
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, VOL. 67, NO. 3, PP. 331-336 

Manuscript received December 22, 2020; revised July, 2021                               DOI: 10.24425/ijet.2021.135985 

 

 

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0, 

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited. 
 

  

Abstract—Advancement in medical technology creates some 

issues related to data transmission as well as storage. In real-time 

processing, it is too tedious to limit the flow of data as it may reduce 

the meaningful information too. So, an efficient technique is 

required to compress the data. This problem arises in Magnetic 

Resonance Imaging (MRI), Electrocardiogram (ECG), 

Electroencephalogram (EEG), and other medical signal processing 

domains. In this paper, we demonstrate Block Sparse Bayesian 

Learning (BSBL) based compressive sensing technique on an 

Electroencephalogram (EEG) signal. The efficiency of the 

algorithm is described using the Mean Square Error (MSE) and 

Structural Similarity Index Measure (SSIM) value. Apart from 

this analysis we also use different combinations of sensing matrices 

too, to demonstrate the effect of sensing matrices on MSE and 

SSIM value. And here we got that the exponential and chi-square 

random matrices as a sensing matrix are showing a significant 

change in the value of MSE and SSIM. So, in real-time body sensor 

networks, this scheme will contribute a significant reduction in 

power requirement due to its data compression ability as well as it 

will reduce the cost and the size of the device used for real-time 

monitoring. 
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I. INTRODUCTION 

N today’s world, it is so much typical to be healthy as the 

stress level is increasing day by day so as a resultant the 

human body is showing various types of adverse symptoms 

related to the degradation of body health. Due to the lack of time 

every person is not able to go for a routine check-up for the 

body. So, what is the solution in this domain? advancement in 

technology and connectivity provides many solutions to this 

problem. Real-time body vital parameters monitoring with the 

help of a body sensor network can provide a solution for this. 

This type of setup has opted for various hospitals in many 

countries, they can track the patients in the real-time domain. 

But a question arises here is it economical for a patient so he or 

she can opt for this, or it is easy to carry such type of equipment 

the whole day with you.  

Some constraints are also there when we are designing this 

type of system. Three major constraints are: 

a) Power Consumption (Energy Efficient) Structure. 
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b) High-level Compression of the real-time physiological 

signals. 

c) Hardware Cost. 

We have to follow all these constraints then only we can create 

an effective wireless body sensor network that can significantly 

measure the body vital parameters and then transmit it to the 

patient care center or hospital. Power consumption is directly 

associated with battery life, so our prime objective is to reduce 

energy consumption. This will reduce the size of the battery as 

well as increases the duration of the operation. Another 

constraint is the high-level compression of the EEG signals, but 

the compression does not affect the important information in the 

signal. That’s why a specific approach should be kept into 

consideration. When we consider the first two constraints it will 

automatically reduce the cost of the device which is our third 

constraint. 

So, the effectiveness of such type of systems only maintained 

if somehow we can reduce the data which we are analyzing 

through a body. But if we are reducing the data set then the real-

time tracking has no use, so we are shifting toward the 

compression of data. Yes, data compression is a key technique 

that can reduce the size of data for storage and transmission 

without neglecting the important parameters of the data. 

Traditional data compression has lots of issues like the Nyquist 

sampling rate, which can enhance the power consumption as 

well as the unnecessary measurement of data which have no use. 

So our interest is shifting toward the Compressive Sensing 

theory. Although the Electroencephalogram data is not sparse in 

any domain or transform, Block Sparse Bayesian Learning 

(BSBL) sort out this problem related to EEG- Compressive 

Sensing. In the next section, we are moving toward compressive 

sensing and how to use it for Electroencephalogram. Section III 

is based on our experiments on the EEG signals, Section 4 is 

based on our findings and discussion. Section 5 is the conclusion 

of this work. 

II. COMPRESSIVE SENSING FRAMEWORK FOR EEG SIGNAL 

In this paper, the author discusses the multichannel EEG 

signal based compressive sensing approach. To improve the 

performance of the compressive sensing approach for EEG 

signal Fourier transform and the non-convex optimization-

based algorithm is used. Normalized Mean square error is 

calculated for the recovered EEG signal [1]. Another work in 
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this domain is proposed by Muhammad Tayyib et. al., in their 

work reconstruction is done by Double Temporal sparsity-based 

reconstruction (DTSR) algorithm [2]. As a result, they conclude 

the results based on simulation and comparison with the work 

done by other researchers in the same domain. Normalized 

mean square error (NMSE) & signal to noise distortion ratio 

(SNDR) values are also mentioned by the author in their work. 

Seda Senay and Luis F. Chaparro et. al. in their paper proposed 

a method in which compressive sensing is used with random 

filtering by using the Slepian basis for EEG signals. As per the 

result shown by the authors’ reconstruction using compressive 

sensing with a random filter method with sparse signals is less 

noisy than smooth signals [3]. Dharmendra Gurve et. al. in their 

work describes the reconstruction algorithms, various Basis, and 

sensing matrices that can be used for the EEG signals. The 

suggestion provided by the author shows that the selection of a 

sparse basis will affect the compressive sensing strategy for 

EEG signals [4]. In another paper by Nadia Mammone et. al. 

considered patients affected by Alzheimer’s disease, mild 

cognitive impairment, and healthy control, then the high-density 

EEG signals for these patients are processed using the 

compressive sensing approach [5].  

In our work, we are describing a model that how we can use 

the EEG compressive sensing approach nowadays to deploy it 

with real-time monitoring of a patient by using the Internet of 

Things (IoT) and other communication strategies. The data 

which we gather by applying the EEG process on a subject 

further processed using compressive sensing, first we compress 

it then recover it using few samples. Then this data which is 

recovered using a few samples can be transmitted or stored 

using various connectivity protocols according to the 

requirement as shown in Figure (1). But in the majority of cases, 

we use smartphones as an intermediatory model for primary 

storage or transmission towards the IoT cloud or Health care 

units. 

 

 
 

Figure 1. Compressive Sensing Framework with remote Health Care Unit & 

Patient for EEG Signals 

 

When we talked about the data which is complex and too 

large then there is the only single option of computation which 

is known as compression. Compression is the way that provides 

a dense representation of the signal with very low distortion & 

fine target level. Transform coding is the theory which is widely 

used for compression. The main aim of transform coding is to 

search the basis which provides a sparse representation of a 

signal [6, 7, 8]. Sparse representation is the theory by which a 

signal which has length n can be showed easily by k coefficients 

& k<<n non zero components. This is well known as 

compressive sensing. The signals which are compressible & 

sparse can easily be represented with high fidelity & high 

preserving values with very few numbers of coefficients.  

Compression & decompression is a key idea of transform 

coding, but compressive sensing is a new groundwork which is 

used for data acquisition & designing of a sensor. Compressive 

sensing is the way that is used to reduce the data which is 

potentially very large for sampling & has a high cost of storage, 

but the data have a sparse representation. As per the statement 

given by Nyquist- Shannon, a minimum number of samples are 

required for the proper reconstruction of the signal [9]. We 

represent the signal with the sparse coefficients to reduce the 

number of measurements to an exceedingly great extent that 

needs to be stored. As per the results we got after the proper 

reconstruction, we can easily say that the reconstruction which 

is done using the sparse signals is much better than the classical 

results. So much precisely the CS is the process in which the 

traditional way of compression is not followed in which first we 

have to do sampling at a very high rate then the compression is 

done for the sampled data rather than we can directly observe 

data in compressed form at very below to the Nyquist Rate. This 

valuable theory is developed by famous researchers Candes, 

Tao, Romberg, and Donoho. The theory which is given by them 

shows that the data which is finite with the additional property 

of sparsity can easily be reconstructed by using a small set of 

linear and non-adaptive measurements [10, 11, 12-14, 15, 16]. 

The challenge nowadays is to practically implement this type of 

theory and then get the productive result from this CS theory. 

III. SPARSITY BASED MODELLING OF SIGNAL 

U is a real, finite length, discrete-time signal. To represent the 

input signal in the form of a vector in RN vector space as the 

Nx1 column vectors like U [0], U[1],.......U[N]. This vector 

property used by Basis vector in which any high dimension 

signal in vector space RN can be represented in terms of basis 

vectors is the columns of complete basis matrix of order NxN 

[10].  

 
1

N

j j

j

U S
=

=     Or  U S=   (1) 

Here S j, j=1, 2…. N are the column component of S matrix of 

order Nx1. S j can be computed by  

 , T

jS U U=  =   (2) 

 Signal U is a representation in time domain or space 

domain while the signal is presented in the form of basis matrix 

ψ domain by S for sparse representation of signal A. For the 

proper representation of the sparse signal, it is required that it 

hold some (K) large magnitude components and discarded (N-

K) small magnitude coefficients. Most of the energy and 

important information of the signal is condensed in the large 

magnitude coefficients (which represents K-sparse) which are 

used to recover the original structure of the signal. These K-

sparse signals are encoded for the transmission. 



MODIFIED BLOCK SPARSE BAYESIAN LEARNING-BASED COMPRESSIVE SENSING SCHEME FOR EEG SIGNALS 333 

 

In the beginning, the BSBL model only used for the 

reconstruction of a signal consists of a block arrangement. 

According to this theory, the signal splits into various non-

overlapping blocks, with some non-zero blocks [17]. In some 

findings the partition of blocks is decided by the user, it will 

further applicable to regularize the covariance of the signal. But 

in this work, we have observed that even no block structure is 

followed by the signal but the BSBL model can be applied for 

effective recovery of signal. Due to this reason here, it is 

considered for the Compressive sensing approach. In our work, 

we used a bound optimization-based algorithm (BSBL-BO), 

with the gaussian sensing matrix we also used Poisson, 

Exponential, Rayleigh, Chi-Square random matrices. This 

change is incorporated in the algorithm used for the 

compression and recovery of the signal. In the next section, we 

are going to define the experimental results and observations. In 

some cases, we found the BSBL-BO with our modified 

approach representing a significant change in the reconstruction 

of the original signal. 

IV. RESULT AND ANALYSIS 

The EEG signal that is considered for the computation 

process is “eeglab_data.set” which is extracted from EEGLab 

[18]. The dataset consists of an EEG signal for 32 channels, each 

channel consists of 80 epochs and these 80 epochs contain 384 

points each. Muscle movement artifacts are also considered in 

the signal. Matlab 2020a, computer with Processor (i5-1.80 

GHz), and 8.00 GB ram is utilized for the computation purpose. 

A. Mean Square Error (MSE) 

Mean Square Error is a parameter for quality evaluation of 

the EEG signal. The main objective of MSE is to find out the 

distortion level between the actual and reconstructed signal. The 

relation for MSE between actual & reconstructed signal is given 

below [19]. 

 2

1

1
( , ) (( ) )

n

i iMSE Q S Q S
n

= −  (3) 

Where Q = EEG Test signal, S = Reconstructed EEG signal, n 

= Number of iterations. 

B. Compression Ratio Per Frame 

The Compression Ratio is a very crucial parameter in audio 

signal processing. It depicts the number of measurements that 

are used for the reconstruction divided by the whole number of 

measurements.  

 /CR K N=   (4) 

Here, K= Reconstruction measurements, N= Total number of 

measurements. 

C. Structural Similarity Index Measure (SSIM) 

Structural Similarity Index Measure is the method that 

defines the quality measure between the original signal & the 

reconstructed signal. SSIM is based on contrast, luminance, 

structure, or correlation between two signals. Multiplication of 

these aspects provides the value of SSIM [20]. Here j is contrast, 

k is luminance and p represent the structural index values. 

𝑆𝑆𝐼𝑀(𝑔, ℎ) = [𝑗(𝑔, ℎ)]𝛼 ⋅ [𝑘(𝑔, ℎ)]𝛽 ⋅ [𝑝(𝑔, ℎ)]𝛾  (5) 

                                                                                                                                           

 

Here μx and μy are the local means, σx and σy are the standard 

deviations and σxy is the cross-covariance for the original and 

reconstructed signal. If α=β=γ=1 

Table I is representing the original EEG Epoch and 

Reconstructed EEG Epoch. The experiment conducts on seven 

compression levels i.e. from 20% compression ratio to 80% 

compression ratio. In the table, 5 combinations are considered 

for Basis and Sensing matrices. Two parameters which are 

representing the quality level of reconstruction given in the table 

below, one is Mean Square Error (MSE) and another is the 

Structural Similarity Index Measure (SSIM). Execution time for 

the algorithm is also calculated using the Matlab in seconds. 

For the compression purpose we use a 192 x 384 dimension-

based (i.e 50% compression level) sensing matrix and for 

reconstruction purpose we 192 x 384 dimension-based basis 

matrix. We have done the computation for each epoch contain 

by this EEG frame. We compare our proposed work with the 

previously mentioned work, the comparison is based on the 

mean square error value and the structural similarity index 

measure values. In our proposed work we use the DCT basis 

matrix with Gaussian, Exponential, Poisson, Rayleigh, and Chi-

square random matrices as sensing matrices. In table I we 

provide the pictorial representation for original and 

reconstructed EEG signal only for two levels of compression, 

one is least i.e. 20% and another is 80% compression level. The 

value of MSE for the recovered EEG signal window is given 

above the reconstructed signal. So here we can check that the 

value of MSE is very less so the signal approaching the best 

quality with very few samples used for the recovery purpose.  

TABLE I 

RECONSTRUCTED AND ORIGINAL SIGNAL WITH MENTIONED SENSING AND 

BASIS MATRICES  

Basis Matrix: DCT 

Sensing Matrix: Gaussian 

Original V/s Reconstructed EEG 

Signal for Least Compression Ratio 

(20%) 

Original V/s Reconstructed EEG 

Signal for Higher Compression 

Ratio (80%) 

  

Sensing Matrix: Poisson 

Original V/s Reconstructed EEG 

Signal for Least Compression 

Ratio (20%) 

Original V/s Reconstructed EEG 

Signal for Higher Compression 

Ratio (80%) 

𝑆𝑆𝐼𝑀(𝑔, ℎ) =
(2𝜇𝑥𝜇𝑦+𝐶1)(2𝜎𝑥𝜎𝑦+𝐶2)

(𝜇𝑥
2+𝜇𝑦

2+𝐶1)(𝜎𝑥
2+𝜎𝑦

2+𝐶2)
 (6) 
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Sensing Matrix: Exponential 

Original V/s Reconstructed EEG 
Signal for Least Compression 

Ratio (20%) 

Original V/s Reconstructed EEG 
Signal for Higher Compression 

Ratio (80%) 

  

Sensing Matrix: Rayleigh 

Original V/s Reconstructed EEG 

Signal for Least Compression 

Ratio (20%) 

Original V/s Reconstructed EEG 

Signal for Higher Compression 

Ratio (80%) 

  

Sensing Matrix: Chi-Square 

Original V/s Reconstructed EEG 

Signal for Least Compression 
Ratio (20%) 

Original V/s Reconstructed EEG 

Signal for Higher Compression 
Ratio (80%) 

  

 

In table II the Mean Square error [21] values are shown with 
a different compression level of EEG signals. Here we can see 
that the Exponential and Chi-Square-based compressive sensing 
method shown the least values of the mean square error. It 
means that when we use these random matrices as sensing 
matrix, so the reconstructed EEG signal is much more accurate 
to the original signal level. To confirm the structural similarity 
of the recovered signal we are showing the SSIM values of the 
recovered EEG signals in the table below. 

TABLE II 

COMPRESSION RATIO (CR) V/S MSE FOR MENTIONED BASIS AND SENSING 

MATRICES  

  
CR 

Compression Ratio v/s MSE 

Basis Matrix: DCT 

Sensing Matrix  

Gaussian Exponen

tial 

Rayleigh Poisson Chi-

Square 

0.2 0.068896 0.056 0.067784 0.052165 0.057618 

0.3 0.047534 0.036523 0.04367 0.039167 0.046049 

0.4 0.026896 0.029765 0.025243 0.02551 0.028672 

0.5 0.018577 0.021247 0.017421 0.018268 0.024927 

0.6 0.012071 0.015307 0.012893 0.0099978 0.011403 

0.7 0.0074953 0.007982 0.007396 0.0092991 0.008135 

0.8 0.0052059 0.004727 0.005331 0.0059006 0.0038804 

 

TABLE III 

COMPRESSION RATIO (CR) V/S SSIM FOR MENTIONED BASIS AND SENSING 

MATRICES TABLE  

 

CR 

Compression Ratio v/s SSIM 

Basis Matrix: DCT 

Sensing Matrix  

Gaussian Exponential Rayleigh Poisson Chi-

Square 

0.2 0.3008 0.3096 0.5726 0.3514 0.4124 

0.3 0.5697 0.03721 0.689 0.585 0.6352 

0.4 0.6653 0.7444 0.7802 0.709 0.7425 

0.5 0.826 0.8358 0.7888 0.7225 0.8693 

0.6 0.8382 0.873 0.8403 0.844 0.8711 

0.7 0.8414 0.9226 0.8918 0.8937 0.8947 

0.8 0.9354 0.927 0.9124 0.9291 0.9474 
 

Table IV is showing the compression ratio v/s execution time 
for the proposed algorithm. Increment in the number of samples 
is showing a significant increase in the execution time of the 
algorithm. But the Rayleigh sensing matrix has the least value 
of execution time at 0.8 compression ratio than other sensing 
matrices as shown in table IV.  
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TABLE IV 

COMPRESSION RATIO (CR) V/S EXECUTION TIME OF ALGORITHM FOR 

MENTIONED BASIS AND SENSING  

 

CR 

Compression Ratio v/s Execution Time for Algorithm 

Basis Matrix: DCT 

Sensing Matrix  

Gaussian Exponential Rayleigh Poisson Chi-

Square 

0.2 0.042 0.043 0.046 0.046 0.042 

0.3 0.047 0.053 0.051 0.047 0.054 

0.4 0.054 0.048 0.061 0.056 0.057 

0.5 0.062 0.099 0.065 0.059 0.063 

0.6 0.072 0.073 0.068 0.07 0.069 

0.7 0.07 0.082 0.079 0.083 0.081 

0.8 0.091 0.086 0.084 0.09 0.094 

 

TABLE V 

 COMPARATIVE VALUES OF MSE AND SSIM FOR PROPOSED AND EXISTING 

APPROACH (AT 50% COMPRESSION LEVEL)  

S.No. Name of Framework Used MSE SSIM 

1 Proposed Modified DCT 

Based BSBL_BO  

0.024927 0.8693 

2 DCT Based BSBL-BO 0.078 0.85 

3 BSBL- Without DCT 0.116 0.81 

4 DCT-Based l1 0.493 0.48 

5 DCT-Based Block-CoSaMP 0.434 0.45 

 

If we want to define the efficiency of the reconstruction 

algorithm, then here we have two parameters one is MSE and 

another is SSIM. Here in table 5, we compare these parameter 

values with previously measured values [22]. The least value of 

SSIM is observed for the Chi-Square sensing matrix, for the 

same matrix we have shown the value of MSE also. 

V. CONCLUSION 

BSBL-BO is an efficient algorithm based on a compressive 

sensing approach for EEG signals. But we still want to enhance 

the efficiency of the algorithm in a verified manner. So, in our 

proposed work, this enhancement is shown, we represent MSE, 

SSIM and the pictorial reconstructed EEG signal which is very 

much close to the actual signal. Some concluding remarks 

which are the key findings for our work are as follows. 

 

• The value of the Compression Ratio directly affects 

the reconstruction process, but if we observe table 2, 

then we can find that this also depends on the type of 

sensing matrix. For the same compression Ratio 

(0.80), Gaussian (0.0052059), Exponential 

(0.0047276), Rayleigh (0.0053316), Poisson 

(0.0059006) Chi-square (0.0038804) sensing matrices 

are showing different MSE values as mentioned in 

brackets. 

• SSIM values are mentioned in table 3, for the Chi-

Square sensing matrix the value of SSIM is maximum 

for the proposed framework. 

• One most important conclusion which we get from 

this analysis is, for the reconstruction of the EEG 

signal even if the value of MSE is minimum in some 

cases like Gaussian (0.0052059) and Exponential 

(0.0047276) but the value of SSIM is higher than the 

Exponential sensing matrix. So we can say even the 

reconstructed and original EEG signal has a minimum 

difference in the MSE values but their structural 

similarity has some variation.) 

• As we increase the number of samples in the 

reconstruction process the value of execution time (in 

seconds) also increases. This execution time is also 

based on the complexity of the sensing matrices as we 

can see the Rayleigh sensing matrix-based 

reconstruction has the least value of the execution 

time. 

• In table 5, which is the main comparison table of our 

work with previously stated work [22] we can observe 

that our proposed work at 50% compression level is 

showing a higher value of SSIM and least value for the 

MSE. The comparison is based on four different 

methods of EEG signal reconstruction. 

So, we can say that the proposed framework is effective, and 

we can use it in the real-time EEG signal acquisition process. 

This approach can also enhance the lifetime of the battery and 

less power is required to sense the EEG signal as we can get the 

informative part even if we reduce the number of samples which 

we consider to reconstruct the EEG signal. The framework, 

which is mentioned in figure 1, is much effective with this 

proposed methodology. 
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