
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, VOL. 66, NO. 3, PP. 465-472
Manuscript received February 28, 2020; revised July, 2020. DOI: 10.24425/ijet.2020.131900

Optimal Strategies for Computation of Degree `n

Isogenies for SIDH
Michał Wroński, and Andrzej Chojnacki

Abstract—This article presents methods and algorithms for
the computation of isogenies of degree `n. Some of these
methods are obtained using recurrence equations and generating
functions. A standard multiplication based algorithm for com-
putation of isogeny of degree `n has time complexity equal to
O(n2M (n logn)), where M(N) denotes the cost of integers of
size N multiplication. The memory complexity of this algorithm
is equal to O (n log (n log (n))). In this article are presented
algorithms for:

• determination of optimal strategy for computation of degree
`n isogeny,

• determination of cost of optimal strategy of computation of
`n isogeny using solutions of recurrence equations,

• determination of cost of optimal strategy of computation of
`n isogeny using recurrence equations,

where optimality in this context means that, for the given pa-
rameters, no other strategy exists that requires fewer operations
for computation of isogeny.

Also this article presents a method using generating functions
for obtaining the solutions of sequences (um) and (cm) where
cm denotes the cost of computations of isogeny of degree `um for
given costs p, q of `-isogeny computation and `-isogeny evaluation.
These solutions are also used in the construction of the algorithms
presented in this article.

Keywords—SIDH, Optimal strategies, Generating functions

I. INTRODUCTION

NOWADAYS post-quantum cryptography is one of the
most important areas in modern cryptography.

It is believed that the SIDH (Supersingular Isogeny Diffie-
Hellman) algorithm is quantum resistant and therefore may be
used in post-quantum cryptography protocols. One of the most
time-consuming parts of SIDH is the computation of degree
`n isogenies, where ` is a positive integer, most often equal
to 2 or 3 and n is a positive integer, most often from the set
{100, 101, . . . , 1000}. This article will show how to efficiently
determine the optimal strategy for degree `n computation,
and its cost using linear recurrences and generating functions.
In this article, strategy means the method of computation of
something, and a strategy will be optimal if, and only if, for
the given parameters no other strategy exists that allows one
to compute something using a smaller number of operations.
The number of operations required for computations using a
given strategy is called the cost of the strategy.

M. Wroński is with Institute of Mathematics and Cryptology, Faculty
of Cybernetics, Military University of Technology, Warsaw, Poland (e-mail:
michal.wronski@wat.edu.pl).

A. Chojnacki is with Institute of Computer and Information Systems,
Faculty of Cybernetics, Military University of Technology, Warsaw, Poland
(e-mail: andrzej.chojnacki@wat.edu.pl).

The proof of the optimality of the strategy, and methods
of determination of optimal strategy of degree `n computation
using a dynamic programming approach was given for the first
time in [1] by Jao, de Feo and Plut. In the same article, the
authors also showed linear recurrence equations for the cost
of this optimal strategy.

Instead of that, nowadays, in practical implementations of
the SIDH algorithm and searching for the optimal strategy of
degree `n computation, a dynamic programming approach is
used which is inefficient.

This article will show how to use ideas from [1] for the
construction of fast and computationally efficient algorithms
for determining the optimal strategy of degree `n computation.
In addition, how to compute the cost of such a strategy using
the solutions of linear recurrences using generating functions
will be shown.

II. SIDH

SIDH is a post-quantum algorithm developed by Jao, de
Feo and Plut and first described in [1]. The algorithm is based
on the difficulty of finding an isogeny of high degree between
two known supersingular elliptic curves. It is believed that
SIDH is quantum resistant because the endomorphism ring
of supersingular elliptic curves is not commutative. A SIKE
algorithm, which is SIDH with key encapsulation, is one of the
candidates to become a post-quantum key agreement protocol.

A. SIDH algorithm

This description is based on the
work of Costello and Hisil [2]. Let
r = f `eAA `eBB ± 1 be a large prime where `A is
most often equal to 2, `B is most often equal to 3,
gcd(`A, `B) = 1, `eAA ≈ `

eB
B and eA, eB = 100, 101, . . . , 1000

in most practical solutions. Additionally, f is a small integer
(compared to r) called a cofactor. The SIDH algorithm
works in the isogeny class of supersingular elliptic curves
over Fr2 . Cardinality of all of these curves is equal to
(r ± 1)2 = (f`eAA `eBB )

2. If E is a public starting curve in
this isogeny class, then to generate its public key, the first
participant of the SIDH protocol (Alice) chooses a secret
subgroup GA of order `eAA on curve E and computes her
public key E/GA, which means that the elliptic curve E/GA
is isogenous to elliptic curve E and the kernel of this isogeny
is the subgroup generated by point PA + [uA]QA and then
GA = 〈PA + [uA]QA〉. Points PA and QA are both of order
`eAA , but they belong to different torsion subgroups. In the

c© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/


466 M. WROŃSKI, A. CHOJNACKI

same manner, the second participant of the protocol (Bob)
chooses a secret subgroup GB of order `eBB and computes
his public key E/GB , where GB = 〈PB + [uB ]QB〉. Points
PB and QB are both of order `eBB , but they belong to
different torsion subgroups. After all these computations, the
shared secret is E/〈GA, GB〉, which means that the kernel
of isogeny ϕ : E → E/〈GA, GB〉 is generated by both
subgroups GA = 〈PA + [uA]QA〉, GB = 〈PB + [uB ]QB〉.
The security of SIDH is based on the fact that computation
of the secret from E, E/GA and E/GB is difficult.

In the SIDH scheme all the public keys contain images of
certain public points under the isogenies defined by their secret
subgroups. During the key generation scheme, Alice not only
sends Bob the curve E/GA but also the image of isogeny
φA at two points, PB and QB . Such linear combinations of
these points generate the set of subgroups chosen by Bob.
So Alice’s public key is PKA = (E/GA, φA(PB), φA(QB)).
In the same manner, the linear combinations of PA and QA
generate the set of subgroups chosen by Alice and Bob’s public
key is PKB = (E/GB , φB(PA), φB(QA)).

During key generation Alice needs to randomly choose a se-
cret integer uA ∈ Z`AeA , by computing GA = 〈PA+[uA]QA〉.
After receiving Bob’s public key she is able to compute
E/〈GA, GB〉 = (E/GB) /〈φB(PA) + [uA]φB(QA)〉. Bob
does similar computations, and then both parties have the
shared secret, which is the j-invariant of the elliptic curve
E/〈GA, GB〉.

III. DETERMINATION OF OPTIMAL STRATEGY OF ISOGENY
OF DEGREE `n WITH GIVEN KERNEL COMPUTATION

Jao, de Feo and Plut in [1] showed how to determine
the optimal strategy of degree `n computation. They showed
how to compute such a strategy using a dynamic program-
ming approach. The time complexity of this algorithm is
equal to O(n2M (n log n)) and memory complexity is equal
to O (n log (n log (n))), where M(N) is the complexity of
multiplication of two integers of size N . Also shown in [1] are
recurrence equations for the cost of computations of isogeny of
degree `n, where the given parameters are: cost of computation
of point scalar multiplication by ` and cost of evaluation of
isogeny of degree `, which are denoted by p and q, where
p, q ∈ N+.

First we shall describe an example of computing an isogeny
for a given degree. Let’s consider that one needs to compute
an isogeny of degree `n with kernel R0, where n = 6 and ` is
a positive integer, for example ` = 2. This example also comes
from [1]. One method of computation of such isogeny may be
the computation of all elements of the kernel, of which there
are `6 such elements. If the exponent n is a large integer, then
it will be difficult to compute all elements of the kernel and
therefore this method of computation of isogeny of degree `n

is inefficient.
The second method, which seems to be much more compu-

tationally efficient, is a multiplication based strategy (MBS).
This method uses factorisation of isogeny φ of degree `n into
isogenies of degree `. In this example φ = φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦

φ1 ◦φ0. The computation of isogeny of degree `6 is described
below:

φ0 : E0 → E1 = E0/〈[`5]R0〉, R1 = φ(R0),

φ1 : E1 → E2 = E1/〈[`4]R1〉, R2 = φ(R1),

φ2 : E2 → E3 = E2/〈[`3]R2〉, R3 = φ(R2),

φ3 : E3 → E4 = E3/〈[`2]R3〉, R4 = φ(R3),

φ4 : E4 → E5 = E4/〈[`]R4〉, R5 = φ(R4),

φ5 : E5 → E6 = E5/〈R5〉, R6 = φ(R5).

The figure 1 shows lattice of computations for n = 6.

Fig. 1. Computational structure of the construction of isogeny φ which is
given by φ = φ5 ◦ φ4 ◦ φ3 ◦ φ2 ◦ φ1 ◦ φ0. Figure comes from the [1].

A multiplication based strategy may be represented on the
lattice presented in figure 1. In computations in a multipli-
cation based strategy the most frequently used operation is
the computation of point scalar multiplication, because the
kernels of isogenies are the points [`5]R0, [`

4]R1, . . . , [`]R5.
The multiplication based strategy of computation of isogeny
of degree `6 with given kernel may be interpreted as walking
on the tree presented in the figure 2.

Fig. 2. Multiplication based strategy for isogeny of degree `6 with given
kernel.

For every optimal strategy of computation of isogeny of
degree `n such strategy may be represented by the tree
structure. This tree has special properties, because it always



OPTIMAL STRATEGIES FOR COMPUTATION OF DEGREE `N ISOGENIES FOR SIDH 467

has exactly n leaves and every path from the root to each leaf
has length equal to n − 1. Every tree having such properties
and having exactly n leaves will be called a tree of size n.
Additionally, every inner node of such tree has exactly one
child or two children. The root of this tree, point R0, is the
kernel of the isogeny. The edge from the node to its left child
illustrates the computation of point (node) multiplication by
`, and the path from the node to its right child illustrates the
evaluation of the `-isogeny in the given point (node).

However, MBS is more computationally efficient than com-
putation of all elements of the kernel, it is not in general the
optimal strategy.

Multiplication based strategy requires computation of
n−1∑
i=0

i = n(n−1)
2 multiplications by ` and n−1 evaluations of `-

isogenies. The next step to get a more computationally efficient
strategy (requiring a smaller number of operations) may be to
get a balance between the number of `-multiplications and
evaluations of `-isogenies. Such strategy is called a balanced
strategy (BS). This strategy is in general more computation-
ally efficient than MBS. If the costs of computation of `-
multiplication and evaluation of `-isogeny are equal, then BS is
an optimal strategy for computation of a strategy of degree `n

with a given kernel, because the tree representing this strategy
has the smallest number of edges.

The costs of computation of point scalar multiplication by
` and evaluation of `-isogeny are not in general the same, so
(in general) BS is not the optimal strategy (OS). The method
of searching for OS was described by De Feo, Jao and Plut
in [1].

They showed that every OS for isogeny of degree `n may
be built using optimal strategies of degree `k and `n−k, for
some k = 1, 2, . . . , n − 1. The cost of OS is therefore equal
to

Cp,q(n) = min
i=1,...,n−1

(Cp,q(i) + Cp,q(n− i) + (n− i)p+ iq) ,

where Cp,q(n) denotes the cost of computation of `n-isogeny
with cost of `-multiplication equal to p and the cost of
evaluation of `-isogeny equal to q.

As was shown in [1], the tree representing the optimal
strategy for n, p, q is built with two trees, being the optimal
strategies for some k and n− k with the same costs p and q.
Therefore, the tree representing the optimal strategy has size
n, and its left subtree (substrategy) has size k and is connected
with the root (kernel of isogeny) by n − k `-multiplications.
In the same way, the right subtree (substrategy) has size n−k
and is connected with root by k computations of `-isogeny. If
p < q, then the size of the left subtree will be smaller than the
size of right subtree to minimize the cost of connections of
these subtrees with the root (which means that every subtree
is connected with the root, the first using only edges denoting
`-multiplication, the second, using only edges denoting the
evaluation of `-isogeny). If p > q, then the size of left subtree
will be bigger. If p = q one may use balanced strategy, then
the size of the left and the right subtrees will be similar (no
matter if the left or right subtree has a bigger value of n, and
in some situations they will have the same size).

Figure 3 shows an example of such optimal strategy for
n = 16, p = 3, q = 7.

Left subtree 

Right subtree

Edges connecting left 
subtree with root of 
main tree 

Edges connecting right 
subtree with root of 

main tree 

Fig. 3. Optimal strategy for n = 16, p = 3, q = 7.

Let’s say that the tree being the optimal strategy for
n = 16, p = 3, q = 7 is built using two trees, being optimal
strategies for n = 6 and n = 10 with the same costs of p and
q. The left subtree of size 6 (substrategy) is connected with
the root (kernel of isogeny) by 10 `-multiplications and the
right subtree (substrategy) is connected with the kernel by 6
evaluations of `-isogeny.

[a]

[b]

Fig. 4. Optimal strategies for n = 6, p = 3, q = 7 (fig. (a)) and n = 10, p =
3, q = 7 (fig. (b)).

Jao, de Feo and Plut also found that the cost of optimal
strategies for isogeny of degree `n with cost of point `-
multiplication and cost of `-isogeny evaluation being equal to
p and q may be described using recurrence equations. Because
OS for (p, q) are symmetric to the OS for (q, p), it is assumed
that p < q. If p = q, then BS is OS. Additionally, p and q are
positive integers. The theorem describing the cost of OS for a
given n, p and q is described below [1].



468 M. WROŃSKI, A. CHOJNACKI

Theorem 1: For given costs p and q, where p < q, let’s
(um) be the sequence which is defined by recurrence equation
u0 = u1 = · · · = up = 0, up+1 = · · · = up+q = 1 and
um = um−p + um−q , for m ≥ p+ q + 1. Let f(n) : N→ N
be the function of cost of OS for given n, p, q. Function f
is given by recurrence equation f(0) = f(1) = 0, f(n) =
f(um) + m(n − um) for all n = um, um + 1, . . . , um+1.
Additionally, f may be described by the recurrence equation

f(um) = f(um−p)+f(um−q)+pum−p+qum−q,m ≥ p+q+1.

In [1] it was also shown, that if um−2 ≤ k and um−1 ≤
n− k ≤ um, then

Cp,q(n) = Cp,q(k) + Cp,q(n− k) + (n− k)p+ kq,

is always the cost of OS of computation of isogeny of degree
`n for given costs p and q.

IV. DETERMINATION OF THE COST OF THE OPTIMAL
STRATEGY USING GENERATING FUNCTIONS

The content presented in this section is new and presents
how the recurrence equations, given in section 1, may be
solved.

The givens are p, q ∈ N+, where q > p and the recurrence
equation is

am =


1, for m = 0,
0, for 0 < m < p,
am−p, for p ≤ m < q,
am−p + am−q, for m ≥ q.

The generating function A (z) of the sequence (am) is equal
to

A (z) = 1 +

q−1∑
m=p

am−pz
m +

∑
m≥q

(am−p + am−q) z
m =

= 1 +
∑
m≥p

am−pz
m +

∑
m≥q

am−qz
m =

= 1 + zp
∑
m≥0

amzm + zq
∑
m≥0

amzm =

= 1 + zpA (z) + zqA (z) .

Finally

A (z) =
1

1− zp − zq
.

Using partial fractions representation of A(z), one can find
the solution to the sequence (am).

For the same numbers p, q, one can use generating functions
to solve the recurrence equation for the sequence (wm):

wm =

{
1, for m ≤ q − 1,
wm−p + wm−q, for m ≥ q.

The generating function W (z) of the sequence (wm) is equal
to:

W (z) =
∑
m≥0

wmzm =

=

q−1∑
m=0

zm +
∑
m≥q

wm−pz
m +

∑
m≥q

wm−qz
m =

=
1− zq

1− z
+ zp

∑
m≥q

wm−pz
m−p + zq

∑
m≥q

wm−qz
m−q =

=
1− zq

1− z
+ zp

∑
m≥q−p

wmzm + zq
∑
m≥0

wmzm =

=
1− zq

1− z
+ zp

∑
m≥0

wmzm −
q−p−1∑
m=0

wmzm + zqW (z) =

=
1− zq

1− z
+ (zp + zq)W (z)− zp − zq

1− z
.

Therefore W (z) = 1−zp
(1−z)(1−zp−zq) =

1−zp
1−z A (z).

Let’s now consider the sequence (um), which was analyzed
earlier, which is defined by the recurrence equation:

um =

 0, for m ≤ p,
1, for p < m ≤ p+ q,
um−q + um−p, for m > p+ q.

The sequence (um) shifted p + 1 times to the
right is equal to the sequence (wm). Therefore the
generating function U (z) of this sequence is equal to
U (z) = zp+1W (z) = zp+1 1−zp

(1−z)(1−zp−zq) =
zp+1(1−zp)

1−z A (z) .
Let cm denote the cost of the optimal strategy whose size

is equal to um. According to the previous considerations, the
sequence (cm) defines the recurrence equation

cm =

{
0, for m ≤ p+ q,
cm−p + cm−q + pum−p + qum−q, for m > p+ q,

where the sequence (um) is defined as above. Let C (z) denote
the generating function of the sequence (cm). Then

C (z) =
∑
m≥0

cmz
m

=

=
∑

m≥p+q

cm−pz
m
+
∑

m≥p+q

cm−qz
m
+p

∑
m≥p+q

um−pz
m
+q

∑
m≥p+q

um−qz
m

=

= z
p
∑

m≥q+1

cmz
m
+z

q
∑

m≥p+1

cmz
m
+pz

p
∑

m≥q+1

umz
m
+qz

q
∑

m≥p+1

umz
m

=

=
(
z
p
+ z

q)
C (z)+

(
pz

p
+ qz

q)
U (z)−pzp

q∑
m=0

cmz
m−qzq

p∑
m=0

umz
m
.

But
q∑

m=0
cmz

m =
p∑

m=0
umz

m = 0. Therefore

C (z) = (zp + zq)C (z) + (pzp + qzq)U (z) ,

so
C (z) =

(pzp + qzq)U (z)

1− zp − zq
=

=
zp+1 (pzp + qzq) (1− zp)
(1− z) (1− zp − zq)

A (z) =

=
zp+1 (pzp + qzq) (1− zp)

1− z
A2 (z) =

= zp+q+1 p (1− zq) + q (1− zp)
1− z

A2 (z) .

Let’s assume that the solution of the sequence (am) for
which the generating function is equal to A (z) is known.
Function A2 (z) is the generating function of the product of



OPTIMAL STRATEGIES FOR COMPUTATION OF DEGREE `N ISOGENIES FOR SIDH 469

generating functions of the sequence (am) by itself. The s-

th element of such sequence is equal to
s∑
j=0

ajas−j . After

dividing the function A2 (z) by (1− z), one achieves the
generating function of the series, whose m-th element is equal

to
m∑
s=0

s∑
j=0

ajas−j .

After multiplication of the function A2(z)
1−z by p (1− zq),

one achieves the generating function of subtraction of two
sequences: the first one is the previously gained sequence mul-
tiplied by p, the second sequence is the sequence previously
gained, shifted q times to the right. The final sequence is equal
to:


p

m∑
r=0

r∑
j=0

ajar−j , for m < q,

p

(
m∑

r=0

r∑
j=0

ajar−j −
m−q∑
r=0

r∑
j=0

ajar−j

)
, for m ≥ q.

After performing analogous operations for the product of
A2(z)
1−z and q (1− zp) one gets the sequence:


q

m∑
s=0

s∑
j=0

ajas−j , for m < p,

q

(
m∑

s=0

s∑
j=0

ajas−j −
m−p∑
s=0

s∑
j=0

ajas−j

)
, for m ≥ p,

and finally one gets the sequence, whose m-th element is equal
to



(p+ q)
m∑

s=0

s∑
j=0

ajas−j , for m < p,

(p+ q)
m∑

s=0

s∑
j=0

ajas−j

−q
m−p∑
s=0

s∑
j=0

ajas−j , for p ≤ m < q,

(p+ q)
m∑

s=0

s∑
j=0

ajas−j − q
m−p∑
s=0

s∑
j=0

ajas−j

−p
m−q∑
s=0

s∑
j=0

ajas−j , for m ≥ q.

After multiplication of the function p(1−zq)+q(1−zp)
1−z A2 (z)

by zp+q+1, one achieves the generating function of the last
sequence, shifted (p+ q + 1) places to the right, so one gets
the generating function of the sequence, whose m-th element,
which is also the m-th element of the sequence (cm), may be

represented as

cm =



0, for m ≤ p+ q,

(p+ q)
m−p−q−1∑

s=0

s∑
j=0

ajas−j , for p+ q < m ≤ 2p+ q,

(p+ q)
m−p−q−1∑

s=0

s∑
j=0

ajas−j − q
m−2p−q−1∑

s=0

s∑
j=0

ajas−j ,

for 2p+ q < m ≤ p+ 2q,

(p+ q)
m−p−q−1∑

s=0

s∑
j=0

ajas−j − q
m−2p−q−1∑

s=0

s∑
j=0

ajas−j

−p
m−p−2q−1∑

s=0

s∑
j=0

ajas−j , for m ≥ p+ 2q + 1.

The formula presented above is the solution of the sequence
(cm). The elements of the sequence (am) may be given
by symbolic or numeric representation according to which
representation is more convenient for us.

However, if one would like to use the generating function
C(z) as a representation of the sequence (cm) to solve this
sequence numerically, then it is convenient to find a generating
function representation of C(z) which eliminates the existence
of A(z). One such representation is

C(z) = (qzq + pzp)

2p∑
i=p+1

zi

(1− zp − zq)2
− p

p+q∑
i=2p+1

zi

1− zp − zq
.

Then, using for example MAPLE, one can find partial fractions
for the representation of C(z) and finally the solution to the
sequence (cm).

The MAPLE code of the algorithm for searching for nu-
merical solutions of (um) and (cm) is presented below.

Algorithm 1 Algorithm for searching for the solutions (um)
and (cn).
Input: p, q ∈ N+, p < q
Output: u, c: solutions of (um), (cm)
l := sum(zi, i = p+ 1..2 ∗ p);
d := 1− zp − zq;
f := l/d;
g := convert(f, parfrac, z, complex);
with(genfunc):
n := integer → integer;
u := evalf(rgf expand(g, z, n));
l3 := sum(zj , j = 2 ∗ p+ 1..p+ q);
l2 := p ∗ zp + q ∗ zq;
f2 := l2 ∗ l/d2 − p ∗ l3/d;
g2 := convert(f2, parfrac, z, complex);
c := evalf(rgf expand(g2, z, n));
return u, c;



470 M. WROŃSKI, A. CHOJNACKI

V. COMPUTATIONALLY EFFICIENT ALGORITHMS FOR
SEARCHING FOR THE COST OF OPTIMAL STRATEGY AND
FORM OF OPTIMAL STRATEGY FOR LARGE VALUES OF n

In [3] an algorithm is presented for finding the optimal
strategy using the dynamic programming approach. In this
algorithm one can use p and q, being positive rational numbers,
but unfortunately, for large sizes of n (n > 10000) this
algorithm is computationally inefficient. Additionally, compu-
tational efficiency of this algorithm in practice does not depend
on the costs p and q.

In this section an algorithm will be presented which allows
one to find the exact value of the cost of the optimal strategy,
even if n is a very large number. Additionally, it will be shown
how to find substrategies (left and right subtrees of the tree
presenting the strategy) of the optimal strategy. It should be
assumed that costs p and q are positive integers. For computa-
tional efficiency of this algorithm the numbers p and q should
not be too large. In most cases p and q may be estimated
using the number of multiplications necessary for a given `-
multiplication and evaluation of `-isogeny. Other operations,
like addition and subtraction have very little influence on the
cost of computations, especially for large fields.

The algorithm which has been designed by us uses the
asymptotic behavior of the sequence (um), which allows us
to find m0, such that for a tree of size n holds n ≈ um0 . In
most cases, the given value will not be exact and it will be
necessary to round this number to the nearest integer.

First, we show how one can find n ≈ um0
.

Function Q (z) = 1 − zp − zq has precisely q roots. If
some x ∈ C were the multiple root of this function, then
its derivative would be equal to zero at the point x ∈ C,
which means that Q′ (x) = −pxp−1 − qxq−1 = 0. x = 0
is not the root of the function Q (z) because Q (0) = 1,
so Q′ (x) = 0 which means that xq−p = −pq and then the
roots of the polynomial Q′ (x) need to be equal to xk =
q−p

√
p
q

(
cos π+2kπ

q−p + i sin π+2kπ
q−p

)
for k = 0, 1, . . . , p− q−1.

Let’s assume that xk for some k is the root of the polyno-
mial Q (x). Then

Q (xk) =

= 1−
(

q−p

√
p

q

(
cos

π + 2kπ

q − p
+ i sin

π + 2kπ

q − p

))p

−
(

q−p

√
p

q

(
cos

π + 2kπ

q − p
+ i sin

π + 2kπ

q − p

))q

=

= 1−
(
p

q

) p
q−p

(
cos

(
(π + 2kπ)

p

q − p

)
+ i sin

(
(π + 2kπ)

p

q − p

))

−
(
p

q

) q
q−p

(
cos

(
(π + 2kπ)

q

q − p

)
+ i sin

(
(π + 2kπ)

q

q − p

))
=

= 1−
(
−
p

q

) p
q−p

−
(
−
p

q

) q
q−p

= 1−
(
−
p

q

) p
q−p

1 +

(
−
p

q

) q−p
q−p

 =

= 1 +

(
−
p

q

) p
q−p q − p

q
.

But if Q (x) = 0, then
(
−pq
) p

q−p

= − q
q−p . Because p < q,

then − q
q−p < −1 and

∣∣∣∣(−pq) p
q−p

∣∣∣∣ < 1, so the equation(
−pq
) p

q−p

= − q
q−p does not hold for any values of p, q ∈ N+

for which p < q. So, finally, there is no value xk which
is the root of the polynomial Q (z) = 1 − zp − zq . This
means that all roots of the function Q (z) = 1 − zp − zq are
distinct. Let R (z) = 1

Q(z) = 1(
1− z

z1

)(
1− z

z2

)
···
(
1− z

zq

) , where

z1, z2, . . . , zq are distinct roots of the polynomial Q (z). The
function R (z) is then the generating function of the sequence
(am), where am = b1

1
zm1

+b2
1
zm2

+s+bl
1
zmq

and bj = −1
zjQ′(zj)

for j = 1, . . . , q.
It should be noted that Q(z) = 1

A(z) and R(z) =

A(z). Now if z1 is the least positive root of the poly-
nomial Q(z) and R(z) is the generating function of se-
quence (am) then am ∼ D

zm1
for some D ∈ R+. Because

U (z) = zp+1(1−zp)
1−z A (z) then um has similar asymptotic

behavior as am and um ∼ E
zm1

for some E ∈ R+. Finally,
m0 for which um0 ≈ n is equal to logz1

E
n .

Using the methods presented in this article, one can con-
struct several algorithms for computing the cost of the optimal
strategy. However, these methods also allow to construct
algorithms to determine the structure of the tree presenting the
optimal strategy, and therefore the structure of optimal strategy
itself. Below are presented the algorithms constructed by us.
The complexity of these algorithms is analyzed in section VI.

First, we presented the algorithm which allows one to find
the structure of the tree presenting the optimal strategy.

Algorithm 2 Algorithm of searching for subtrees of the
optimal strategy tree.
Input: Costs p, q ∈ N+, p ≤ q, size of strategy n
Output: Table A containing size of substrategies
j := p+ q + 1;

if Cost of `-isogeny is greater than the cost of point multi-
plication by ` then

for i := 1 to n by 1 do
if uj ≤ i and uj+1 > i then

Ai := uj−p;
end
else

j := j + 1; Ai := uj−p;
end

end
end
else

for i := 1 to n by 1 do
if uj ≤ i and uj+1 > i then

Ai := i− uj−p;
end
else

j := j + 1; Ai := i− uj−p;
end

end
end
return A;



OPTIMAL STRATEGIES FOR COMPUTATION OF DEGREE `N ISOGENIES FOR SIDH 471

In algorithm 2 it is necessary to find substrategies of the
optimal strategy. Using the fact that for n = um, um +
1, . . . , um+1 every optimal strategy tree consists of subtrees
of size k and l, where k ≤ l, n = k + l, k = um−q, um−q +
1 . . . , um−q+1 − 1, l = um−q, um−q + 1, . . . , um−q+1 − 1
we find that the optimal strategy of size n is generated by
substrategies of size n− um−p and um−p.

The next algorithm allows us to search for the cost of the
optimal strategy using generating functions.

Algorithm 3 Algorithm of searching for the cost of optimal
strategy using generating functions.
Input: n, p, q ∈ N+, p ≤ q, formulas for (um) and (cm),

function u−1(n) which is asymptotically equal to
u−1(n). This function allows to compute such m0, that
n ≈ um0

Output: Cost Cn = Cp,q(n)
m0 := Round(u−1(n));
if um0

≤ n then
while um0

≤ n do
m0 := m0 + 1;

end
m0 := m0 − 1;

end
else

while um0
> n do

m0 := m0 − 1;
end

end
Cn := C(m0) +m0(n− um0

);
return Cn;

In algorithm 3 if um0
> n, then m0 should be decreased

until um0
≤ n. If um0

≤ n, then it should be checked
if um0+1 > n. If yes, then m0 is the value which is
being searched for. If not, then m0 should be increased until
um0 ≤ n and um0+1 > n.

When the value of m0 is found, one can find the cost
Cp,q(n) of using the formula for cm0

, because Cp,q(um0
) =

f(um0). So f(n) = f(um0) +m0(n− um0).

In algorithm 3 the function u−1(x) is used, which is
asymptotically equal to u−1(x). In general, in the while loop
of the algorithm (instead of cases where n is very small) an
m0 will be found such that m0 = bu−1(n)e, where bxe is a
rounding of the number x to the nearest integer. This means
that in general it will not be necessary to make any steps of
while loop, or only one such step. For very small values of n
it is likely that one will make more steps of while loop.

Algorithm 4, allows us to search for the cost of the optimal
strategy using a recurrence equation for the cost of optimal
strategy, but does not require a solution to the sequence (am)
nor the generating function of this sequence.

Algorithm 4 Algorithm for searching for the cost of optimal
strategy using a recurrence equation for the cost of optimal
strategy.
Input: n, p, q ∈ N+, p ≤ q
Output: Cost Cn = Cp,q(n)
for i := p+ 1 to p+ q by 1 do

ui := 1;
end
while ui < n do

i := i+ 1; ui := ui−p + ui−q;
end
s := i− 1;

for i := p+ 1 to p+ q by 1 do
ci := 0;

end
for i := p+ q + 1 to s by 1 do

ci := ci−p + ci−q + pui−p + qui−q;
end
cn := cs + s(n− us);

return Cn;

Algorithm 4 only uses a recurrence representation of the
sequences (um) and (cm) and returns the cost of the optimal
strategy.

VI. ANALYSIS OF THE COMPLEXITY OF THE PRESENTED
ALGORITHMS

The algorithm using the dynamic programming approach
presented in [1] and implemented in [3] has computational
complexity equal to O(n2), if the complexity of multiplication
is not considered. Using the asymptotic formula from [1] for
cost of optimal strategy equal to Cp,q(n) ∼ − 1

log zn log n
and if the integers which are multiplied have size at most
− 1

log zn log n then the cost of the algorithm may be esti-
mated as O

(
n2M (n log n)

)
, where M(N) is the function

returning the cost of multiplication of integers of size N .
Additionally, this algorithm has memory complexity equal to
O (n log (n log n)).

Algorithm 2, used for finding substrategies of the optimal
strategy, has time complexity equal to O(n) and memory
complexity equal to O(n log n). If not all values need to be
stored in arrays, then this algorithm may be modified, if one
notes that for the set {um, um + 1, . . . um+1} substrategies
of optimal strategy may be found if one knows the value
um−p. In this case, the time complexity of the algorithm of
finding subtrees of the optimal strategy may be reduced to
O(m0), where m0 ≈ u−1(n). The memory complexity of such
algorithm is equal to O(m0). Unfortunately, every access to
the size of substrategy for some k < n will require searching
for the proper value in the given sorted array which costs
logm0 operations.

Algorithm 3, which uses generating functions, has time
complexity equal to O (m0M (n log n)). This complexity is
the result of powering of real numbers. Additionally, um0 ≈ n
and m0 << n. There are some exceptional cases, where
m0 is very small (this depends of the values of p and q).
Memory complexity depends on the final result and is equal
to O (log (n log n)). The algorithm is numerically unstable



472 M. WROŃSKI, A. CHOJNACKI

and requires precomputations, where one solves recurrence
equations. For smaller values of p and q (lower than 20) and
n less than 100000, this algorithm is numerically stable and
may be used.

Algorithm 4, which uses recurrence equations, has the
same time complexity O (m0M (n log n)), as algorithm 3.
The memory complexity of this algorithm is equal to
O (m0 log (n log n)) but it is possible to reduce this com-
plexity to O (log (n log n)), if one remembers only the last
q numbers. Therefore this algorithm seems to be the most
suitable for practical implementations. Algorithm 4 does not
require many precomputations and is not as sensitive for large
costs of p and q as algorithm 3. Additionally, in algorithm 4
computations may be made using only integers and therefore
this algorithm is numerically stable.

VII. CONCLUSION

In this article we have presented algorithms which allow
us to find the optimal strategy for computation of isogeny of
degree `n for costs of computation of `-point multiplication
and evaluation of `-isogeny equal to p and q, where p, q ∈ N+.
However, the costs of point `-multiplication and evaluation of
`-isogeny do not need to be integers. To get equivalent costs,
the best for computations, for given rational costs (for example
time of execution instead of number of operations) a

b of point
`-multiplication and c

d for computation of `-isogeny, where
a, b, c, d ∈ N+ , additional transformations can be made. The
ratio of these numbers is equal to ad

bc . Then p and q may be nat-
ural numbers such that p = min{ ad

NWD{ad,bc} ,
bc

NWD{ad,bc}}
and q = max{ ad

NWD{ad,bc} ,
bc

NWD{ad,bc}}.
We have also shown how to solve recurrence equations

for the cost of optimal strategy of size n. These methods
allow us to construct computationally efficient algorithms for
computing the cost of the optimal strategy, similarly to the

structure of the optimal strategy. Presented below algorithms
have improved time and memory complexity than the algo-
rithms currently being used:
• determination of optimal strategy for computation of

degree `n isogeny whose time complexity is equal to
O (n) and memory complexity is equal to O (n log n),

• determination of cost of optimal strategy of computation
`n isogeny using solutions of recurrence equations, whose
time complexity is equal to O (m0M (n log (n))) and
memory complexity is equal to O (log (n log n)).

• determination of cost of optimal strategy of compu-
tation `n isogeny using recurrence equations whose
time complexity is equal to O (m0M (n log (n))) and
memory complexity equal to O (m0 log (n log n)) or
O (log (n log n)), if one remembers only the last q num-
bers.

Time of execution of the algorithm using dynamic program-
ming approach [3] implemented in MAGMA, for n = 100, 000
and costs of `-point multiplication equal to p = 3 and cost of
`-isogeny evaluation equal to q = 7 returned a solution in
5473.694s. By contrast, the implementation in MAGMA of
joint algorithms 2 and 4, returned the optimal strategy in only
0.641s.

REFERENCES

[1] L. D. Feo, D. Jao, and J. Plût, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies,” Cryptology ePrint Archive,
Report 2011/506, 2011, https://eprint.iacr.org/2011/506.

[2] C. Costello and H. Hisil, “A simple and compact algorithm for sidh with
arbitrary degree isogenies,” in Advances in Cryptology – ASIACRYPT
2017, T. Takagi and T. Peyrin, Eds. Cham: Springer International
Publishing, 2017, pp. 303–329.

[3] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for super-
singular isogeny diffie-hellman,” in Advances in Cryptology – CRYPTO
2016, M. Robshaw and J. Katz, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2016, pp. 572–601.

https://eprint.iacr.org/2011/506

	Introduction
	SIDH
	SIDH algorithm

	Determination of optimal strategy of isogeny of degree n with given kernel computation
	Determination of the cost of the optimal strategy using generating functions
	Computationally efficient algorithms for searching for the cost of optimal strategy and form of optimal strategy for large values of n
	Analysis of the complexity of the presented algorithms
	Conclusion
	References

