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Abstract—The data aggregation process of wireless sensor
networks faces serious security problems. In order to defend
the internal attacks launched by captured nodes and ensure
the reliability of data aggregation, a secure data aggregation
mechanism based on constrained supervision is proposed for
wireless sensor network, which uses the advanced LEACH
clustering method to select cluster heads. Then the cluster heads
supervise the behaviors of cluster members and evaluate the
trust values of nodes according to the communication behavior,
data quality and residual energy. Then the node with the highest
trust value is selected as the supervisor node to audit the cluster
head and reject nodes with low trust values. Results show that
the proposed mechanism can effectively identify the unreliable
nodes, guarantee the system security and prolong the network
lifetime.
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I. INTRODUCTION

W IRELESS sensor network (WSN) is a multi-hop ad hoc
network [1] composed of a large number of intelligent

sensors distributed in the observation area. The sensor nodes
in WSN cooperate with each other to perceive and collect the
related data from monitored objects in the observation area,
then upload the data step by step after simple processing to the
sink node or base station. Because of flexible networking and
simple deployment, WSN has been widely used in many fields
such as national defense, medical treatment, environmental
monitoring and so on [2],[3]. However, the sensor nodes are
strictly resource restrained and deployed in a relatively harsh
environment. The extremely limited storage, computing power
and node energy inevitably restrict the further development of
the WSN [4].

The rapid development of data aggregation [5] has solved
the development bottleneck of WSNs. The sensor nodes are
always densely deployed in the observation area, the data
collected by different nodes during the same observation
period often has high redundancy or strong correlation. The
transmission of redundant data will increase the calculation
and storage loads, and heavily waste network energy. Data
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aggregation can integrate the sensing data in the observed area,
remove the redundant data and reduce the data complexity.
Furthermore, data aggregation algorithms can greatly alleviate
the data processing and storage loads of nodes, improve the
data collection and transmission efficiency, and reduce the
energy consumption of nodes and system [6]. However, sensor
nodes are usually deployed in an open environment, which is
vulnerable to malicious attacks and incurs security problems
during the data aggregation process [7],[8],[9].

In view of the above problems, a Node Constrained Su-
pervision (NCS) based secure data aggregation mechanism is
proposed in this paper for WSNs. The main contributions of
this paper are as follows.

1) We consider the residual node energy and use the
advanced LEACH protocol to select cluster heads. The clus-
ter head supervises the cluster members. According to the
communication behaviors, data quality and residual energy, it
selects the node with the highest trust value as the supervisor
node to audit the cluster head and reject nodes with low trust
values.

2) We guarantee the security of supervisor node and improve
the network robustness. Internal attacks initiated by malicious
nodes can be constrained by the supervision among common
nodes, cluster heads and supervisor nodes. .

3) When supervising node behaviors, we consider the
residual energy to balance the energy consumption of nodes
and effectively avoid the premature death of nodes with high
reliability.

The rest of this paper is organized as follows. Some related
works are discussed in Section II. The network structure is
presented in Section III. We introduce the clustering method in
Section IV. We describe the trust evaluation method in Section
V. The data aggregation algorithm is proposed in Section VI.
The experiment results are given in Section VII. Finally, we
conclude this paper and present our future work.

II. RELATED WORK

By capturing sensor nodes or even colluding cluster heads,
malicious attackers launch internal attack in WSN to intercept
the aggregated data. Once the aggregated data is tampered,
the final sensor result obtained by the sink will suffer a grave
impact, which misleads the user to make wrong judgment.
In addition, some malicious nodes also send forged data
to some sensor nodes frequently, which causes the network
congestions, resource wastes, increased transmission delay
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and premature energy depletion of sensor nodes. Therefore,
an efficient data aggregation mechanism should be designed
to defend malicious attacks, which ensures the reliability of
aggregated data and prolongs the network lifetime.

Aiming at the security of data aggregation in WSN, re-
searchers proposed various solutions. The traditional mecha-
nisms encrypted the aggregated data against tampering attacks.
Paper [10] proposed a secure data aggregation mechanism
based on the Hash Tree, which was a symmetric encryption
mechanism. In addition, the Concealed Data Aggregation
(CDA) mechanism was proposed in paper [11] to divide data
into several blocks randomly and data blocks were aggregated
after being multiplied by a key, which was a homomorphic
encryption mechanism. The encryption based data aggregation
mechanism was easy to implement but usually had high com-
putational complexity, which was not suitable for WSNs with
limited computing power. Besides, the keys were vulnerable
due to the compromising of nodes. Therefore, with the esca-
lation of attack means, the encryption based data aggregation
mechanism fails to guarantee the data security. To this end,
some researchers proposed supervision based data aggregation
mechanisms, [12],[13] which can select supervisor nodes to
audit the node behaviors and identify malicious nodes. In
addition, paper [14] and [15] introduced trust management
mechanisms into data aggregation. In the process, the trust
value of node was evaluated according to the communication
behaviors, then the supervision mechanism was designed to
secure the data aggregation. However, existing supervision
based data aggregation mechanisms monitor node behaviors
without considering the residual node energy, which results
in excessive use of some nodes, causes the premature energy
depletion of these nodes and severely affects the network life-
time. Besides, these mechanisms do not consider the security
of supervisor nodes. Once a supervisor node is captured or
colludes with attackers, the network security will be seriously
threatened.

III. NETWORK STRUCTURE

Fig. 1 is the architecture diagram of WSN. The entire ob-
servation area is divided into several clusters. In the proposed
mechanism, the nodes can be divided into four categories
according to their functions: cluster member, cluster head,
supervisor node and sink node.

Cluster member: they are randomly deployed in the observa-
tion area, perceive and collect the related data of the monitored
objects, and then send the sensor data to the cluster head for
data aggregation. There are multiple cluster members in each
cluster.

Cluster head: each cluster only has one cluster head, and the
data collected by the cluster members is aggregated according
to a certain data aggregation algorithm. Aggregated data is
sent to the sink node through relay nodes.

Supervisor node: the node with the highest trust value is
selected as the supervisor node to audit the behaviors of the
cluster head. Each cluster has one supervisor node and the
supervisor node does not participate in the data collection
process.

Fig. 1. Architecture diagram of wireless sensor networks.

Sink node: the WSN has one sink node, which processes
data uploaded by cluster heads and sends the processed data
to the user via Internet or satellite. The sink node has more
storage and stronger computing ability. In general, the base
station acts as the sink node, which can be completely trusted.

Fig. 2 is the sketch map of the proposed mechanism,
which periodically selects cluster head and supervisor node.
Each runtime cycle is called one round and contains four
processes: (1) Network clustering. At the end of each cycle,
all nodes become cluster members, then the cluster head is
selected according to the advanced LEACH mechanism at the
beginning of the next cycle. The cluster head broadcasts a
message to cluster members in proximity. Cluster members
select their own clusters to join according to the signal strength
of cluster heads. (2) Supervisor node selection. According
to the trust value obtained from the last round, the cluster
member with the highest trust value in the cluster is selected
as the supervisor node to audit the behaviors of the cluster
head. (3) Sensing task execution. After determining the cluster
head and supervisor node, the cluster members in the cluster
begin to perform sensing tasks, collect and send the sensor
data to the cluster head. The cluster head aggregates the data
after evaluating the received data and uploads the aggregated
data to the sink node. (4) Trust value update. The cluster
head updates the trust values of cluster members according
to their communication behaviors, data quality and residual
energy. The trust value of the cluster head is evaluated by the
supervisor node. The quality of the data uploaded by cluster
head is assessed by the sink node, the sink node feeds back
evaluation results to the supervisor nodes. The dynamic update
of trust values and the periodic reselection of cluster heads
and supervisor nodes can effectively detect malicious nodes,
guarantee the reliability of aggregated data and enhance the
system security. Besides, constrained supervision on nodes can
enhance the security of cluster heads and supervisor nodes,
while preventing malicious attacks.
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Fig. 2. Sketch map of the proposed mechanism.

IV. NETWORK CLUSTERING

We use the advanced Low-Energy Adaptive Clustering Hier-
archy(LEACH) mechanism to select cluster heads and divide
the network into clusters. The basic idea of the traditional
LEACH mechanism [16] is to determine the optimal number
of clusters K according to the number of nodes in the network.
Then each node in the network generates a random number
between [0, 1]. If the random number is less than the preset
threshold T (n), the node is selected as the cluster head. The
threshold T (n) is calculated based on the optimal cluster
number K and the total number of nodes N. The LEACH
mechanism periodically changes cluster heads to balance the
energy consumption of nodes and prevent the premature en-
ergy depletion of cluster heads. The threshold T (n) calculated
by the traditional LEACH clustering mechanism ensures that
the cluster head in the last period will not be selected as the
cluster head of the current cycle, so that each node is not
continuously selected as a cluster head, which can reduce the
damage to the network due to the capture of cluster heads. But
only involving the number of former cluster heads to evaluate
the residual energy of nodes is inaccurate and cannot balance
the energy consumption of nodes in the network.

In order to balance the energy consumption of nodes and
prolong the network lifetime effectively, we improve the
threshold evaluation method of the traditional LEACH mech-
anism. Residual energy parameter E and energy consumption
parameter D are employed in the improved threshold eval-
uation. The residual energy parameter E = Ec/Ein, where
Ec is the residual energy of a given node and Ein is the
initial energy of nodes. Most energy of nodes is consumed
for data forwarding and the cluster head is responsible for
forwarding the aggregated data to the sink node. Therefore,
we use the shortest hop number Hmin between a given node
and the sink node to evaluate energy consumption parameter
D, that is D = Hmin. Finally, threshold T (n) in the advanced
LEACH mechanism is obtained:

T (n) =

{ √
E2(n)

/
D(n)× P (n)

1−P (n)×[rmod(1/P (n))]n ∈ G
0otherwise

(1)
where P (n) = K/N denotes the probability of a node being
selected as a cluster head, K is the optimal number of clusters

obtained according to paper [16], N is the total number of
nodes in the WSN, r is the current network cycle and G
is the set of nodes that are not selected as cluster heads
in the past 1/P (n) cycles. The cluster heads broadcast the
selection results in the network, then other nodes choose their
own clusters according to the signal strength of the received
message to complete the network clustering.

Using the advanced LEACH mechanism to change cluster
heads periodically can balance the energy consumption of
nodes and prolong the network lifetime. Meanwhile, it also
prevents the same node from being continuously selected as
the cluster head, which effectively reduces the damage of the
captured cluster heads.

V. TRUST EVALUATION

The trust value is quantified for data security and node re-
liability based on the communication behaviors and attributes
of nodes[17]. In this paper, the trust management is integrated
into the data aggregation. We prejudge whether a node will
initiate attacks by evaluating its trust value. We update trust
values after each round of sensing task and reject nodes with
low trust values, so as to ensure the security and stability of
the network. Meanwhile, the node with the highest trust value
is selected as the supervisor node to realize the constrained
supervision among all nodes, which secures the cluster head
and supervisor node and prevents them from malicious attacks.

A. Trust attribute quantification

The node trust value is comprehensively evaluated from
three aspects: interaction trust, data trust and energy trust.

The interaction trust reflects the communication behav-
iors of nodes. In WSN, malicious node behaviors mainly
include data interception, tampering and retransmission. The
CSMA/CA protocol of the data link layer describes the node
communication process as follows. When node A sends data
to node B, node B needs to feedback a confirmation message
to node A upon receiving the data and node A monitors
the confirmation message from node B. If A receives the
confirmation message, the data communication between A and
B is successful. Otherwise, it is failed. Excluding channel
factors, the communication failure is mainly caused by the
malicious behaviors of nodes in most cases [18]. Therefore,
monitoring the communication behaviors of nodes to quantify
the interaction trust can detect malicious nodes within the
network.

When node i initiates communication with node j, the
result only contains two cases: communication success or
failure. The numbers of successful communications and failed
communications can be used to calculate the interaction trust
Ctri,j between node i and j. Ctri,j increases with the rising
number of successful communications and decreases with
the growing number of communication failures. Ctri,j is
normalized into . According to its trend, we quantify the
interaction trust between nodes using the Beta distribution of
the number of successful and failed communications:
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Ctri,j(Tn) = E (Beta(Sni,j(Tn) + 1, fni,j(Tn) + 1))×
1√

fni,j(Tn)
=

Sni,j(Tn)+1
Sni,j(Tn)+fni,j(Tn)+2 ×

1√
fni,j(Tn)

(2)
Where E (∗) denotes the average of and being multiplied
by 1

/√
fni,j(Tn) can attenuate the interaction trust sharply

when the number of failed communications increases. Finally,
the interaction trust of nodes i can be evaluated by the average
interaction trust between node i and other nodes within the
whole cluster:

Ctri(Tn) = E(Ctri,j(Tn)) (3)

Data trust reflects the quality of uploaded data. Malicious
nodes may tamper or forge the aggregated data and send the
same or similar data frequently when launching attacks. These
data generally has bad quality and low trust value. We obtain
the data trust value of nodes by verifying the consistency of
uploaded data.

Data consistency mainly refers to the difference between
uploaded data of nodes from the same cluster. In order to
accurately distinguish reliable data uploaded by trustworthy
nodes and false data uploaded by malicious nodes, then further
to evaluate the trust values of nodes, we use the Cloud theory
to verify the consistency of the uploaded data. The Cloud
theory [19] combines fuzziness and randomness perfectly
to map the qualitative and quantitative relationship. As an
uncertain transformation model of qualitative and quantitative
combination, the Cloud theory can solve the consistency
verification of data as an information processing problem.

In the monitored area, the data of a certain sensing task
collected by node n during one cycle is recorded as dn, then
the sensor data set collected by the cluster head is denoted by:

D (Tn) = {d1, d2, ..., dn} (4)

We calculate the expectation ED(Tn) and variance SD(Tn)

of all the sensor data, then the entropy of the sensor data set
EnD(Tn) is calculated by ED(Tn):

EnD(Tn) =

√
π

2
× 1

n

n∑
i=1

∣∣di − ED(Tn)

∣∣ (5)

Next, we calculate the hyper entropy of sensor data set
HeD(Tn) according to EnD(Tn) and SD(Tn):

HeD(Tn) =
√
S2
D(Tn)

− En2D(Tn)
(6)

Finally, we obtain a random normal function with expecta-
tion ED(Tn) and variance SD(Tn), and then we use the cloud
membership degree of sensor data to denote the data trust of
node i:

Dtri = σD(Tn)
(di) = exp

(
−
(
di − EnD(Tn)

)
2He2D(Tn)

)
(7)

The cloud membership degree reflects the attribution degree
of the data collected by a node to the overall sensor data set.

When the cloud membership degree of a node is very low, the
data uploaded by this node is deviant and very possible to be
false or falsified, which means this node is abnormal and its
data trust value is low.

At last, we quantify the energy trust value of nodes and
reject nodes with insufficient energy to avoid the premature
death of these nodes and network congestion. According to
the residual energy of nodes, the energy trust value of nodes
can be evaluated by:

Etri = Ec
i

/
Ein

i (8)

where Ec
i is the current residual energy of node and Ein

i is
the initial energy of node.

B. Comprehensive trust estimation

At the end of each cycle, the cluster head combines the
interaction, data and energy trust to update the trust value of
nodes:

Tri = ω1 × Ctri + ω2 ×Dtri + ω3 × Etri (9)

Where ω1, ω2, ω3 denote the weights of interaction, data and
energy trust respectively. The traditional mechanisms usually
set a fixed trust weight according to actual scenarios. However,
in practical applications, the network environment of WSN is
constantly changing. The fixed trust weight cannot provide the
dynamic adaptability. As the network runs and environment
changes, it is difficult to ensure the evaluation accuracy of trust
values. Entropy is the parameter describing the uncertainty
of objectives. The information entropy reflects the amount of
information contained in the trust value. Therefore, we use
the information entropy theory [20] to evaluate the amount of
information contained in the evaluation results of trust, so as
to dynamically and reasonably determine the trust weights.

We calculate the information entropy of the interaction, data
and energy trust of nodes within a cluster, as shown by Eq.
(10-12):

HCtr = −
n∑

i=1

Ctri · log2 (Ctri) (10)

HDtr = −
n∑

i=1

Dtri · log2 (Dtri) (11)

HEtr = −
n∑

i=1

Etri · log2 (Etri) (12)

Then we allocate the trust weights according to the amount
of information contained in the trust values, as shown by Eq.
(13):

ωk =


HCtri

HCtri
+HDtri

+HEtri
k= 1

HDtri

HCtri
+HDtri

+HEtri
k= 2

HEtri

HCtri
+HDtri

+HEtri
k= 3

(13)

At last we combine Eq. (13) and Eq. (9) to obtain compre-
hensive trust value Tri of node i.
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Fig. 3. Flowchart of the proposed mechanism.

VI. ALGORITHM DESCRIPTION

Fig. 3 is the flowchart of the proposed mechanism. The
specific steps are as follows:

Step 1. Network initializing: trust values of all nodes are
set to 1 and all nodes are completely trusted.

Step 2. Network clustering: we select cluster heads and
divide the entire observation area into clusters by adopting
the advanced LEACH clustering mechanism.

Step 3. Supervisor nodes selecting: we choose the node with
the highest trust value within a cluster as the supervisor node
in this cycle to monitor the cluster head.

Step 4. Sensing task executing: the cluster members collect
data and upload them to the cluster head. After the cluster
head collects the sensor data, it verifies the data consistency
to update the data trust values of nodes within the cluster,
then aggregates the uploaded data and sending the aggregated
data to the sink node. Sink node verifies the data uploaded
by the cluster head and feedbacks the verification result to the
supervisor node to update the data trust value of the cluster
head.

Step 5. Trust value updating: at the end of each cycle of
sensing tasks, the cluster head updates the trust value of the
cluster members and the supervisor node updates the trust
value of the cluster head. Finally, the supervisor node rejects
the untrustworthy nodes in the cluster according to the updated
trust values.

The trust value of malicious or untrustworthy nodes is
usually far lower than the normal node, which can be regarded
as an abnormal value. With the help of abnormal value
detection, we can reject the untrustworthy nodes with low
trust values. In this paper, we use the Grubbs criterion [21]
to verify the trust value of nodes in the cluster at the end
of each cycle to solve the problem of multiple untrustworthy
nodes coexisting in a cluster. Then we can identify and reject
the untrustworthy nodes to ensure the reliability of aggregated
data and the performance and stability of WSNs.

During the nth cycle, the cluster head evaluates trust values
of cluster members and the supervisor node evaluates the trust
value of the cluster head after performing the sensing task.
Then we sort the trust values of all nodes in descending order
to form the set of trust values Tr (Tn). Second, we calculate
expectation ETr(Tn) and variance STr(Tn) of trust values of

all nodes. As described earlier, the abnormal trust value is
usually small in the set of trust values, so the node with the
minimum trust value is considered as the suspect node firstly.
Then we employ the difference between the suspect trust value
and ETr(Tn) to get the suspect trust value offset. Next, we
calculate Gi of the suspect trust value according to Eq. (14):

Gi =
ETr(Tn) −min (Tr (Tn))

STr(Tn)
(14)

At last we compare Gi of the suspect trust value with critical
value Gp (n) given by the Grubbs table. If Gi of the suspect
trust value is larger than the critical value, this node is
untrustworthy. Then we continue to select the minimum trust
value after rejecting the untrustworthy node and repeat the
above steps until Gi of the suspect trust value is smaller than
the critical value.

VII. NUMERICAL RESULTS

In order to verify the feasibility and effectiveness of the
proposed secure data aggregation mechanism, we use the NS2
simulation platform to evaluate the security performance and
network lifetime of the proposed NCS mechanism. The con-
trast algorithms are the Trust Management based security data
aggregation Mechanism(TMM) proposed in [14] and the Risk
Analysis based security data aggregation Mechanism(RAM)
proposed in [15]. During the simulation process, 120 sensor
nodes are deployed in the area of 120m × 120m and the
communication range of nodes is 10m. The initial energy of
all nodes is set to 3J, the packet size is 256bits, the number of
cluster heads is 6 and the energy consumption of sending a bit
data is 50nJ/bit. The maximum number of network cycles is
100 and the initial trust value of nodes is set to 1. The attack
behaviors of malicious nodes include tampering data, replay
attack and Denial of Service attack.

A. Comparative analysis of network security

In this part, validity of the proposed trust evaluation method
is simulated and compared with the other two algorithms. The
simulation results are shown in Fig. 4 and 5.

Fig. 4 shows the influence of the proportion of untrust-
worthy nodes in the network on the discovery probability of
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Fig. 4. Influence of the proportion of untrustworthy nodes on the discovery
probability of untrustworthy nodes.

Fig. 5. Trend of the trust value of untrustworthy nodes.

untrustworthy nodes. It can be seen that the proposed mecha-
nism has a 20% higher discovery probability of untrustworthy
nodes, because that the proposed mechanism considers the
interaction, data and energy trust to evaluate the node trust
comprehensively and uses dynamic weights to adjust the trust
value according to the actual evaluation results. It can accu-
rately reflect the behavioral characteristics of the untrustworthy
nodes, so that the untrustworthy nodes can be detected easier.
The TMM only considers the communication behaviors of
nodes, its trust value estimation accuracy is the worst and the
discovery probability of untrustworthy nodes is the lowest.
The RAM considers both communication behaviors and data
quality of nodes, it has the improved performance than TMM.
However, RAM does not consider the residual energy of nodes,
neglects the untrustworthy nodes of insufficient energy, and
its detection performance is still inferior to our proposed
mechanism. The discovery probability of untrustworthy nodes
of the three mechanisms decreases with the growing propor-
tion of untrusted nodes, because untrustworthy nodes affect
the normal communication of the WSN, consume too much
system resource and have a severely negative impact on the
algorithm performance.

Fig. 5 shows the trust value of untrustworthy nodes in the
network changes with the network runtime. It can be seen that
the trust value of untrustworthy nodes in the three mecha-
nisms decreases with the network runtime. The proposed trust

Fig. 6. Variation of the number of surviving node with the network runtime.

Fig. 7. Variation of the average energy consumption ratio.

evaluation method has better sensitivity than the other two
mechanisms, because our mechanism considers the impact of
abnormal behaviors on the trust value evaluation result. At
the same time, the designed node supervision mechanism can
evaluate and detect abnormal node behaviors timely. Once
malicious or abnormal behaviors occur, the trust value of
this node will drop sharply. High sensitivity of the proposed
trust evaluation method can minimize the impact of abnormal
node behaviors on the network performance and reject untrust-
worthy nodes timely. After the fifth network cycle, the trust
value of untrustworthy nodes is reduced to 0 by the proposed
mechanism, because the node with low trust value has been
rejected by the system.

Fig. 4 and Fig. 5 show that the proposed mechanism collects
the behavior and state information of nodes accurately through
the constrained supervision among nodes. By evaluating the
trust value of nodes comprehensively and detecting the untrust-
worthy nodes in time, it can ensure the security and stability
of the system and the accuracy of the aggregated data.

B. Comparative analysis of network lifetime

In this part, validity of the proposed trust evaluation method
is simulated and compared with the other two algorithms. The
simulation results are shown in Fig. 4 and 5.

Fig. 6 shows the variation of numbers of surviving nodes
in the network as the network runs. In three mechanisms,
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Fig. 8. Influence of the proportion of trusted nodes on the data aggregation
accuracy.

the node energy is gradually exhausted and the number of
surviving node gradually reduces as the network runs. The
node death rate of our mechanism is low and shows the
obvious advantage over the other two mechanisms, because
that the proposed mechanism considers the residual energy
of nodes in both the cluster head selection process and
trust value evaluation process, which effectively avoids the
premature death of the overused reliable nodes. At the same
time, malicious nodes are rejected in time, which can prevent
malicious nodes from launching replay attacks to consume the
node energy. The proposed algorithm prolongs the survival
time of normal nodes and improves the network lifetime
greatly.

Fig. 7 shows the variation of the average energy consump-
tion ratio of the network with the network runtime. The aver-
age energy consumption ratio of the proposed mechanism is
always lower than those of the other two mechanisms, because
the other two mechanisms do not consider the residual energy
of nodes, resulting in the excessive use and the premature
energy depletion of many reliable nodes. After a node dies, its
neighbor nodes will become isolated, then they look for other
paths to transmit data, which consumes more energy. On the
other hand, the other two mechanisms cannot detect malicious
nodes effectively and malicious nodes in the network will
also waste more energy which results in the excessive energy
consumption and shortens network lifetime.

C. Comparative analysis of data aggregation accuracy

We compare and analyze the data aggregation accuracy of
the three algorithms, and the simulation results are shown in
Fig. 8 and Fig. 9. Data aggregation accuracy is calculated by
Eq. (15):

Paccury = 1− |f − r|
r

(15)

where f denotes the data aggregation result and r is the actual
value.

Fig. 8 presents the influence of proportions of trusted
nodes on the data aggregation accuracy. The data aggregation
accuracy of the three mechanisms increases with the grow-
ing proportion of trusted nodes. However, under the same

Fig. 9. Variation of the data aggregation accuracy with the network runtime.

proportions of trusted nodes, the proposed mechanism can
evaluate the trust value of nodes according to multiple factors,
detect the untrustworthy nodes accurately, and provide higher
data aggregation accuracy. Fig. 9 shows the variation of data
aggregation accuracy with the network runtime. It can be seen
that the data aggregation accuracy of the three mechanisms
gradually increases and tends to be stable with the network
runtime. The TMM and RAM do not consider the residual
energy of nodes, which causes the overload of reliable nodes,
so that their data aggregation accuracy is slightly higher. As
the network runs, the reliable nodes die too early because of
the energy depletion, which isolates many nodes and lowers
their data aggregation accuracy.

VIII. CONCLUSION

Aiming at the hidden security risks in the data aggregation
and the shorten network lifetime of WSNs, a constrained
supervision based secure data aggregation mechanism is pro-
posed. we consider the residual energy of nodes and employ
the advanced LEACH to cluster the sensor nodes. Then a trust
management mechanism considering the node communication
behaviors, data quality and residual energy is designed to
evaluate the node trust comprehensively. According to the trust
value evaluation, the supervisor nodes are selected to form
the constrained supervision system among nodes, which can
detect the abnormal malicious behaviors of nodes and reject
untrustworthy nodes in time. Results show that the proposed
mechanism can secure the data aggregation process, prolongs
the network lifetime and provides accurate and reliable aggre-
gated data. In future, we will further analyze the node behavior
characteristics and consider more factors when evaluating the
trust value of nodes in order to prevent new types of attacks.
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