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Abstract—Covering a wide area by a large number of WiFi
networks is anticipated to become very popular with Internet-
of-things (IoT) and initiatives such as smart cities. Such network
configuration is normally realized through deploying a large
number of access points (APs) with overlapped coverage. How-
ever, the imbalanced traffic load distribution among different
APs affects the energy consumption of a WiFi device if it is
associated to a loaded AP. This research work aims at predicting
the communication-related energy that shall be consumed by
a WiFi device if it transferred some amount of data through
a certain selected AP. In this paper, a forecast of the energy
consumption is proposed to be obtained using an algorithm that is
supported by a mathematical model. Consequently, the proposed
algorithm can automatically select the best WiFi network (best
AP) that the WiFi device can connect to in order to minimize
energy consumption. The proposed algorithm is experimentally
validated in a realistic lab setting. The observed performance
indicates that the algorithm can provide an accurate forecast
to the energy that shall be consumed by a WiFi transceiver in
sending some amount of data via a specific AP.
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I. INTRODUCTION

CURRENTLY, human life becomes so dependent on
wireless-enabled devices, which are mostly battery-

powered. Laptops, tablets, smartphones, wireless sen-
sors/actuators are all examples of devices that become an
essential part of our today’s life. Admittedly, a multitude
of these devices are capable of running communication-
intensive software such as multimedia, video surveillance, e-
health applications, and many others. The growth of using
such applications stems from the increasing capabilities of
the hardware of these devices that come in a small form
factor with an affordable cost. This, in turn, is anticipated to
increase the amount of CO2 emissions generated worldwide
by telecommunication industry to 4% of the total emissions
by 2020 [1]. Meanwhile, the progress in battery technology is
somewhat limited compared with other technologies such as
telecommunications and semiconductors. In fact, the progress
in battery capacity development does not exceed 5% each
year [2]. This difference in technology advancement results
in a gap between the required energy to be consumed and
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the actual supply as indicated in [3] and this gap yearly
increases by 4% [4]. Moreover, the current expected lifetime
of rechargeable batteries is approximately 2 to 3 years. This
results in 25000 tons of disposed batteries per year, which
triggers environmental and financial concerns [5].

On the other hand, the simplicity, the popularity, and cost
effectiveness make a significantly large number of devices
depend on a wireless access that is mainly provided by WiFi
networks in order to realize the realm of IoT. For instance,
recent initiatives such as smart city relies to a large extent on
using the WiFi technology in order to provide a city-wide wire-
less access for IoT applications. Moreover, traffic offloading
from cellular to WiFi networks is currently under investigation
of many researchers [6] as it can save considerable amount of
energy for cellular network devices [7]. Furthermore, many
research works, such as in [8], address the usage of cloud
computing to offload the data processing from mobile devices
to the servers of the cloud via WiFi networks in order to reduce
the number of battery charge/discharge cycles. This, in turn,
reduces battery disposal rate. However, the offloading decision
has to be made based on a careful comparison between the
estimated amount of consumed energy in local data processing
and a forecast of the transmission/reception energy required to
transfer the data for processing to/from the cloud via a WiFi
network.

Apparently, the aforementioned applications require a ubiq-
uitous WiFi access, which is mostly attained by deploying a
large number of APs (predominantly connected via a wired
backbone) with overlapped coverage as shown in Figure 1.
However, due to the imbalanced traffic load distribution among
these APs, transmitting a bulk amount of traffic over a loaded
AP leads to a significant increase in the energy consumption
of WiFi-enabled devices.

Thus, the objective of this research is to provide a forecast
for the energy that shall be consumed by the transceivers of
WiFi-enabled devices if they transmit some amount of data
through a specific AP. Consequently, we propose an algorithm
that allows a WiFi device, covered by multiple WiFi networks
(multiple APs), to select the best network in terms of energy
consumption. The proposed algorithm takes into account the
interference of the other nearby networks and the devices
competing to access the network assuming the network status
does not significantly change during data transmission.

The contributions of this paper are two-fold. First, an
analytical model is devised. The model employs the channel
utilization data obtained by the transceiver of a WiFi-enabled
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Fig. 1. WiFi wide-area coverage.

device in order to mathematically evaluate the data transfer
time to a certain AP. Second, an energy estimation algorithm
is proposed. In conjunction with the analytical model, the
algorithm predicts the amount of energy that is supposed
to be consumed in sending some amount of data over any
WiFi network covering the WiFi-enabled device. The proposed
algorithm can then determine the best network that the WiFi
device can communicate to in order to minimize the energy
consumption. This, generally, leads to decreasing CO2 emis-
sions and maximizes the battery lifetime for battery-powered
devices. Furthermore, it helps a wireless device in selecting the
best AP for a cellular-to-WiFi energy-aware data offloading
and/or supports the decision of performing data processing
locally or via cloud computing.

The rest of the paper is organized as follows. Section II
briefs the most relevant research works. Section III provides
the details of the proposed analytical model and energy
estimation algorithm. Section IV introduces the experimental
setup used to validate the proposed analytical model including
the hardware and software tools. It also describes the lab
setting. The experimental and analytical results are compared
in Section V. Finally, Section VI concludes this paper.

II. RELATED WORKS

In the literature, a number of recent research works address
WiFi energy modeling. Some of these models mainly focus on
smartphones and rely on the parameters that can be available
for application developers. For instance, the authors in [9]
present a WiFi energy model for smartphones that is based on
application layer throughput but it is only for data reception.
Hao et al. [10] introduce energy estimation of smartphone
applications via code analysis, which is largely hinged on the
availability of the application source code. The authors in [11]
and [12] offer battery-based power consumption models for
different smartphone components. Their models mainly intend
to provide sufficiently accurate power/energy measurements

via software functions running on the smartphone without
using external hardware.

Other research works in the literature address WiFi energy
consumption mathematically such as the works of [13] and
[14]. These work are meant to address energy efficiency
performance analysis and/or optimization with no proposals
for practical implementation. In [15], an energy model has
been devised based on recorded driver statistics, which cannot
be used to forecast energy consumption before transmission.

To the best of our knowledge, no other research work in
the literature proposes an analytical-based energy forecasting
algorithm for the sake of selecting the best AP that minimizes
the energy consumption for data transmission. The algorithm
can be employed for IoT device connectivity or by smartphone
cloud/WiFi offloading applications where a wide WiFi cover-
age is realized by a large number of APs with overlapped
coverage.

III. MATHEMATICAL MODEL AND ALGORITHM
DESCRIPTION

The mathematical model aims at estimating the amount of
energy that is anticipated to be consumed when sending a
certain amount of data (e.g., a file) with a specific size.

A. The Mathematical Model

The proposed analytical model estimates the amount of time
that some volume of data takes to be transferred using the user
datagram protocol (UDP) over a single IEEE 802.11 network.
The data is assumed to be sent from a tagged node to the
network AP in order to be forwarded to other network(s).
Meanwhile, N other active network nodes utilize the channel
by sending data frames of the same size as the ones sent by
the node under study. All nodes access the channel using the
RTS-CTS-Data-ACK handshaking in order to reduce the effect
of the hidden-terminal problem.
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For a fixed packet size, the packet transmission time Ts can
be expressed as [16]

Ts = TRTS + TCTS + 3 SIFS + TACK + T +DIFS (1)

where TRTS , TCTS and TACK are the frame transmission
times for the RTS, CTS and ACK frames, respectively. DIFS
represents the distributed inter-frame spacing, whereas the
SIFS is the short inter-frame spacing as described in the IEEE
802.11 standard [17]. The network nodes compete to access
the channel using the IEEE 802.11 distributed coordination
function (DCF) [17]. It allows a node to start transmitting
a packet after waiting for a random backoff interval of time
slots selected from a contention window with a minimum size
CWmin. According to the DCF operation [17], the contention
size doubles after each packet collision.

The time for sending the packet payload can be obtained
from

T =
LOH + L

Data Rate
(2)

where LOH is the IEEE 802.11 overhead and L is the payload
size in bits.

The packet collision time can be calculated using [18]

Tc = TRTS +DIFS. (3)

In order to simplify the mathematical evaluation of the chan-
nel utilization (before the node under study joins the network),
the IEEE 802.11 channel is assumed to be homogeneously
utilized by N nodes generating an equivalent background
traffic load. This causes packet collisions with a probability
that can be obtained by solving [16]

p = 1−
(
1− ρ

W (p)

)N−1

. (4)

after substituting by the average backoff window size W (p)
as

W (p) ≈ 1− p− p(2p)mb

1− 2p

CWmin

2
. (5)

The utilization factor ρ of the queue of a network node is
given as

ρ =
λ

µ
(6)

where λ and µ are the packet arrival rate and service rate,
respectively.

Thus, the average channel service time as seen by a network
node can be obtained as [16]

St(N − 1, p) =
1

µ

= ρ(N − 1)
[
Ts +

Tc

2
p

1−p

]
+W (p)δ + (Ts +

Tc

2
p

1−p ). (7)

where δ is the slot time. In (7), three terms are presented.
The first one is related to the background traffic. The second
characterizes the backoff time, whereas the third models the
transmission and collision time of the node under study. In
fact, (7) can be viewed as the cycle time between successful
packet transmissions given certain node utilization factor.

For RTS-CTS-Data-ACK access scheme, the channel reaches
its maximum utilization at the network saturation condition
(where all the nodes have always backlogged packets) irre-
spective of the number of nodes for CWmin = 32 [18]. Thus,
the channel utilization ratio can be obtained as

u =
ρ(N − 1)

[
Ts +

Tc

2
p

1−p

]
+W (p)δ + Ts +

Tc

2
p

1−p

(N − 1)
[
Ts +

Tc

2
ps

1−ps

]
+W (ps)δ + Ts +

Tc

2
ps

1−ps

(8)
where the numerator presents the cycle time for the non-
saturated condition, whereas the denominator is the cycle
time in the saturated case with ps the collision probability
at network saturation obtained by solving (4) with ρ = 1.

For the node under study, the model intends to predict the
transfer time of some amount of data Fs. The number of data
packets to be transmitted can be calculated as

Nr =

⌈
Fs

L

⌉
(9)

where L is the packet size.
The model estimates the minimum data transfer time, which

implies that the data is being sent with the highest possible
packet arrival rate (i.e., as much as the service rate of the
channel allows). Therefore, we assume here that the node
under study is almost saturated. In [19], it has been shown that
the service time of IEEE 802.11 networks near saturation can
be approximately modeled as a Geometric random variable.
Thus, the queuing model of the node under study in this case
follows a D/Geo/1 queuing system with a sufficiently large
buffer, which is case for the currently existing hardware.

The data transfer time for the node under study can be
obtained according to the D/Geo/1 queuing model [20] as

DT ≈
(
Nr − 1

µuρu

)
+δ

(
1

λus
− 1

)
ρu

2 (1− ρu)
+

1

µu
, 1 > ρu ≥ 0.98

(10)
where λus is the packet arrival rate per slot, µu is the service
rate, and ρu is the utilization factor for the node under study
(should be close to 1).

B. The Energy Estimation Algorithm

The following steps summarize the proposed algorithm
that can be used to estimate the energy consumption for a
certain amount of data in conjunction with the aforementioned
mathematical model.

Step 1: The algorithm starts by tuning the WiFi NIC to the
operating channel of a certain AP.

Step 2: Energy detection is performed by the receiver while
in the idle mode. This allows the receiver to determine the
time during which the sensed carrier power level exceeds the
detection threshold out of some window of time. The channel
utilization ratio can be calculated from this step.

Step 3: The values of N and ρ can be selected such as
the utilization u (calculated using (8)) matches the utilization
measured in Step 2. This can be done by assuming certain
value of N and ρ then solving for p using (4) and for ps
using (4) after setting ρ equal to 1. This step can be done
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using a lookup table of p that is calculated at different values
of N and ρ.

Step 4: The amount of time that is required to transfer
arbitrary amount of data Fs can be obtained using (10) where
µu is calculated from

µu =
1

ρ(N − 1)
[
Ts +

Tc

2
pu

1−pu

]
+W (pu)δ + Ts +

Tc

2
pu

1−pu

(11)
where pu is the solution of

pu = 1−
(
1− ρ

W (pu)

)N−1(
1− ρu

W (pu)

)
. (12)

Similar to Step 3, the value of pu can be evaluated by a lookup
table that contains pu at different values of N and ρ for ρu
close to one.

Step 5: By using the measured transceiver’s power con-
sumption values, i.e., the transmit power PTX , receive power
PRX , and idle power Pidle, the average power can be calcu-
lated as in (13). Pavg in (13) is calculated based on the fraction
of transmission, reception, and idle time with respect to the
cycle time St(N, pu).

The energy that is expected to be consumed by the WiFi
transceiver for transmitting Fs amount of data can be obtained
by

Et = PavgDT (14)

where DT can be obtained by (10).

IV. EXPERIMENTAL SETUP

In this section, the experimental setup is introduced. First,
we present the used software and hardware tools. After that,
we describe how the entire setup works.

A. Software Tools

Two software tools are used. One is used to generate back-
ground traffic. The tool is called PSping [21]. It can generate
Internet control message protocol data (ICMP) packets with
variable packet size and variable inter-arrival time. Meanwhile,
we use iperf to generate the test data and measure the file
transfer throughput.

In order to monitor the wireless channel, we use the
software package CommView-for-WiFi [22]. It is a network
monitor and analyzer software for IEEE 802.11 a/b/g/n/ac
networks. It is mainly used as a sniffer in order to monitor
all the data sent over a certain WiFi channel. .

B. Hardware Equipment

In order to build the WiFi network, we use an ASUS Dark
Knight router. It is a dual band router that can support IEEE
802.11 a/b/g/n. The stock firmware is changed by re-flashing
the router to Tomato firmware. In fact, Tomato firmware
allows the user to access more configuration details that are
not available through stock firmware such as controlling the
maximum data rate. The router has been configured to work on

Channel 6, which is one of the commonly used radio channels
in the 2.4 GHz band.

For network connectivity, three types of USB WiFi adapters
are used. The Think Penguin legacy (IEEE 802.11 b/g) 2.4
GHz WiFi USB adapters are used with the PCs that generate
the background traffic. Dell dual-band 802.11/a/b/g legacy
USB adapters are used by the sender-receiver pair under study
to send the test data. Since we are using a sniffer software to
capture the traffic sent over the channel, the advanced dual-
band USB adapter Alfa AWUS036ACM 802.11 a/b/g/n/ac is
used. It is recommended by the sniffer software as it can
sniff on any WiFi standard currently operational in any WiFi
network in range.

We mimic the online measurements of channel utilization
by using a software-defined radio (SDR). The SDR gives the
ability to control the energy detection of the radio channel
without the need to deal with a complicated open-source WiFi
adapter driver software. Here, we use BladeRF. The BladeRF
is a fully bus-powered USB 3.0 SDR with a small form factor.
It operates in 300 MHz - 3.8 GHz radio frequency range. It
can transmit and receive independently using 12-bit samples
with a maximum sample rate of 40 M sample/second.

We have two kinds of traffic sources that are connected
to the network. One traffic source is employed to load the
network with some amount of background traffic. This traffic
is created using normal Intel Core-i5 Windows-based PCs. The
other traffic source generates the test data. In our experiment,
this traffic source is implemented using two single-board
computers (SBCs). The SBCs are Roboard RB-110, which
is a complete computer system. It has a Vortex 86Dx CPU
running at 1000 MHz with 256 MB RAM. Both SBCs run
Linux Ubuntu server.

C. The Lab Setting

The lab setting consists of a number PCs that are connected
to a WiFi router using Think-Penguin legacy Wi-Fi adapters.
These PCs create constant-bit-rate background traffic over
Channel 6 on the 2.4 GHz band using the PSPing tool.
The packet generation rate is kept fixed at its maximum
value, however, the packet size is varied in order to change
the channel utilization. On the other hand, the test data is
transferred between the two SBCs while the background traffic
is being transmitted.

Channel monitoring is performed using the sniffer software,
which gives a comprehensive output file that can be easily
exported to any spreadsheet software. Using the information
provided in the file such as the start time, the end time, and the
frame transmission duration, the channel utilization percentage
can be obtained for any window of time.

The BladeRF is employed to collect channel utilization
information by the aid of a Matlab code, which uses energy
detection in order to determine the channel utilization per-
centage over the same window of time used by the sniffer
software. Since our setup only mimics the real-life WiFi
network interface card (NIC), the sniffer software is used to
calibrate the radio amplifier gain parameters of the BladeRF
SDR to match the output channel utilization of the sniffer. In
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Pavg =
1
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Fig. 2. The channel utilization as recorded by the sniffer and the SDR.

a real scenario, the WiFi NIC is able to determine whether
the channel is busy or idle based on received the signal level.
In Section V-A, a comparison between the channel utilization
obtained by the sniffer and the one obtained by the BladeRF
SDR is introduced.

V. EXPERIMENTAL AND ANALYTICAL RESULTS

Here, we present a comparison between the analytical and
the experimental results in order to show the effectiveness of
the proposed algorithm.

A. Energy Detection for Channel Utilization

For testing the feasibility of using energy detection to
determine the channel utilization, we use the sniffer software
to capture all the frames sent over a specific WiFi channel. At
the same time, we connect the SDR to the computer running
the sniffer software and measure the percentage of time the
power received by the SDR exceeds some threshold value.
As mentioned in Section IV-C, we generate a background
network traffic by sending ping packets from a number of
PCs to the AP. In order to change the channel utilization, the
generated traffic volume is varied by sending ping packets
with the same rate but with different sizes. Each packet size
corresponds to a different channel utilization percentage. The
result of this experiment is depicted in Figure 2. Evidently, the
percentage channel utilization as calculated from the sniffer
software output is close to the output of the SDR as Figure 2
reveals.

B. Algorithm Validation with Fixed Channel Rate

In order to validate the proposed algorithm, an experiment
is conducted in a practical setting and repeated at least 20
times. In this experiment, two RB110 SBCs are connected to
the same WiFi network that contains a number of PCs acting
as traffic generators. One of the SBCs acts as a client and
whereas the other acts as a server using the Iperf tool. The
energy consumption is measured by the aid of a power supply
that feeds the SBCs. The power values of the transmitting,
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(a) Energy consumption versus utilization for 6 Mb/s channel rate.
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(b) Energy consumption versus utilization for 12 Mb/s channel rate.
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(c) Energy consumption versus utilization for 18 Mb/s channel rate.
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(d) Energy consumption versus utilization for 24 Mb/s channel rate.

Fig. 3. Energy consumption versus channel utilization for different data
rates.
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the receiving mode, and the idle mode of the SBCs are also
measured and recorded.

The traffic generators are set to create four different channel
utilization levels, namely, 30%, 40%, 50% and 60%. Con-
sequently, a file of 15 MB in size is transferred from one
SBC to the other at a relatively low data rate (≤ 24 Mb/s),
which can be restricted in the configuration of the AP and
the WiFi adapters. This is to guarantee that the rate is not
adaptively changing from the assigned value, which normally
happens in indoor scenarios with relatively short line-of-sight
distance between sender and receiver. A check by using the
sniffer software is performed in order to make sure that the
packets of the transmitted data are transferred with the same
data rate. The traffic volume generated by the Iperf tool at each
utilization level is set at the highest value that does not cause
any packet loss during file transfer. This process is repeated
for different transmission rates (6, 12 , 18 and 24 Mbps).

Figure 3 shows the energy consumed in sending a 15 MB
file using different channel transmission rates with different
channel utilization percentages. The figure 3 reveals that the
measured energy consumption closely matches the estimated
(predicted) amount using the proposed algorithm for different
data rates and different channel utilization percentages. From
Figure 3, it is clear that increasing the transmission rate leads
to less energy consumption since the file takes less time to be
transmitted.

C. Algorithm Validation in an Adaptive Rate Scenario

For further validation of the proposed algorithm in a more
realistic scenario, three tests have been conducted in a different
premises. The tests are different from one another in terms of
the location of the node under study, the receiving node, and
the used AP. In these tests, a 60 MB is sent from the node
under study to another node while other nodes are creating
background traffic to achieve the same channel utilization.
However, in all the three tests, no data rate limitation has
been assigned to any of the nodes. Since the channel rate is
varying, the proposed algorithm requires the average channel
rate to be able to calculate (2) and (1). In fact, the average
data rate can be obtained from the communication history of
the node under study with the AP. This makes the algorithm
mainly effective in case of stationary nodes (e.g., many IoT
or machine-to-machine applications) or in case of limited
mobility (e.g., business campuses where users slightly move
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Fig. 5. Results of proposed algorithm testing without rate limitation.

in their office space). A sample of this data rate history is
shown in Figure 4, which reveals the attainment percentage
of different data rate ranges. The figure is generated based
on collecting statistics about the data rate that the node under
study used to communicate with another node via an AP.

For all the three tests, the channel utilization is measured
by the SDR and used by the algorithm in order to predict
the energy consumption. Consequently, the actual energy
consumption is recorded and compared as in Figure 5, which
depicts a good match in all tests.

VI. CONCLUSION

The paper offers an algorithm that forecasts the energy
consumption by a WiFi-enabled device in case some amount
of data is transmitted via certain AP. The algorithm relies
on an IEEE 802.11 analytical model that can estimate the
data transfer time by using the percentage channel utilization,
which can be measured by the WiFi transceiver during idle
time. The analytical model takes into account the equivalent
network background traffic load generated by a number of
competing nodes. This allows the WiFi-enabled device to
make an accurate decision regarding the association with
the AP that minimizes its energy consumption either for
normal data transfer or for different offloading scenarios. The
proposed algorithm is validated by hardware experimentation
in a lab environment that mimics a realistic scenario. The test
environment allows either a fixed or an adaptively varying
channel rate. The experimental results show that the algorithm
is effective in prediciting the energy that will be consumed
in transmitting some amount of data through a certain WiFi
network.
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