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Improving Security of Existentially Unforgeable
Signature Schemes

Mariusz Jurkiewicz

Abstract—In this paper we present a family of transforms
that map existentially unforgeable signature schemes to signature
schemes being strongly unforgeable. In spite of rising security,
the transforms let us make a signature on a union of messages
at once. The number of elements in this union depends on the
signing algorithm of a scheme being transformed. In addition
to that we define an existentially unforgeable signature scheme
based on pairings, which satisfies all assumptions of the first part
and is able to be subjected to transformation.

Keywords—Digital signature scheme (DSS); strongly unforge-
able DSS; pairing

I. INTRODUCTION

THE notion od existentially unforgeable signature schemes
was introduced in [3]. For these schemes, an adversary

has almost unbounded access to the signing oracle of a scheme
which is being attacked, and may adaptively interact with
this oracle, requesting signatures on messages m1, . . . ,mq

generated by itself. Apart from that, it is assumed the adversary
knows the public key all the time. In spite of having all
this knowledge and control over oracle, it is able to output
a valid forgery only with negligible probability. Here, the
forgery means a positively verifiable pair pm‹, σ‹q such that
m‹ R tm1, . . . ,mqu.

The notion of existential unforgeability seems to be strong,
but it turns out that it can be strengthen. This stronger version
is termed as strong unforgeability (see [1]), and differs from
existential unforgeability in one detail. Namely, if σi is a
signature on mi then it is negligibly likely to output a valid
forgery pm‹, σ‹q R tpmi, σiqu. In addition to the security
given by existential unforgeability, this time a scheme is also
prevented from a new signature on a message that has been
already signed. This security is especially important to protect
systems against some types of attacks, such as replay attacks
for instance.

In this paper we show how to transform signature schemes
that are existentially unforgeable and their signing algorithms
satisfy some additional conditions into strongly unforgeable
signature schemes in a classical model. We were inspired by
the work [4] regarding an Identity-Based-Encryption scheme,
which can be transformed into a signature scheme by using
the generic Boneh-Franklin method described in [5].

We also construct a flexible signature scheme which is
existentially unforgeable and is not strongly unforgeable, and
belongs to the domain of our transform. This scheme can serve
as an example of applying the first part of this paper.

M. Jurkiewicz is with Faculty of Cybernetics, Military University of
Technology, Warsaw, Poland (e-mail: mariusz.jurkiewicz@wat.edu.pl).

II. PRELIMINARIES

Before presenting the main results, we briefly review the
definitions of regular and strong CMA-security for digital
signature schemes. We additionally recall some facts about
the notion of bilinear maps in finite groups.

A. Notation

Following the work of [3], we introduce some notation used
in this paper. Let A be a probabilistic Turing machine. The
notations y Ð Apxq and y $

Ð Apxq mean that a random tape
is selected with some distribution and uniformly at random,
and then y is assigned the value Apx, tapeq. When A is
deterministic we write y “ Apxq. Analogously, if A is a
finite set, then y

$
Ð A denotes that y is assigned an element

uniformly and independently chosen from A. For a positive
integer k, we use the following notation rks :“ t1, . . . , ku.

B. Pairings

We first define two groups G,GT (each with multiplicative
notation), all of prime order.

Definition 1: A map ê : GˆGÑ GT having the following
properties:

1. bilinearity, i.e., for all g1, g2 P G and a, b P Zr we have

êpga1 , g
b
2q “ êpg1, g2q

ab;

2. non-degeneracy, i.e., for g1, g2 ‰ 1G,

êpg1, g2q ‰ 1GT ;

is called a pairing of type 1 (see [2]).

C. Security and strong security against adaptive CMA

Below we recall the formal definition of a signature scheme.

Definition 2: A signature scheme is composed of three
algorithms pGen,Sign,Vrfyq along with an associated message
space M “ tMnun such that:
‚ Gen is a probabilistic polynomial time algorithm (PPT).

It takes as input a security parameter 1n and outputs a key
psk, pkq, where sk and pk are called, the secret key and
the public key respectively. We assume that both sk and
pk depend on the security parameter n (i.e. sk “ skpnq
and pk “ pkpnq).

‚ The signing algorithm Sign is a probabilistic polynomial
time one. It takes as input a secret key sk and a message
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m PMn and outputs a signature σ. It is written as σ Ð
Signskpmq.

‚ The verification algorithm Vrfy is a deterministic polyno-
mial time one. It takes as input a public key pk, a message
m PMn and a (purported) signature σ. It outputs a single
bit b, with b “ 1 meaning accept and b “ 0 meaning
reject. It is written as b “ Vrfypkpm,σq.

We now define security against an attack in which the
adversary knows pk and is provided with full access to
Signskp¨q. In this context, Signskp¨q, together with the fixed
secret key is called a signing oracle. This oracle should be
thought of as a ,,black box” that outputs a signature for
a message given on input. The adversary itself is able to
adaptively interact with the oracle by choosing messages to
be signed, depending on both the public key as well as on any
signatures it has previously obtained.

We start with the weaker version of intended security
model. Toward the formal definition, consider the following
experiment for a signature scheme Π “ pGen,Sign,Vrfyq, an
adversary A and a value n for the security parameter.

Expeuf-cma
A,Π p1nq :

1. Generate psk, pkq Ð Genp1nq.
2. The adversary A is given pk and access to an oracle

Signskp¨q, requesting signatures on as many messages
as it likes (it is denoted by ASignskp¨qppkq). Let tmiu

q
i“1

be the set of queries that A has asked the oracle.
3. Eventually, pm˚, σ˚q Ð ASignskp¨qppkq.
4. A succeeds if Vrfypkpm

˚, σ˚q “ 1^m˚ R tmiu
q
i“1. In

this case, the output of the experiment is defined to be
1. Otherwise, the experiment outputs 0.

We refer to such an adversary as an euf-cma adversary.
The advantage of the adversary A in attacking the scheme Π
is defined as

Adveuf-cma
Π pA, nq “ PrrExpeuf-cma

A,Π p1nq “ 1s.

A signature scheme is secure if no efficient adversary can
succeed in the above game with non-negligible probability.

Definition 3: A signature scheme Π “ pGen,Sign,Vrfyq,
is called to be existentially unforgeable under a chosen-
message attack if for all efficient probabilistic, polynomial-
time adversaries A, there is a negligible function negl such
that

Adveuf-cma
Π pA, nq ď neglpnq.

Signature schemes which are existentially unforgeable under
a chosen-message attack are often called euf-cma secure

Below, we introduce a stronger notion of security for
signature schemes. In addition to a forgery made by a eu-cma
adversary, here the adversary is said to produce a forgery
even if it outputs a new and valid signature on a previously
signed message. This means that a forgery occurs whenever
the adversary outputs a valid pair pm˚, σ˚q R tpmi, σiquqi“1,
where σi is a signature obtained from Signskp¨q on input mi.

Expsuf-cma
A,Π p1nq :

1. Generate psk, pkq Ð Genp1nq.
2. The adversary A is given pk and access to an oracle

Signskp¨q, requesting signatures on as many messages
as it likes. Let tpmi, σiquqi“1 be the set of all pairs of
query/answer that A has asked and obtained from the
oracle.

3. Eventually, pm˚, σ˚q Ð ASignskp¨qppkq.
4. A succeeds if Vrfypkpm

˚, σ˚q “ 1 ^ pm˚, σ˚q R
tpmi, σiqu

q
i“1. In this case the output of the experiment

is defined to be 1. Otherwise, the experiment outputs 0.

An adversary like this is referred to as suf-cma adversary.
Moreover, its advantage in attacking the scheme Π is defined
as

Advsuf-cma
Π pA, nq “ PrrExpsuf-cma

A,Π p1nq “ 1s.

Definition 4: A signature scheme Π “ pGen,Sign,Vrfyq,
is called to be strongly unforgeable under a chosen-message
attack if for all efficient probabilistic, polynomial-time adver-
saries A there is a negligible function negl such that

Advsuf-cma
Π pA, nq ď neglpnq.

Signature schemes which are strongly unforgeable under a
chosen-message attack are also called suf-cma secure

D. Uniform distribution

In this subsection we formulate a formal definition of a
uniform distribution in a finite set. Even though this topic is
viewed as being trivial, it plays an important role herein.

If Ω is a finite and nonempty set, then the family of sets
over Ω, i.e. 2Ω is obviously a σ-field. Then, it is easily seen
that the map µ : 2Ω Ñ r0, 1s, given by the formula

µpAq “
#A

#Ω
,

is a probability measure.
Definition 5: The measure µ is called the uniform distribu-

tion in Ω.
Herein, we take either a finite group of prime order or a

finite prime field as Ω. The next simple lemma turns out to
be useful in explaining the details of picking random elements
while conducting security proofs.

Lemma 6: Let Ω “ Fp with p being a prime. Then, for every
A P 2Fp and fixed γ P Fp, we have the following equality

µpAq “ µpγ `Aq.

Proof. Obviously A` γ “ tα` γ | α P Au is an element
of the σ-field 2Fp (as one knows α ` γ must be viewed as
α ` γ pmod pq). Furthermore, it is easily seen that the map
ϕγpαq “ α` γ is a bijection inside Fp, therefore

µpAq “
#A

#Fp
“

#ϕγpAq

#Fp
“ µpϕγpAqq.

This finishes the proof. l
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III. TRANSFORMS IMPROVING SECURITY

A. A domain associated to a single transform

Let tΘξuξPN denote a family of sets, where a single Θξ

consists of all signatures schemes such that for every Π P Θξ,
the following properties are fulfilled.

(i) Π is euf-cma secure;
(ii) Π is not suf-cma secure.

(iii) An associated message space M “ tMnun is such that
t0, 1u|p| ĎMn, where |p| “ tlg pu` 1 is a bit-length of
p and p is taken from a set Ppnq, being combined of all
primes depending on value n for the security parameter.

(iv) Sign can be viewed as a determin-
istic function

´

pr1q
ξ
i“1, sk,m

¯

ÞÑ
´

ϕ1pr1, skq, . . . , ϕξprξ, skq, ϕξ`1ppr1q
ξ
i“1, sk,mq

¯

,

where ri P RΠ is a randomness, sk is such that
psk, ¨q Ð Genp1nq and m PMn. Moreover, a signature
itself is generated in the following manner:

1. for i “ 1 to ξ do
2. ri

χ
Ð RΠ and σi“ϕipri, skq

3. end for
4. σξ`1“ϕξ`1

´

priq
ξ
i“1, sk,m

¯

5. return σ “ pσ1, . . . , σξ, σξ`1q

(v) Let psk, pkq be fixed. Then, for given m P Mn and
pσiq

ξ
i“1, there exists at most one component σξ`1,

such that the pair pm, pσ1, . . . , σξ, σξ`1qq is valid, i.e
Vrfypk pm,σq “ 1, where σ “ pσ1, . . . , σξ, σξ`1q.

Note that the condition (iii) implies that for a suitable prime
p, each element of Fp has a unique representation in an
appropriate message space. Therefore, it is able to be signed
by the signature algorithm of Π.

B. Construction of a single transform

In this section, we define a family of transforms tTξuξPN
mapping Θξ to Ξξ, where the latter is a set of schemes with
a message space M̂ “ tM̂nu, where M̂n “

Śξ
i“1Mn,i.

Let ξ be fixed and n be a security parameter. Assume further
that GF is an efficient algorithm that on input 1n outputs
pG, p, g,Hq, where:
‚ G is a cyclic group of prime order p P Ppnq, where the

group operation in G can be performed efficiently.
‚ g is chosen uniformly at random from the set of all

generators of G.
‚ H “ tHk : t0, 1u˚ Ñ t0, 1u` | k P Ku is a keyed

family of collision resistant hash functions (1). In addition
to collision resistance, we need the output length of the
functions to be less than p, i.e. 2` ď p. This allows us to
equate values of the hash functions with elements of Fp.

Let Π “ pGen,Sign,Vrfyq be a signature scheme belonging
to Θξ. We construct the signature scheme TξpΠq “ Π˚ “
pGen˚,Sign˚,Vrfy˚q, whose message space is M̂, as follows:

Key generation: Algorithm Gen˚p1nq is defined as follows:

1Here the collision resistance is understood in the sense of Definition 8.

1. Compute params :“ pG, p, g,Hq Ð GF p1nq.
2. Choose g1 uniformly at random from the set of all

generators of G.
3. Pick out k $

Ð K, being a key for a function from H.
4. Run Genp1nq to obtain psk, pkq.
5. The secret key is sk˚ “ sk and the public key is pk˚ “
pparams, pk, g1, kq.

Signature generation: For m “ pm1, . . . ,mξq P M̂n,
algorithm Sign˚sk˚pmq is defined as follows:

1. Select u $
Ð F˚p .

2. For each i “ 1, . . . ξ, choose ri
χ
Ð RΠ and compute

σiÐϕipri, skq.
3. Compute h Ð Hkpm1}σ1} ¨ ¨ ¨ }mξ}σξq, where ”}”

denotes concatenation; h P t0, 1u`. Thus, according to
the condition 2l ď p, it is viewed as an element of Fp.

4. Compute m “ ghgu1 .
5. Compute σξ`1“ϕξ`1

´

priq
ξ
i“1, sk,m

¯

.
6. Output the signature σ “ pσ1, . . . , σξ, σξ`1, σξ`2q,

where σξ`2 “ u.

Signature verification: Algorithm Vrfy˚pk˚pm, σq is defined
as follows:

1. Parse pk˚ as pparams, pk, g1, kq and σ˚ as
pσ1, . . . , σξ, σξ`1, σξ`2q.

2. Compute h “ Hkpm1}σ1} ¨ ¨ ¨ }mξ}σξq.
3. Compute m “ ghg

σξ`2

1

4. Output 1 if and only if pσ1, . . . , σξ, σξ`1q is a valid
signature on m (with respect to pk); i.e., output 1 if and
only if Vrfypk pm, pσ1, . . . , σξ, σξ`1qq

?
“ 1. Otherwise,

it outputs 0.

C. Security

As we base our proof on the hardness of solving the discrete
logarithm problem (DLP) in finite groups, we briefly recall this
notion, fitting it into the considered case.

Definition 7: The DLP is hard relative to GF , if for all PPT
adversaries A and for all polynomials p “ ppnq (P Ppnq),
there exists a negligible function negl, such that

Pr

«

pG, p, g,Hq Ð GF p1nq; g2
$
Ð G;

xÐ Ap1k,G, p, g,H, g2q
| gx “ g2

ff

ď neglpnq.

Analogously, we formulate the strict definition of collision
resistant family of hash functions.

Definition 8: The collision resistance property is satisfied
relative to GF , if for all PPT adversaries A and for all
polynomials p “ ppnq (P Ppnq), the probability

Pr

»

–

pG, p, g,Hq Ð GF p1nq; k
$
Ð K;

px1, x2q Ð Ap1k,G, p, g,H, kq,
x1 ‰ x2

| Hkpx1q “ Hkpx2q

fi

fl

is negligible.
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Now, we are ready to formulate the main result of this
section.

Theorem 9: If both the discrete logarithm problem is hard
and the collision resistance property is satisfied relative to GF ,
then for every signature scheme Π P Θξ, a signature scheme
Π˚ “ TξpΠq is suf-cma secure.

Proof. Turning to the formal proof, let A˚ be a PPT
adversary attacking Π˚ and, as in Section II-C, denote by
pm‹, σ‹q Ð Expsuf-cma

A˚,Π˚p1nq the experiment

psk˚, pk˚q Ð Gen˚p1nq; pm‹, σ‹q Ð pA˚qSign˚

sk˚ p¨qppk˚q

Since A˚ runs in polynomial time, a map q “ qpmq describ-
ing the maximum number of queries made by A˚ to its signing
oracle on security parameter n, is well-defined polynomial.
Therefore, we can assume without loss of generality that A˚
always makes exactly this number of queries. In a given
execution of Expeuf-cma

A˚,Π˚p1nq, let mi “ pmi
1, . . . ,m

i
ξq denote

the ith message submitted by A˚ to its signing oracle, and
let σi “ pσi1, . . . , σ

i
ξ, σ

i
ξ`1, σ

i
ξ`2q denotes the ith signature

obtained in return. Denote by m‹ “ pm‹
1, . . . ,m

‹
ξq and σ‹ “

pσ‹1 , . . . , σ
‹
ξ , σ

‹
ξ`1, σ

‹
ξ`2q, a pair message-signature output by

A˚. Further, let mi and m‹ denote messages computed in
step 4 of signature generation, for mi and m‹ respectively.
Similarly, let hi and h‹ denote, hashes computed in step 3 of
signature generation, respectively, for mi and m‹.

Let ForgeA˚ be the event that Vrfy˚pk˚pm‹, σ‹q “ 1 and
pm‹, σ‹q R tpmi, σiquqi“1 Then the advantage of the adversary
can be defined as follow:

Adveuf-cma
Π˚ pA˚, nq “

Prrpm‹, σ‹q Ð Expeuf-cma
A˚,Π˚p1nq | Forges.

Note that the above is equivalent to the formulation of the
advantage from Section II-C. Thus according to Definition 4,
it is sufficient to show that Adveuf-cma

Π˚ pA˚, nq is negligible.

We split Forge into the three following events:

‚ Let Forge-m be the event that none of mi equals m‹, i.e.
mi ‰ m˚, for all i P rqs, and define

SuccForge-mΠ˚,A˚ pnq “

Prrpm‹, σ‹q Ð Expeuf-cma
A˚,Π˚p1nq | ForgeX Forge-ms.

‚ Let Forge-coll be the event that m‹ “ mi and h‹ “ hi

for some i P rqs, and define

SuccForge-collΠ˚,A˚ pnq “

Prrpm‹, σ‹q Ð Expeuf-cma
A˚,Π˚p1nq | ForgeX Forge-colls.

‚ Similarly, let Forge-dlp denote the event complementary
to Forge-coll, which means that m‹ “ mi and h‹ ‰ hi

for some i P rqs, and define

SuccForge-dlpΠ˚,A˚ pnq “

Prrpm‹, σ‹q Ð Expeuf-cma
A˚,Π˚p1nq | ForgeX Forge-dlps.

It is easily seen that the events Forge-m, Forge-coll,
Forge-dlp are pairwise disjoint, and Forge is their union.
Therefore, we have

Adveuf-cma
Π˚ pA˚, nq “

SuccForge-mΠ˚,A˚ pnq ` SuccForge-collΠ˚,A˚ pnq ` SuccForge-dlpΠ˚,A˚ pnq.
(1)

Claim 1. SuccForge-mΠ˚,A˚ pnq is negligible.

Indeed, we construct a PPT adversary Am using A˚ as
a subroutine, which launches a strong existential chosen-
message attack on the scheme Π, and has success probability
exactly SuccForge-mΠ˚,A˚ pnq.

The adversary Am starts a game according to
Expeuf-cma

A,Π p1nq. At the beginning, the challenger runs
Genp1nq to get a pair of keys psk, pkq and sends pk to
A, which can interact with the signing oracle Signsk,
asking adaptively q queries. The algorithm Am conducts the
following steps:

Algorithm Am :
The algorithm is given the pair of keys psk, pkq.

1. Run GF p1nq to generate parameters pG, p, g,Hq.
2. Pick out a $

Ð F˚p and compute g1“g
a.

3. Choose k $
Ð K.

4. Create a public key pk˚ “ pG, p, g,H, pk, g1, kq of Π˚,
which is given to A˚.

5. When A˚ requests a signature on the ith message mi “

pmi
1, . . . ,m

i
ξq, do:

5.1. Pick γ Ð F˚p and compute mi “ gγ .
5.2. Send mi to the signing oracle Signsk and receive in

return a signature σi “ pσi1, . . . , σ
i
ξ, σ

i
ξ`1q.

5.3. Compute hi Ð Hkpmi
1}σ

i
1} ¨ ¨ ¨ }mi

ξ}σ
i
ξq.

5.4. In the body Fp, compute ui “ pγ ´ hiq ¨ a´1 .
5.5. Return the signature σi “ pσi1, . . . , σ

i
ξ, σ

i
ξ`1, u

iq to
A˚

6. When the algorithm A˚ outputs pm‹, σ‹q, parse σ‹ “
pσ‹1 , . . . , σ

‹
ξ , σ

‹
ξ`1, σ

‹
ξ`2q.

7. Compute h‹ “ Hkpm‹
1}σ

‹
1} ¨ ¨ ¨ }m‹

ξ}σ
‹
ξ q.

8. Compute m‹ “ gh
‹

g
σ‹
ξ`2

1 .
9. Output pm‹, σ‹ “ pσ‹1 , . . . , σ

‹
ξ , σ

‹
ξ`1qq

Let A denote the event where Am is able to make a forgery.
Observe first that if Forge occurs, then pm‹, σ‹q, outputted
by A˚ in step 6, does not belong to the set tpmi, σiquqi“1,
and the pair pm‹, σ‹q, returned by Am in step 9, is positively
verified by Vrfy˚pk. Similarly, if in addition to that, the event
Forge-m occurs, we are assured that m‹ is not an element of
tmiu

q
i“1. This implies that A occurs and that, in particular,

ForgeX Forge-m can be viewed as a subset of A. Therefore

SuccForge-mΠ˚,A˚ pnq ď PrrAs ď neglpnq,

according to the assumption that Π is euf-cma secure.

Claim 2. SuccForge-collΠ˚,A˚ pnq is negligible.
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To prove this claim, we construct a PPT algorithm Acoll,
using A˚ as a subroutine and attacking collision resistance of
H.

The game starts and the challenger runs GF p1nq to generate
parameters pG, p, g,Hq, and next it chooses k P K uniformly
at random.

Algorithm Acoll :
The algorithm is given the parameters pG, p, g,Hq and the
hash key k P K.

1. Run Gen˚p1nq to generate keys psk˚, pk˚q.
2. The public key is sent to A˚, which caries out a strong

adaptive chosen-message attack on Π˚, and eventually
outputs pm‹, σ‹ “ pσ‹1 , . . . , σ

‹
ξ , σ

‹
ξ`1, σ

‹
ξ`2q to Acoll.

3. IfA˚ outputs a valid forgery pm‹, σ‹q, then do:
3.1 If there is i P rqs such that m‹ “

mi and h‹ “ hi, then output a pair
pm‹

1}σ
‹
1} ¨ ¨ ¨ }m‹

ξ}σ
‹
ξ , mi

1}σ
i
1} ¨ ¨ ¨ }mi

ξ}σ
i
ξq.

3.2 Otherwise, abort.
4. Otherwise, abort.

Denote by B the event where Acoll finds a collision. We see
that if Forge occurs, then the condition from step 3 is satisfied
and if, in addition to that, the event Forge-coll also occurs
then, according to step 3.2, Acoll outputs two points, namely
x1 “ m‹

1}σ
‹
1} ¨ ¨ ¨ }m‹

ξ}σ
‹
ξ and x2 “ mi

1}σ
i
1} ¨ ¨ ¨ }mi

ξ}σ
i
ξq.

Additionally, note that the event Forge-coll implies m‹ “ mi

and h‹ “ hi. The former means that Hkpx1q “ Hkpx2q.
Hence, if x1 ‰ x2, then we would have a collision, and B
would occur as well. Assuming this is the case, the union
ForgeX Forge-coll can be viewed as a subset of B, we obtain

SuccForge-collΠ˚,A˚ pnq ď PrrBs.

Due to the assumption of collision resistance property of
H, the above probability is negligible. This implies that to
complete the proof of Claim 2, it is sufficient to argue that
x1 and x2 are different. Indeed, suppose to the contrary that
x1 “ x2. This leads us to the immediate conclusion

m‹
j “mi

j and σ‹j “ σij , (2)

for all j P rξs. The second equality of (2) together with the
fact that m‹ “ mi, being the consequence of the occurrence
of the event Forge-coll, and with the assumed condition (v)
for the elements of Θξ, implies that σ‹ξ`1 “ σiξ`1. Further,
the condition m‹ “ mi can be written as gh

‹

gu
‹

1 “ gh
i

gu
i

1 ;
using h‹ “ hi, following from the occurrence of the event
Forge-coll, we get gh

‹

gu
‹

1 “ gh
‹

gu
i

1 . By making simple com-
putations, we eventually obtain u‹ “ ui in Fp. This, in turn,
means that σ‹ξ`2 “ σiξ`2. Wrapping up these considerations,
we have proven that σ‹ “ σi, which in conjunction with the
first equality of (2), implies that m‹ “ mi, and leads us to
the contradiction with the condition pm‹, σ‹q R tpmi, σiquqi“1,
being a consequence of the assumed event Forge.

Claim 3. SuccForge-dlpΠ˚,A˚ pnq is negligible.

In order to prove this claim, we construct a PPT algorithm
Adlp, using A˚ as a subroutine and attacking the discrete
logarithm problem in a group G, generated by GF p1nq.

The game is launched by the challenger, which runs
Genp1nq to obtain sk˚ and pk˚, keeping in mind that the
former consists of params “ pG, p, g,Hq. In addition to this,
the challenger generates g1 P G uniformly at random.

Algorithm Adlp :
The algorithm is given the keys sk˚, pk˚ and g1.

1. The public key is sent to A˚, which carries on a strong
adaptive chosen-message attack; here, Adlp serves as its
oracle. A˚ eventually outputs pm‹, σ‹q.

2. If pm‹, σ‹q is a valid forgery, then do:
2.1 If there is i P rqs such that m‹ “ mi and h‹ ‰

hi, then output ph‹ ´ hiq ¨ pui ´ u‹q´1, where the
computations are made in Fp.

2.2 Otherwise, abort.
3. Otherwise, abort.

Let C denote the event where Adlp solves the underlying
discrete logarithm problem. We see that if both Forge and
Forge-dlp occur, then the need from steps 2 and 2.1 are
fulfilled, and consequently, Adlp outputs an element of Fp,
being of the form ph‹´hiq ¨ pui ´ u‹q´1. We are intended to
justify that it is actually logg g1. Let g1 “ gx and note that, due
to Forge-dlp, we have m‹ “ mi and ,thus, gh

‹

gu
‹

1 “ gh
i

gu
i

1 ,
this in turn, can be written as gh

‹

pgxqu
‹

“ gh
i

pgxqu
i

. The last
equation in G is equivalent to the following equation in Fp

x ¨ pui ´ u‹q “ h‹ ´ hi. (3)

Observe that if ui “ u‹, then gh
‹

gu
‹

1 “ gh
i

gu
‹

1 , and
consequently gh

‹
´hi “ 1. This leads us to the condition

h‹ “ hi, which contradicts the assumption that Forge-dlp
occurs. Therefore, ui ‰ u‹ and the equation (3) has a solution
x “ ph‹ ´ hiq ¨ pui ´ u‹q´1, obviously x “ logg g1. Putting
things together, we conclude that if Forge and Forge-dlp occur
then C occurs as well, and hence, we get

SuccForge-dlpΠ˚,A˚ pnq ď PrrCs ď neglpnq,

according to the assumption.

Now we use (1) in conjunction with Claims 1-3 to conclude
that Adveuf-cma

Π˚ pA˚, nq is negligible. This finishes the proof.
l

IV. MULTIFACTORIAL AND euf-cma SECURE DIGITAL
SIGNATURE SCHEME

In this section we present a construction of a signature
scheme which is based on pairings. We prove that the scheme
is euf-cma secure, whilst simultaneously not being suf-cma
secure.

As usual, let M “ tMnu denote the message space asso-
ciated with the scheme, and let us assume that Mn “ t0, 1u

d,
where d “ dpnq. Therefore, for the fixed value n of the
security parameter, the messages which are being signed are
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of the length d. Such messages are split into w-bits blocks,
where w depends on a fixed integer parameter ξ ě 1 and
in a sense, each block is signed separately to finally mix
them together, and the result combine with the appropriate
secure key. A number of bits in a single block is computed as
w “ rd{ξs, if d ı 0 pmod ξq, then a message is padded with
prd{ξsξ´dq zeros at the least significant bits positions, before
splitting it up. Not wanting to multiply notations, a padded
message is dented by the same symbol as the original one. To
be more precise, if m P Mn, then the symbol m describes a
padded message and is addition m “ m1}m2} ¨ ¨ ¨ }mξ, where
mi “ ppmiq1, pmiq2, . . . pmiqwq2 and pmiqj P t0, 1u.

A. Construction of the signature scheme

Let us fix an integer ξ ě 1 and let n be a security parameter.
We stress that ξ is understood as indicating the scheme, and
does not depend on n. Assume further that G is an efficient
algorithm that on inputs 1n and ξ outputs pw,G,GT , p, g, êq,
where:
‚ G, GT are two cyclic groups of prime order p P Ppnq,

where group operations in G, GT can be performed
efficiently.

‚ g P G is chosen uniformly at random from the set of all
generators of G.

‚ ê : GˆGÑ GT is an efficiently computable pairing.
‚ w “ rdξ s.

Key generation: Algorithm Genp1nq is defined as follows:
1. Compute params :“ pw,G,GT , p, g, êq Ð G p1n, ξq.
2. Choose g2 uniformly at random from the set of all

generators of G.
3. Choose a $

Ð F˚p and compute g1 “ ga.

4. Pick out pu0,iq
ξ
i“1, u1, . . . , uw

$
Ð G.

5. The secret key is sk “ ga2 and the public key is pk “
pparams, g1, g2, pu0,iq

ξ
i“1, u1, . . . , uwq.

Signature generation: For m PMn, the algorithm Signskpmq
is defined as follows:

1. The message m is padded to m “ m1}m2} ¨ ¨ ¨ }mξ,
where mi “ ppmiq1, pmiq2, . . . pmiqwq2, as we have
described above.

2. For each i P rξs, choose ri
$
Ð Fp.

3. Output the signature σ “ pσ1, . . . , σξ, σξ`1q, where

σi “ gri for each i P rξs,

and

σξ`1 “ sk
ξ
ź

i“1

Uipmiq
ri “ ga2

ξ
ź

i“1

˜

u0,i

w
ź

k“1

u
pmiqk
k

¸ri

.

We set Uipmiq “ u0,i

św
k“1 u

pmiqk
k , for i P rξs.

Signature verification: Algorithm Vrfypkpm,σq is defined as
follows:

1. Parse pk as pparams, g1, g2, pu0,iq
ξ
i“1, u1, . . . , uwq and

σ as pσ1, . . . , σξ, σξ`1q.

2. Pad and split m into ξ blocks of w-bits each, as
described above, i.e. m “ m1}m2} ¨ ¨ ¨ }mξ, where
mi “ ppmiq1, pmiq2, . . . pmiqwq2.

3. Output 1 if and only if the following equality holds

êpg, σξ`1q
?
“ êpg1, g2q

ξ
ź

i“1

êpσi, Uipmiqq. (4)

Otherwise, output 0.

Firstly, we verify correctness. To do this, let us take a
honestly generated signature σ on a message m, we get

êpg, σξ`1q “ êpg, ga2

ξ
ź

i“1

Uipmiq
riq

“ êpg, ga2 q
ξ
ź

i“1

êpg, Uipmiq
riq

“ êpga, g2q

ξ
ź

i“1

êpgri , Uipmiqq

“ êpg1, g2q

ξ
ź

i“1

êpσi, Uipmiqq.

B. Security of the signature scheme

Before we start justifying that the presented signature
scheme is euf-cma, we need to formulate the same formal
definitions. Although the first one is analogous to Definition
7, there is a need to adapt it to the new theoretical conditions.

Definition 10: The DLP is hard relative to G , if for all PPT
adversaries A and for all polynomials p “ ppnq (P Ppnq), the
probability

Pr

«

pw,G,GT , p, g, êq Ð G p1n, ξq; g2
$
Ð G;

xÐ Ap1n, w, ξ,G,GT , p, g, êq
| gx “ g2

ff

.

is negligible.

Note that this definition implies hardness of the discrete
logarithm problem in GT . If not, then it is easy to use ê and
find desired exponent, which contradicts the definition.

Definition 11: The computational Diffie-Hellman (CDH)
problem is hard relative to G if DLP is hard relative to G and
if for all PPT adversaries A and for all polynomials p “ ppnq
(P Ppnq), the following is negligible

Pr

«

paramsÐ G p1n, ξq;

a, b
$
Ð Fp

| Ap1n, params, ga, gbq “ gab

ff

.

Theorem 12: If the CDH problem is hard relative to G ,
then the signature scheme is euf-cma secure.

Proof. Let A be an adversary which attacks the signature
scheme. Without loss of generality, we can assume that A
makes q queries to the signing oracle and it succeeds with
probability ε. Having this, we construct an adversary Acdh

which solves the CDH problem with success probability Opεq.
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Algorithm Acdh :
The algorithm is given params “ pw,G,GT , p, g, êq and
g1, g2.

1. Set ` “ 2q and assume w` ă p.
2. For each i P rξs, pick up x0,i

$
Ð t´w`, . . . , 0u and

y0,i
$
Ð Fp. Also choose x1, . . . , xw

$
Ð t0, . . . , `u and

y1, . . . , yw
$
Ð Fp.

3. For i P rξs, set u0,i :“ g
x0,i

2 gy0,i , similarly, for i P rws,
set ui :“ gxi2 g

yi .
4. For m “ m1}m2} ¨ ¨ ¨ }mξ, define the functions

Xipmiq “ x0,i `

w
ÿ

k“1

pmiqkxk

Yipmiq “ y0,i `

w
ÿ

k“1

pmiqkyk

4. Send the public key pparams, g1, g2, pu0,iq
ξ
i“1,

u1, . . . , uwq to A. When A requests a signature
on the message m “ m1}m2} ¨ ¨ ¨ }mξ, do:

4.1. If Xi :“ Xipmiq “ 0 in Fp, for some i P rξs then
abort.

4.2. Otherwise, set Yi :“ Yipmiq. For each i P rξs,
choose ri

$
Ð Fp and return to Acdh, the desired

signature σ having the form

˜

´

grig
´ξ´1X´1

i
1

¯ξ

i“1
,
ξ
ź

i“1

gXiri2 gYirig
´ξ´1X´1

i Yi
1

¸

.

5. Eventually, Acdh outputs a pair pm‹, σq, σ “

pσ1, . . . , σξ, σξ`1q. If it is a valid forgery, do

5.1. If Xipm
‹
i q ‰ 0 in Fp, for some i P rξs, then abort.

5.2. Otherwise, output σξ`1{
śξ
i“1 σ

Yipm
‹
i q

i

Below, we argue the following three statements:

1) Due to Lemma 6, the public key sent to A has the proper
distribution.

2) As long as Acdh does not abort, the signatures given
to A are correctly distributed. Indeed, let a, b P Fp
be such that ga “ g1 and gb “ g2. As we saw
in Section IV-A, the real signature is computed by
signing algorithm as

´

gτ1 , . . . , gτξ , ga2
śξ
i“1 Uipmiq

τi
¯

for τi selected uniformly at random from Fp. Setting
τi “ ri ´ ξ´1aX´1 (keeping in mind that Acdh signs
a message iff X ‰ 0 in Fp), we see by lemma 6 that
ri and τi are equally likely. Furthermore, observe that
Uipmiq “ g

Xipmiq
2 gYipmiq, we obtain

ga2

ξ
ź

i“1

Uipmiq
τi “ ga2

ξ
ź

i“1

Uipmiq
ri´ξ

´1aX´1
i

“ ga2

ξ
ź

i“1

pgXi2 gYiqri´ξ
´1aX´1

i

“ pgξ
´1

2 qξa
ξ
ź

i“1

gXiri2 g´ξ
´1a

2 gYirig´ξ
´1aX´1

i Yi

“

ξ
ź

i“1

pgξ
´1

2 qagXiri2 ppgξ
´1

2 qaq´1gYirig´ξ
´1aX´1

i Yi

“

ξ
ź

i“1

gXiri2 gYirig
´ξ´1X´1

i Yi
1 ,

and

gτi “ gri´ξ
´1aX´1

i “ grig´ξ
´1aX´1

i “ grig
´ξ´1X´1

i
1 .

Thus, putting things together, signatures generated by
Acdh have the correct distribution.

3) As long as both Acdh and A do not abort, the output of
Acdh is a correct solution to the given CDH instance.
Indeed, let σ “ pσ1, . . . , σξ, σξ`1q be a valid signature
on m‹, which has been outputted by A, satisfying
Xipm

‹
i q “ 0 in Fp for all i P rξs. By (4), we have

êpg, σξ`1q
śξ
i“1 êpσi, Uipmiqq

“ êpg1, g2q “ êpg, gabq,

Hence,

êpg, gabq “
êpg, σξ`1q

śξ
i“1 ê

´

σi, u0,i ¨ u
pm‹

i q1
1 ¨ ¨ ¨u

pm‹
i qw

w

¯

“
êpg, σξ`1q

śξ
i“1 ê

`

σi, g
x0,i

2 gy0,i ¨ pgx1
2 gy1qpm

‹
i q1 ¨ ¨ ¨ pgxw2 gywqpm

‹
i qw

˘

“
êpg, σξ`1q

śξ
i“1 ê

´

σi, g
Xipm‹

i q

2 gYipm
‹
i q

¯ “
êpg, σξ`1q

śξ
i“1 ê

`

σi, g0
2g
Yipm‹

i q
˘

“
êpg, σξ`1q

śξ
i“1 ê

´

g, σ
Yipm‹

i q

i

¯ “
êpg, σξ`1q

ê
´

g,
śξ
i“1 σ

Yipm‹
i q

i

¯ .

This, together with basic properties of pairing, implies that
σξ`1{

śξ
i“1 σ

Yipm
‹
i q

i “ gab, what solves CDH.

Studying carefully the algorithm Acdh, we immediately find
out that it solves the CDH problem, if and only if it does
not abort, or in other words, if the conditions 4.2 and 5.2
are satisfied. Of course, we might suspect that they never
are or that the probability of such an event is negligible.
Obviously, in each of these cases our above considerations
would be worthless. This means that to complete the proof
we have to analyze how likely it is that Acdh does not abort
and successfully completes the simulation.

As justified earlier, Acdh perfectly simulates the real sig-
nature oracle to A, which, in particular means that tx0,i, xku
chosen by Acdh are independent of pk given to A. This means
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that if Acdh adaptively requests making signatures on messages
m1, . . .mq , then it outputs a forgery on m‹ R tm1, . . . ,mqu

with probability ε.
We attempt to estimate the desire probability in more gen-

eral matter. Namely, let us fix arbitrary messages m1, . . . ,mq

and m‹ R tm1, . . .mqu, and let tx0,i, xku be chosen from the
same distribution used by Acdh. Of course, we can assume
without loss of the generality that mj

i and m‹i has been padded.
Therefore, we already know that mj “ mj

1}m
j
2} ¨ ¨ ¨ }m

j
ξ,

where j P rqs Y t‹u. Let Eji and E‹i denote the events such
that Xipm

j
i q ‰ 0 and Xipm

‹
i q “ 0 respectively. Putting things

together, we are intended to find the lower bound for the
probability of the following event:

E :“
q
č

j“1

ξ
č

i“1

Eji X
ξ
č

i“1

E‹i “
ξ
č

i“1

˜

E‹i X
q
č

j“1

Eji

¸

. (5)

The probability space Ω is a subfamily of the power set
P pt0, . . . , `uq, consisting of all these sets whose elements sum
to an element of t0, . . . w`u. Due to the fact that we do not
care for the order of the elements, there is a bijection between
Ω and t0, . . . w`u. Keeping this in minds we note that for each
block mi of arbitrary (padded) message m and x1, . . . xw (we
take into account only coefficients standing by bits 1), there
is exactly one choice of x0,i such that Xipmiq “ 0. As x0,i

are chosen independently, the events Fi :“ E‹i X
Şq
j“1E

j
i are

independent as well. Therefore, by (5),

PrrEs “
ξ
ź

i“1

PrrFis. (6)

For the complement of Fi, we have the inclusion

Fi Ă E
‹

i Y

q
ď

j“1

´

E‹i X E
j

i

¯

.

Hence,

PrrFis ď PrrE
‹

i s `

q
ÿ

j“1

PrrE
j

i X E
‹
i s

ď PrrE
‹

i s `

q
ÿ

j“1

PrrE
j

i |E
‹
i sPrrE‹i s (7)

It remains to estimate the above probability. To do this, we
consider two cases:

(i) PrrE
‹

i s. We have argued that for x1, . . . xw, there is
exactly one choice of x0,i, which satisfies Xipm

‹
i q “ 0.

This observation leads us to the immediate conclusion

PrrE
‹

i s “ PrrXipm
‹
i q ‰ 0s “

w`

w`` 1
(8)

(ii) PrrE
j

i |E
‹
i sPrrE‹i s. As by assumption mj ‰ m‹, they

differ in at least one bit, which belongs to the ith block
with probability 1{ξ. In this case, there is k P rws such

that pmj
i ql “ pm

‹
i ql, and we can assume without loss of

generality that pmj
i ql “ 0 and pm‹i ql “ 1. This yields

x0,i “ ´

w
ÿ

k“1
k‰l

xk ¨ pm
j
i qk,

x0,i ` xl “ ´
w
ÿ

k“1
k‰l

xk ¨ pm
‹
i qk.

As equality Xipm
‹
i q “ 0 indicates a unique element

of Ω, the same element corresponds to the condition
Xipm

j
i q “ 0, and this implies xl “ 0. Therefore, we

obtain PrrE
j

i |E
‹
i s ď 1{ξp` ` 1q. Arguing as in (i), we

have PrrE‹i s “ 1{w`` 1. Finally,

PrrE
j

i |E
‹
i sPrrE‹i s ď

1

ξp`` 1qpw`` 1q

By (i), (ii) and (7),

PrrFis ď
w`

w`` 1
`

q

ξp`` 1qpw`` 1q

Having computed complementary probability of Fi, we im-
mediately get

PrrFis ě
2qξ ` ξ ´ q

p2wq ` 1qp2qξ ` ξq
ě

qξ ` ξ

p2wq ` 1qp2qξ ` ξq

ě
qξ ` ξ

p2wq ` 1qp2qξ ` ξq
ě

1

4wq ` 2

Combining this with (6), we have

PrrEs ě
1

p4wq ` 2q
ξ

To sum up, we have shown that Acdh succeeds with
probability at least ε ¨ p4wq ` 2q

´ξ. On the other hand, CDH
is hard relative to G and ξ does not depend on n, hence
ε “ εpnq must be negligible. This finishes the proof. l
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