
The graph is of type 1, when χ′′(G) = ∆(G) + 1, of type
2 when χ′′(G) = ∆(G) + 2 and of type 3 when χ′′(G) ≥
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∆(G) + 3. Complete graphs Kn for odd values of n can be
considered to be of type 1, while complete graphs Kn for even
values of n are of type 2.

The third set contains such pairs of vertices and edges (v,e),
for which v and e are incidental. Pairs (v,e) and (w,f ) are
adjoining, when v = w, e = f , edge vw = e or vw = f .

This coloring model is applied in wireless transmission
systems [11].

IV. CIRCULAR COLORING

Colors are treated as natural numbers, but sometimes it is
more convenient to see them as arcs on a circle. The circular
coloring model exists both in vertex and edge form. the
former is used to model the city traffic control on intersections
with lights, where motion streams are defined by vertices.
Conflicts that occur between them are represented by edges.
The edge form is used for scheduling indivisible tasks [20].
The circular/star chromatic number of a graph is a natural
generalization of the chromatic number of a graph [21].

Let p, q be integers and p ≥ q. The coloring of a graph G is
mapping a value c from V (G) to a set {0, 1, . . . , p− 1}, such
that for any adjacent vertices x, y ∈ G, q ≤ |c(x) − c(y)| ≤
p−q. The circular chromatic number is then the greatest lower
bound χc(G) of ratios p/q for which there exists a (p, q)-
coloring. For any rational p/q ≥ 2, χc(G) = p/q. An example
of a circular vertex coloring is depicted in Fig. 3.

Fig. 3. Circular vertex coloring of a cycle of C5 graph using 2.5 colors [13].

The main advantage of such a coloring model is the ability
to acquire subchromatic colorings, which utilize a smaller
number of colors than the χ(G). The circular chromatic
number was also examined for with hypergraphs [22].

V. COLORING APPROXIMATION METHODS

High computational complexity of the graph coloring
problem forces usage of approximation methods to find
suboptimal solutions in polynomial time. The problem

is time consuming because it requires the overt analysis
of all possible configurations of vertex-color assignments
[23],[24],[25]. To color large graphs, heuristic algorithms are
used. These methods color vertices in a reasonable time, but
they do not guarantee optimal solutions.
The simple heuristic vertex coloring schemes take on the
form of sequential algorithms. Single methods are browsed in
a specific order, depending on the particular algorithm. Each
visited vertex of the examined graph is associated with one of
feasible colors. A color is feasible for a particular vertex, if
none of its neighbors has been colored with it. All sequential
algorithms presented below utilize in some way the Greedy
Algorithm, which for a graph G and a certain established
sequence of vertices K = (v1, v2, . . . , vn) is as follows:

Algorithm ColorGreedy(G,K);
begin
for v := v1 to vn do
assign v the lowest possible color in a graph G;
end

A sequential coloring algorithm of a G graph is an
algorithm that works as follows:

Algorithm Sequential(G)
begin
while not all vertices in G graph are colored do
select uncolored vertex v;
assign feasible color the v;
end while
end

Particular sequential algorithms differ from each other based
on the order of vertex selection. The most popular are Largest
First (LF) [26], Smallest Last (SL) [27] and Dsatur [28].

A. Random Sequential (RS) Method

The RS method, also called naive, is a sequential method,
in which vertices are assigned in a random manner.

Algorithm ColorRS(G);
begin
K := random sequence of graph G vertices;
ColorGreedy(G,K);
end;

The RS method can be implemented in time that is propor-
tional to the graph G size, that is O(m+ n).

B. Largest-First (LF) Method

LF method was proposed by Welsh and Powell [26]. It
is one of the oldest and simplest sequential methods, which
colors vertices in a non-increasing order.

Algorithm ColorLF(G)
begin
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K := vetices G sorted according to nonascending ranks in
a G graph;

ColorGreedy(G,K);
end

This method can be implemented in O(m+ n) time.

C. Smallest-Last (SL) Method

This vertex ordering proposed in [27] colors the smallest
degree vertices in the following fashion. The minimum degree
vertex is colored as the last one. Assume that vk+1, . . . , vn
have been ordered. Choose vk such that the degree of vk in
G induced by V − vk+1, . . . , vn is minimal.

D. Dsatur Method

In each step of the algorithm, the most saturated vertex to
be colored is selected. The degree of vertex saturation denotes
the number of color classes for which the vertex is adjacent
to at least one other vertex in that class. If different vertices
with the same degree of saturation exist, then vertex with the
biggest number of edges is colored first.
Both LF and SL methods tend to color the higher degree
vertices first. Even though both of them are easy to implement,
they produce colorings far from optimal. The SL method opti-
mally colors trees, unicycle graphs, cycles, complete bipartite
graphs, Johnson graphs [31] and Mycielskis graphs [8]. It can
be implemented in O(m+ n) time.
The sequential algorithms do not utilize more than ∆(G) + 1
colors. The SL algorithm colors planar graphs with 6 colors at
most. In literature some modifications to sequential algorithms
have been introduced to get better colorings while sacrificing
the low computational cost. These variations are mainly based
on neighbor coloring analysis [59] and color exchange within
a subsection of vertices [27]. There have also been attempts
to parallel graph coloring [30].
The optimal colorings with smaller amount of colors can be
achieved by solving the Maximum Independent Set Problem
(MISP). The vertex coloring results in division of graphs
vertices into Independent Sets (IS). Each IS is colored with
a different color. The essence of IS algorithms is based on
successive determination of the maximal independent sets in
a graph and assignment of different colors to vertices of
particular IS.
Depending on the rule of vertex selection utilized for the pur-
pose of IS construction, different algorithms can be obtained,
like:
• Greedy Independent Set (GIS) [59] - method based on

selection of a vertex with a minimal degree in an induced
subgraph G[X], containing only vertices from set X and
edges connecting them.

• Recursive Largest First (RLF) [31] - method in which
the vertex with the greatest degree from the subgraph
G[W ] is selected as the first vertex from each of the
newly created IS. Subsequent vertices added to the IS
are the ones having the greatest number of neighbors in
the W\X set.

The GIS rule aims at creating the largest IS in each iteration,
while RLF tends to determine such IS so that the uncolored
part of a graph has the least edges in relation to vertices.
Computational experiments usually exhibit the superiority of
RLF over GIS in producing a solution for MISP.

VI. GRAPH COLORING REPRESENTATION AND THE COST
FUNCTION

Graph coloring is represented in two ways [14]:

A. Integer/direct representation

There are two methods of representing graph color by inte-
gers. If it is seen as a process of assigning colors to particular
graph vertices, then a vector of natural numbers is created,
in which the i-th element contains a color assigned to the i-
th vertex (vector representation). On the other hand, if graph
coloring is a distribution of vertices into two unassociated
subsets, then coloring is represented by sets of vertices. The
i-th set contains vertices colored using the i-th color (group
representation) [15]. The reasoning here is as follows.
Let H be a group, while A be a subset of H such that
1 /∈ A,A−1 ⊆ A. For all x, y ∈ H , the relation ρA can be
defined by xρAy if xy−1 ∈ A. Thus the group graph (H, ρA)
is acquired.
Let N = {1, 2, . . . , n} be a vertex set of integers. Let
D = {1, 2, . . . , n} be the distance set, such that |N | 6 |D| .
Form the graph G(N,D), whose edge set E(G) = {(x, y) if
and only if |x−y| ∈ D∀x, y ∈ N}. More details on using the
distance matrix to graph coloring are in [16] and [17].

B. Order-based/indirect representation

The solution is a sequence of n numbers, i.e. a permutation
of n prime natural numbers. A proper decoder translates this
permutation into parameters of the problem solution. In graph
coloring, this permutation determines the order of graph
vertex coloring. The decoder reads vertices in that order and
colors the graph using the Greedy Algorithm. For a 4-vertex
graph, the permutation {2, 4, 3, 1} means that the vertices are
colored in such an order. The vector representation is the
most often used.
The criterion that determines the quality of the solution is the
cost function f : Ω → R, where Ω describes the space of all
possible colorings of a graph.

The cost function counts the number of edges with equally
colored endings. In [18] the cost function for coloring p is
defined as follows:

f(p) =
∑
u,v∈E

q(u, v),where q(u, v) =

{
1 when c(u) = c(v)
0 otherwise

(3)
The value of this function in the l-th iteration of the algo-

rithm, is often calculated as an update of the cost function’s
value of the solution in (l − 1)th iteration.
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VII. GRAPH COLORING WITH METAHEURISTICS

Metaheuristics are universal calculating methods for
discrete optimization that use random wandering technique
to acquire the approximate result. Metaheuristics avoid being
trapped in local optima by permitting moves that deteriorate
the value of the objective function. Iterative algorithms like
Simulated Annealing (SA) [32], Tabu Search (TS) [33],
Genetic Algorithm (GA) [34] or Artificial Neural Networks
(ANN) [35] differ from successive augmentation algorithms
(like LF or SL) in that colors of individual vertices in a graph
may change several times over the course of execution. The
coloring techniques based on metaheuristics are used when
the combinatorial optimization algorithms fail.
The iterative algorithm can be roughly described as follows:

begin
generate initial solution x;
while stop criterion was not achieved do
begin
generate new initial solution x created from the previous

one;
end
end

A. Simulated Annealing (SA)

This technique is suitable for large-scale problems optimiza-
tion, where a desired global extremum is hidden among many
local extrema [36]. The solution of SA used in the GCP is a
certain coloring of a graph, which does not have to be optimal.
To use this algorithm, a neighborhood function N : Ω → 2Ω

is required. It defines a set of neighbors N(x) ⊆ Ω for
each candidate solution x. Generating x (choosing a particular
element from a set of neighbors) provides a vertex with a
new color or color replacement between two vertices of a
graph (atomic move). Unfortunately, finding a new solution in
such a way is ineffective, because there is a high probability
that after such a replacement the coloring will not fulfill all
requirements or that it will be rejected after calculating the
cost function. Therefore it is necessary to generate a solution
that will instantaneously give good results.
Three different SA implementations in graph coloring are
known: The Penalty Function Approach, the Kemp Chain
Approach and the Fixed-K approach. Since the first method
is the most popular, it will be presented in detail. For further
information on the implementation of other methods, see [59].
The coloring solution is any partition of V into nonempty
disjoint sets C1, C2, . . . , Ck, 1 ≤ k ≤ |V |, where the Ci
are color classes. Two such solutions belong to the same
neighborhood if one can be transformed to the other by moving
a vertex from one color to another. A nonempty color class
is denoted by COLD, with vertices v ∈ COLD, while k is the
current number of color classes. The integer i meets condition
1 ≤ i ≤ k + 1. The neighbor is obtained by moving v to the
color class Ci. If i = k + 1, v is moved to a new, previously
empty class. If v is already in class Ci, it is necessary to try
again. The most important aspect of this implementation of
SA to GCA is the cost function.

Let Π = (C1, . . . , Ck) be a solution, while Ei, 1 ≤ i ≤ k be
the set of edges from E, both of whose endpoints are in Ci.
Then

cost(Π) = −
k∑
i=1

|Ci|2 +

k∑
i=1

2|Ci| · |Ei| (4)

There are different ways to generate the initial solution. One
would be to start with all the vertices in a single class.
The frequency assignment problem has been the subject of
extensive studies due to its application in cellular network
technologies. The particular interest was placed on the trade-
offs between bandwidth usage and system interference. A
Simulated Annealing type heuristic has been utilized for the
purpose of channel assignment for cellular radio in [49]. It has
also been applied to the broadcast scheduling problem in [50]
and was found to be effective.

B. Ant Colony Optimization (ACO) Algorithm

This algorithm is a swarm intelligence probabilistic tech-
nique designed specifically to find good paths in graphs. ACO
can be used in GCP, considered as a task of dividing of a set of
vertices into k independent sets (V = V1, . . . , Vk), such that
k = χ(G). The task of each agent (ant) is to color a graph
vertices one by one using a sequential algorithm, like LF, SLF,
SL or RLF. Information of the best coloring is kept in a square
matrix A, updated periodically. For two adjacent vertices vi
and vj , the value Aij is proportional to the quality of coloring
both vertices using the same color. Therefore the value Aij
signifies the amount of pheromone left on a path between
vertices vi and vj . The substance collected in A evaporates
with time, according to the parameter σ. After all agents have
colored the graph for two adjacent vertices vi and vj , the value
of Aij is updated using the following formula:

Aij = ρAij + ∆Aij , (5)

where

Aij =
∑

ml∈Mij

1

kl
(6)

Mij is a set of ants, which have colored the vertices vi
and vj with the same color, while kl is a number of colors
used by an ant l.

Algorithm ACO(G);
begin
for each vi, vj /∈ E do
Aij := 1
f :=∞;
for CycleNumber := 1 to MaxCycleNumber do begin
for each vi, vj /∈ E do
∆Aij := 0;
for a := 1 to AntsNumber do begin
s := V1, . . . , Vk:=ColorGraph();
if k < f then begin
s∗ := V1, . . . , Vk;
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f := k;
end
for each vi, vj /∈ E and vi, vj ⊆ V j do
∆Aij := ∆Aij + 1/k;
end;
for each vi, vj /∈ E do
Aij := ρAij + ∆Aij
end

ColorGraph() represents a sequential algorithm. Costa and
Hertz presented in [37] two algorithms of such type based on
SLF and RLF methods.
In [51] ACO method has been used to solve the communica-
tion network routing problem (CNRP). This solution is built
upon the research conducted by [52].

C. Tabu Search (TS)

It is technique belonging to local methods of solution space
search. TS was designed to guide other methods (or their
component processes) to escape the trap of local optimality
[33]. A given graph G = (V,E) is partitioned into a fixed
number of subsets, where obtainable solution is a partition
s = (V1, V2, . . . , Vk) of the vertex V . The objective function
f is defined as the number of edges of a graph E(Vi) for
which endpoints are in the same Vi, thus have the same color.

f(s) =
∑

(|E(Vi)| : i = 1, ..., k) (7)

A tabu list holds the candidate solutions observed so
far. When the tabu list is too large, the oldest candidate
solution is removed. In the simplest form of this algorithm,
tabu list is of established length l (being the number of
recently accepted moves). Subsequently, if the new solution
substantially increases the value of the objective function,
its tabu status is removed and it becomes the new best solution.

The stopping condition of TS is when the estimation f∗ of
the minimum value of the objective function f(s) equals 0.
From s the neighbourhood s′ is generated as follows:
• a vertex x is randomly selected from all those, which are

adjacent to an edge in E(V1) ∪ . . . ∪ E(Vk)
• vertex x is being assigned a random color j 6= i
• s′ from s = (V1, . . . , Vk is obtained by setting V ′j =
Vj 6= x;V ′i = Vi\x;V ′r = Vr for r = 1, . . . , k; r 6= i, j

The TS algorithm has the following form [38]:

Algorithm TS(G);
begin
generate the initial solution x;
x∗ := x;
while stop criterion has not been achieved do begin
find:
x ∈ N(x) such that f(x) < A(f(x∗));
or
x ∈ N(x) L(x) such that f(x) < f(x);
if x does not exist then
find x such that f(x) = minf(z) : z ∈ N(x) L(x);

if f(x) < f(x∗) then x∗ := x;
x := x;
UpdatingTabuList(x→ x);
end
end;

The TS approach was utilized in [53] and [54] for op-
timizing the link capacities in a dynamic routing telecom-
munications network. Traffic between pair of vertices in a
network varies with the time of day. Thus alternate routing
paths are being creating from hour to hour. The TS heuristic
solves the problem by utilizing probabilistic move selection
and coordinated solution recovery strategies.

D. Genetic Algorithm (GA)

This method is based on the controlled evolution of a certain
population of individuals. The basis is the recombination and
propagation of the best individuals to next generations. The
main features that differentiate GA from other metaheuristics
are:

• utilization of genetic operators, that are adapted to the
specific form of solution

• processing the whole population of solutions, which
leads to parallel search of the solution space from
different points

Initially GA randomly generates the initial population, in
which each individual represents the initial graph coloring.
For each solution, the distance between its encoded coloring
and a legal coloring (where no vertices connected by an edge
have the same color) is calculated. This value is denoted by the
fitness function. For the given edges i, j ∈ E, let the function
δ(i, j) = 1 if Ci 6= Cj and δ(i, j) = 0 if Ci = Cj . The natural
fitness function has the form:

F (C(G)) =

∑
i,j∈E δ(i, j)

m
(8)

which is a fraction of edges which endpoints do not share
the same color, divided by the total number of edges.
For every member of the population, the value of fitness
function is calculated. In each iteration, until the stopping
criterion is reached, the selection of individuals (parents)
is carried out, based on which the crossover operation is
performed. For each offspring, the value of fitness function
is calculated.
The explored environment in GCP is the graph structure,
while the individuals are particular graph colorings. The fitness
function determines how good is a particular coloring.
The chromosomes of the individual are represented by an
array of the length equal to the number of graph’s vertices.
Each element contains the number of the color assigned to
this vertex. Connections between n vertices are represented by
an nxn adjacency matrix. GA is terminated when a solution
is found with no two adjacent vertices having the same
color (zero conflicts) or the algorithm exceeds the predefined
number of generations.
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There are many methods of offspring population selection, the
most popular being the roulette and the ranking methods [39].
There are specific crossover operators for graph coloring. The
analysis of their efficiency in correlation with graph coloring
is in [12] and [13].

E. Neural Networks (NN)

The subject of mapping the GCP into the neural networks
was approached in [40]. Utilization of Hopfield of Hopfield-
like networks for that purpose can be found in [41], [42], [43].
The problem of mapping the GCP into a Hopfield network is
a reduction to MISP followed by a mapping of MISP into a
Hopfield network as in Fig. 4 [44].

Fig. 4. a) Graph G, b) its 3-color reduction to MISP, c) Hopfield network
instance [44].

This method is the function-based approach to GCP, where
the ANN consists of n binary units (neurons) Sij , where
j ∈ 1, . . . , n is the vertex index in graph G, while i ∈ 1, . . . , k
is the color number [40]. For a given graph G(V,E) and k
colors 1, . . . , k let us assume that G is planar, which means
that k ≤ 4. For the unit (i, j) let Sij = +1 denote that the
i-th vertex has been assigned the j-th color, while Sij = 0
denotes the opposite. This configuration allows for a vertex
to have more than one color assigned to it. Between every
pair of units (i, j), (k, j) in the same column j, j = 1, . . . , n,
set the weight wi,j,k,j = −2. Between every pair of units
(i, j), (i, k) in the same row i, i = 1, . . . , k, set the weight
wi,j,i,k = −2 if vi, vk is an edge of graph G. The remaining
weights (corresponding to units not connected by an edge) are
zero. The ANN is composed of vertices with each having an
output corresponding to the particular state S. As an input,
each vertex receives the state of all its neighboring vertices.
The algorithm minimizes a particular energy function E(S),
reducing the GCP to energy minimization. Various energy
functions can be assumed, based on the specific problem. In
[40], the following function has been designed to minimize the
number of improperly colored edges in the spanning subgraph
k-coloring problem:

E(~S) =
1

2

N∑
i=1

N∑
j=1

Aijδ(Si, Sj) (9)

where ~S ∈ {1, . . . , k}N denotes the assignment of colors
from 1 to k to all vertices of graph G, Aij is the adjacency
matrix with elements Aij = 1 if {vi, vj} ∈ E (and 0
otherwise), while δ(a, b) is the Kronecker delta function,
providing output value 1 if a=b (a,b being integers) or 0

otherwise. E(~S) = 0 corresponds to a properly colored graph.
There is one-to-one correspondence between a set of maximal
independent sets of G in Fig. 4 (b) and the family of maximal
sets of vertices of G colored properly (without violating
constraints), which in turn corresponds with the discrete local
minima of the Hopfield network [44]. With k = ∆(G) + 1 in
this mapping, every local minimum of the Hopfield network
represents a proper coloring of the entire graph [45]. Every
local minimum has the same energy value, despite representing
a proper coloring of the entire graph. This prevents the ANN
from optimizing its performance through the means of energy
minimization. This can be corrected by adding bias value Iij
to force the network to use a smaller number of colors in a
feasible solution. In Fig. 4(c) these units are equal to 1. Their
pairs connected by a joint edge have weight equal to -2, while
these not connected by an edge have weight equal to 0.
ANN forecaster has been used to predict voice traffic demand
over an ATM network in [55]. A two-phased algorithm based
on ANN and Genetic Algorithm (GA) was utilized to maxi-
mize slot utilization for the purpose of solving the broadcast
scheduling problem in [56]. The length of the schedule is
minimized in phase one by the means of Hopfield neural
networks, while GA is used to maximize slot utilization.

VIII. ON-LINE COLORING

In the algorithm analysis theory, it is assumed that before
beginning its operation, it has access to the whole set of data
representing a certain instance (for example a graph) of the
problem to be solved. This means that the algorithm operates
in an off-line mode. For considerable amount of problems, due
to their nature, this assumption can not be accepted. Solution
is built based on incomplete information about the instance.
A proper algorithm that works in an on-line mode receives
input data as a set of requests σ = (σ1, . . . , σn) and does
handle each request σi instantaneously after receiving it. It is
also assumed that handling a certain request is run without
the knowledge of future requests and always leads to a partial
solution. Once generated, the solution Ri cannot be modified
after handling the request σi ends. Off-line algorithms know
the ”future”, while on-line algorithms do not. They can be ap-
plied to solve issues concerning computer operating systems,
telecommunication or task scheduling [46].

Let the graph G and a given arrangement π of the vertices
set be denoted as the on-line presentation of a graph G. The
number of colors used by the on-line algorithm A to color
a graph G considering π is denoted as A(G, π). The biggest
number of colors used by A to color G denotes χc(G) and it is
called the on-line chromatic number of G graph for algorithm
A.

χA(G) = maxπA(G, π) (10)

Among algorithms intended to color any graph, two are
known: First-Fit and LST.
In [57], the authors reduced the traffic load of high capacity
cellular networks, by mapping the problem of caching popular
files to a graph which is divided into four new subgraphs
serving as the foundation of graph coloring in the presented
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method. In [58], the authors presented a scheme to trackback
DoS attacks based on packet marking. The trackback involves
color balanced star coloring to assign color to routers. This
coloring scheme minimizes the bit space required to color the
packets.

A. First-Fit (FF) Algorithm

It is an iterative algorithm, making locally optimal decisions
that do not have to lead to solutions that are globally optimal.
The FF algorithm used to color vertices of a graph uses a
greedy strategy, assigning each vertex the lowest possible
color not used already on a neighbor.

Algorithm FF(G);
begin
for i = 1 to n do;
assign smallest legal color to vi
end
end

The FF algorithm is the easiest and fastest of all greedy
coloring heuristics, but it does not perform well in the worst-
case [47].

B. LST Algorithm

This algorithm sequentially processes vertices and assigns
each of them to a certain class of colors D1, . . . , Dd, called
greedy sets [48]. This way the partial coloring is obtained.
The algorithm then divides the uncolored vertices into subsets
C1, . . . , Cr, which are called residual sets. Each edge that was
not assigned to any greedy set is instantaneously assigned to
one of residual sets Cj. The algorithm recursively tries to
assign the same vertex to one of the greedy sets of subgraph
H . In case of further failure, this vertex is assigned to one of
the residual sets of H and so on, until it receives a certain
color.

IX. SUMMARY

The analysis provided in this paper shows there are no
methods for comparing all graph coloring algorithms. There
are no formal proofs supporting superiority of any method
over the other corresponding to GCP. The efficiency of each
algorithm depends on different parameters, specific for its
nature. The size of the population and probability of execution
of recombination operation in GA, the size of tabu list in TS
or cooling schema in SA are a few examples. Selection of
proper values influences the method’s efficiency. Sequential
implementations can take several hours to produce suboptimal
results for relatively small graphs of a thousand vertices or
less. The time required to reduce the number of colors by one
increases significantly as better colorings are found.
It is difficult to design the algorithm providing good solu-
tions to GCP on a wide range of inputs. None of current
approaches dominate the others. The SA is a more preferable
method in the channel assignment for cellular radio and
broadcast scheduling problem. The communication network

routing problem is usually solved by ACO or TS methods. For
voice traffic demand over an ATM network prediction, ANN
algorithms are utilized, usually with the support of discrete
optimization methods, like GA.
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