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Abstract—It is shown that a number of equivalent choices for 

the calculation of the spectrum of a sampled signal are possible. 

Two such choices are presented in this paper. It is illustrated that 

the proposed calculations are more physically relevant than the 

definition currently in use. 
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I. INTRODUCTION  

REQUENCY domain representation of a continuous time 

signal is called its frequency spectrum. Because in this 

paper we restrict ourselves to consideration of well-behaved, 

energy, and bandlimited signals, the spectrum in this case is, 

without any doubt, the Fourier transform of a signal 

considered. In other words, the usual Fourier transform 

transforms a signal from the continuous time domain to the 

continuous frequency domain, providing us with the frequency 

spectrum of this signal. Further, when such the signal is 

sampled, its sampled version is created – it is called here a 

sampled signal. And, it can be represented in the continuous 

time domain by the signal samples occurring periodically on 

the time axis. Furthermore, when the sampling operation is an 

ideal one, then these signal samples occur at strictly discrete 

time instants. So, this signal (function) ceases then to be a 

well-behaved one (in the sense used in this paper) because it 

becomes a not integrable function – in this case. As a 

consequence, its Fourier transform does not exist. However, 

does it mean at the same time that its frequency spectrum does 

not exit, too? The people believe that this is not the case. On 

the contrary, they believe that the sampled signals do possess 

the spectra, and they use them in their analyses and projects. 

How is it possible? How did it happen? This simply 

becomes possible by redefining the notion of the signal 

spectrum. And, the redefinition is done by adjusting, in some 

way, the not integrable signal mentioned above to the needs of 

the Fourier transform. For example, by making it, say, “a quasi 

integrable function”. How? 

A choice made in the theory of signals and in signal 

processing relies upon connecting the above problem with the 

theory of distributions, in which “not differentiable functions 

are moved to differentiable objects”. Or, by analogy – 

equivalently here, “the not integrable functions are moved to 

integrable objects”. And, these objects are the distributions 
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like, for example, the Dirac delta (Dirac impulse) – the most 

exploited distribution in the theory of signals and in signal 

processing. (By the way, note that the distributions are not 

usual functions – but, sometimes, they are also called 

“generalized functions”.) Exactly the same is done in the 

today's theory of signals and in signal processing with not 

well-behaved functions. This is illustrated in Fig. 1. 

  

 

Fig. 1. Graphical illustration of two possibilities of modelling a sampled signal 

that is sampled ideally. The upper curve shows a representation of an un-

sampled signal that is visible in the bottom of this figure - in form of a series 

of time-dependent signal samples occurring uniformly on the continuous time 

axis in the distance of T from each other. Whereas the middle curve presents 

its another representation - in form of a series of weighted Dirac deltas 

occurring uniformly on the continuous time axis in the distance of T from each 

other. Moreover, we note here that this figure exploits the same signal, which 

was also discussed in [1]. 

 

The notation used in this paper is as follows: the time and 

frequency variables are denoted by t and f, respectively. 

Further, T is used to denote the signal sampling period but 
sf  

the sampling frequency. Moreover, the following: 1 sT f=  

holds. 

The upper curve in Fig. 1 shows a sampled version of an 

analogue signal sketched in the bottom of this figure; it is 

denoted here by ( ),R Tx t  for the reasons which are explained 

below. This sampled signal was obtained at the output of a 
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sampler about which we assume that it works in an ideal way. 

Therefore, this signal is modelled here as a series of 

perpendicular line segments of different lengths, which are 

proportional to the values of the signal samples at the 

corresponding time instants. And, all these values are finite 

numbers. So, on the other words, this image of a sampled 

signal can be viewed as the most natural one when it is 

sampled ideally. 

Further, because of the reasons explained above, let us call 

this image of a signal sampled ideally, as shown by the upper 

curve of Fig. 1, a reference sampled signal visualization in the 

case of performing the sampling operation ideally. And, denote 

this reference image by ( ),R Tx t , where the first index, R, in it, 

stands for the word “reference”, but the second one, T, means 

the sampling period. 

The biggest drawback of the reference representation 

( ),R Tx t  is, as we know, the fact that it does not possess the 

spectrum (that is an equivalent image in the frequency domain) 

in the usual sense. And, as we also know, this follows from the 

fact that it is not an integrable function in the sense of 

Riemann or – when it is integrated in the sense of Lebesgue – 

the result is equal identically to zero. (In this paper, we call 

such the functions not well-behaved.) If interested in more 

details and explanations on this topic, the reader is referred to 

[1]. 

II. IN SEARCH OF AN ALTERNATIVE DEFINITION FOR THE 

SPECTRUM OF THE REFERENCE REPRESENTATION 

In the situation sketched above, but having a strong will of 

possessing an image of ( ),R Tx t  in the frequency domain, the 

people decided to use its well-conceived and properly designed 

equivalent. How it was done is explained in what follows 

below. Simply, the people said that the best way seems to be 

the one, in which the not-integrable function ( ),R Tx t  is 

transferred to an integrable object created by multiplying an 

analogue (i.e. un-sampled) signal ( )x t  by a Dirac comb [2-49] 

– as visualized by the middle curve in Fig. 1. So, this sampled 

signal representation can be expressed analytically as 
 

 ( ) ( ) ( ),D T Tx t t x t=   , (1) 

 

where the Dirac comb ( )T t  is defined as 
 

 ( ) ( )T

k

t t kT 


=−

= −  , (2) 

 

where ( ) ,  ., 1,0,1,.,t kT k − = −  mean the time-shifted Dirac 

deltas. Furthermore, note that the new sampled signal 

representation, obtained in (1), differs from ( ),R Tx t . (A 

comparison of the upper curve with the middle one in Fig. 1 

demonstrates this clearly.)  So, for this reason, it is denoted 

here otherwise – by ( ),D Tx t , where now the first index, D, 

stands for the name of Dirac. 

 

 

As well known [2-49], the object given by (1) possesses a 

Fourier transform. That is, in other words, it has a well-defined 

spectrum (in the usual sense). Moreover, this spectrum can be 

expressed as 

 

 ( ) ( ),

1
D T

k

X f X f k T
T



=−

= −  , (3) 

 

where ( ),D TX f  and ( )X f  mean the Fourier transforms of 

the signals: ( ),D Tx t  and ( )x t , respectively. 

Now, let us realize what the people have done in the next 

step. They simply tied up the non-existing Fourier transform of 

( ),R Tx t  with ( ),D TX f , and said that this must be a spectrum 

of ( ),R Tx t  (that is a frequency domain image of this signal). 

Note that we can interpret the above way of solving the 

problem with calculation of the spectrum of our not well-

behaved function ( ),R Tx t  as a one, which needs an extension 

of the usual definition of the signal spectrum. This extension 

can be explained in a descriptive way as follows: If a signal 

possesses a Fourier transform, its spectrum is equal to this 

transform. However, when this is not the case, a signal (being 

an integrable function or an integrable object, as, for example, 

a distribution), which is “highly related” (in some sense) with 

the one considered, must be first constructed. (Note that in our 

case ( ),D Tx t  is “highly related” with ( ),R Tx t  in the sense that, 

say, both of them seem graphically to be identical – to see this, 

compare the upper curve with the middle one in Fig. 1.) And, 

when such a signal is already found, its Fourier transform is 

calculated. Next, it is said that this Fourier transform is, at the 

same time, the spectrum of the signal considered – obviously 

in this extended sense, just formulated. 

Let us also express the sketched above procedure in a 

compact form, analytically; this can be done in the following 

way:  

 

  ( ) ( )( ) ( ) ( )( ), , ,D T k R T R T

k

x t F x t t kT D x t


=−

= − =  (4) 

and 

 

 ( )( ) ( )( ) ( )( )( ), , ,SPECT R T D T R Tx t x t D x t= =F F  , (5) 

 

where ( )( ),k R TF x t  denotes an operator that filters out the k-th 

nonzero value from the signal ( ),R Tx t . The next operator in 

(4), D, means a composite operator (consisting of a sum of 

filter operators ( )kF   and Dirac deltas ( )  ) that maps ( ),R Tx t  

into ( ),D Tx t . Moreover, the operator, SPECT (in (5)), stands 

for the spectrum when a given signal does not have a Fourier 

transform. Furthermore, ( )F  denotes the Fourier transform of 

an object or a function indicated. 
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Finally, note that connecting (5) with (3) results in 

 

 ( )( ) ( ),

1
SPECT R T

k

x t X f k T
T



=−

= − , (6) 

 

what permits the current theory [2-49] to say that there occur 

aliasing and folding effects in the spectra of signals sampled 

ideally. 

The author of this paper does not know who is the “father” 

of the above scheme of identification of the non-existing (in 

the usual sense) spectrum of the signal ( ),R Tx t  with the 

Fourier transform of the “highly related” signal ( ),D Tx t  – and 

"responsible" for applying the Dirac deltas for just this 

purpose. Probably, it happened in the times of appearance of 

the theory of distributions (generalized functions) of Laurent 

Schwartz [50], and because of the great fascination with this 

theory among the researchers, then. And, probably, the 

“father” of the above concept was not even aware what he in 

fact did. It seems that he simply said “any sampled signal must 

be modelled as an ( ),D Tx t  – and, that is all”. And, the whole 

signal processing world took over this point of view. 

III. NEW ALTERNATIVE DEFINITION FOR THE SPECTRUM OF 

THE REFERENCE REPRESENTATION ( ),R Tx t  

Observe that the choice of the operator D in (4) as the one 

which transforms the reference signal ( ),R Tx t  into an 

integrable function “highly related” with this signal – by 

exploiting the Dirac deltas  –  is quite arbitrary. Hence, one can 

conclude that another choice is also possible and admissible. 

And, maybe, it can be even better than the one with the Dirac 

deltas. In what follows, we just present one of such possible 

solutions; at least in our opinion, it is a better one. However, 

before starting with this, let us first describe the reference 

signal ( ),R Tx t  analytically. To this end, we use here an 

excellent tool to perform this task, the time-shifted Kronecker 

time functions [1]. And, here, we denote them by a generic 

symbol ( ),i t T t . 

After [1], the function ( ),i t T t  is defined as 

 

 ( ) ( ), ,

1   if   

0   otherwise
i r i t T

i r t T
t t 

= =
= = 



   , (7) 

 

with r t T=  meaning a real number. (That is we assume here 

that r belongs to the set R  of real numbers.) Thus, 
,i r  in (7) 

stands for a slightly modified standard Kronecker delta symbol 

in which now the second index r is a real-valued one and 

changes with time. And only when it becomes an integer equal 

to i, the function ( ) ( ), ,i r i t Tt t =  differs from zero (assumes 

the value 1).  

The function ( ),i t T t  for  1i =  is illustrated in Fig. 2. 

 

Fig. 2. Illustration of the function ( ),i t T t   for the parameter 1i = . Figure 

taken from [1]. 

 

Having defined ( ),i t T t , we can define the so-called 

Kronecker comb, ( ),K T t  (so named in [1] because it is in fact 

a counterpart of the Dirac comb in the description presented 

now). Its defining equation has the following form: 

 

 ( ) ( ), ,K T k t T

k

t t 


=−

=  ,  (8) 

 

where the first index K at ( ),K T t  stands for the name of 

Kronecker, but the second one, T, means a repetition period 

(sampling period). 

So, observe now that with the help of (7) and (8) we can 

express the reference signal ( ),R Tx t  analytically as 

 

 ( ) ( ) ( ) ( ) ( ), , ,R T k t T K T

k

x t x kT t t x t 


=−

= =   . (9) 

 

Now, we remind that we said at the beginning of this paper 

that we restrict ourselves here to consideration of the well-

behaved, energy, and bandlimited signals. To such signals, 

when they are sampled with the sampling frequency 
sf  greater 

than twice the Nyquist frequency [2-49], applies the following 

reconstruction (recovery) formula [2-49]: 

 

 ( ) ( )( ) ( ) ( )( ), , sinc RECk R T R T

k

x t F x t t T k x t


=−

= − =  , (10) 

 

where ( )sinc   stands for the standard sinc function [2-49], but 

the operator ( )( ),REC R Tx t  maps ( ),R Tx t  into ( )x t  

(according to the rule indicated in (10)). 

Note now that the operator ( )REC   in (10) plays the same 

role as the operator ( )D   in (4), and the resulting function 

( )x t  is a “well-behaved, integrable” one. Therefore, it can be 

used to construct another alternative definition of the spectrum 

of the reference representation ( ),R Tx t . So, applying this 

function in the second equation defining an extended spectrum 

of the sampled signal, (5), that is replacing ( ),D Tx t  with ( )x t  

there, we get 

 

 ( )( ) ( )( ) ( )( )( ), ,SPECT1 RECR T R Tx t x t x t= =F F  , (11) 

 

δ1,t/T(t) 

t  0  -T  T 2T  3T  -2T  -3T  4T  5T  

1 
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where the notation ( )SPECT1   is used to distinguish it from 

( )SPECT   given by (5). 

Now, note that the following:  

 

 ( )( ) ( ) ( )

( )( )

,

,

1
SPECT1

=SPECT

R T

k

R T

x t X f X f k T
T

x t



=−

=  − =   (12) 

 

holds. So, the two definitions of the extended spectrum of the 

sampled signal – considered above – are not equivalent. And, 

both of them are arbitrary – as noted before. Therefore, it is 

legitimate to ask which of them is more useful for engineers. 

In what follows, we give two relevant arguments for the 

second definition. 

To explain the first argument, consider each of the above 

definitions as a kind of “entanglement”, in the frequency 

domain, of two spectra we suspect that must be related with 

the sampled signal ( ),R Tx t : the spectrum ( )X f  and the next 

associated with the periodic signal having a Fourier series 

representation with its all coefficients equal identically to zero. 

In the first definition, it is allowed “the zero Fourier series 

coefficients mentioned above to combine with ( )X f ” to 

result in (6). Unlike this, the second definition does not allow 

for the above effect. As a result, we get in this case a “pure” 

( )X f . 

Let us also illustrate the above in the following way: 

 

 ( )( ) ( )
under definition 1

given by (6)

zero Fourier series coeff.,
1

k

X fEn X f k T
T



=−

→ −   (13) 

or 

 ( )( ) ( )
expressed in (11)under definition 2

zero Fourier series coeff.,  X fEn X f→  , (14) 

 

where ( )En   stands for an entanglement of two spectra as 

mentioned. 

In opinion of the author of this paper, the entanglement 

illustrated by (14), i.e. carried out under the second definition 

is physically more reasonable. 

To present the second argument, let us note first that we can 

write the following: 

 

 ( ) ( ) ( ) ( ),T R T Tt x t t x t  =   . (15) 

 

In the next step, substituting ( ),R Tx t  given by (9) in (15) 

results in 

 

 ( ) ( ) ( ) ( ) ( ),T K T Tt t x t t x t    =   . (16) 

 

So, the function ( ),K T t  in (16) plays a role of an identity 

operator. But, on the other hand, it is a multiplier of the 

function ( )x t  in (9) in building up the reference signal 

( ),R Tx t . This suggests a relation “one to one” between these 

two signals – of course, not in the time domain – but maybe in 

another domain. And, we have such a relation in the frequency 

domain under the second definition. So, this makes an 

argument for the latter definition. 

IV. AN ALTERNATIVE DEFINITION OF THE SPECTRUM OF THE 

SAMPLED SIGNAL BASED ON A MODEL OF A NON-IDEAL 

SAMPLING PROCESS 

Note that both the extended definitions of the spectrum of a 

sampled signal refer to the sampling operation performed in an 

ideal way. And just then, as we have seen, a need for an 

extension of the usual definition of the signal spectrum arises. 

But, obviously, the spectrum of a sampled signal can be also 

determined on the basis of a real process of sampling that takes 

some time for providing a signal sample.  

Note that the latter effect can be called “a smearing of an 

ideal signal sample” – as, for example, in [51]. Denoting then 

the smeared sampled signal by ( ),S Tx t , we can formulate one 

more proposal for the extended spectrum definition of the 

reference signal ( ),R Tx t  according to the same scheme as 

before. That is as 

 

  ( ) ( )( ), ,S T R Tx t S x t=  (17) 

and 
 

 ( )( ) ( )( ) ( ), , ,SPECT2 R T S T S Tx t x t X f= =F  , (18) 

 

where the symbol S  stands for the sample smearing operation 

analyzed in detail in [51]. Moreover, the notation ( )SPECT2   

is used to distinguish this extended spectrum of ( ),R Tx t  from 

the previous two alternative ones, and ( ),S TX f  means the 

Fourier transform of ( ),S Tx t . 

V. SPECTRUM INCONSISTENCIES IN THE VETTERLI’S MODEL 

OF SAMPLING OPERATION 

In [14], Vetterli et al. have demonstrated a model of signal 

sampling operation that takes into account non-idealities 

occurring in performing it by real sampling devices (real A/D 

converters). It is shown here on Fig. 3, after [14, see Fig. 1]. 
 

Fig. 3. Graphical representation of the Vetterli’s model of signal sampling 

operation that reflects formula (1) complemented with the preceding and 

following operations (averaging of sampled signal and picking up samples, 

respectively). 

 
In Fig. 3, the whole non-ideal behavior of a real A/D 

converter is “put into” the first block named “ ( )h t ”. And, it is 

x(t) 

y(t) yD,T(t) 

yD,T(kT) 
h(t) 

δT(t) 

C/D 
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modelled by a linear filter possessing an impulse response 

( )h t , which represents a local signal averaging process or any 

other appropriate one [3]. Hence, we can express the signal 

( )y t  in Fig. 3 as a result of a convolution of the continuous 

time signal ( )x t , which is applied to the input of the A/D 

converter, with ( )h t . The resulting signal is then sampled 

ideally as foreseen by formula (1), where obviously ( )T t  in 

Fig. 3 (as in (1)) means the Dirac comb. (The symbol   in 

Fig. 3 means a multiplication.) In effect, we get the signal 

( ),D Ty t  (replacing now the signal ( ),D Tx t  standing on the left-

hand side of (1)). Finally, ( ), sD Ty kT   on the right-hand side of 

Fig. 3 stand for the samples of the signal ( )y t . They are 

picked up from the signal ( ),D Ty t  in the block named „C/D” 

(in fact, picking up the samples from ( ),D Ty t  is the only task 

of this processing unit). 

Note now that in the current theory of signal sampling the 

spectra of the signals ( ),D Ty t  and ( ),D Ty kT  occurring at the 

input and output of the C/D block, respectively, are the same. 

This is so because we have 

 

 
( )( ) ( )( ) ( )( )

( )

,

2 2
2  ,

D T T

k

y t t x t

f k X f
T T



 
 



=−

=  =

  
= −   

  


F F F
 (19) 

 

where the symbol   stands for the convolution operation. Or, 

alternatively, ( )( ),D Ty tF  can be calculated as 

 

 
( )( ) ( ) ( )

( ) ( )

, ,

, exp 2  .

D T D T

k

D T

k

y t y kT t kT

y kT j fkT







=−



=−

 
= − = 

 

= −





F F
 (20) 

Moreover, observe that the right-hand side of (20) is in fact 

nothing else than (per definition; see, for example, [3]) the 

Discrete Time Fourier Transform (DTFT) of the sequence of 

( ), sD Ty kT  . Hence, we can write  

 

 ( )( ) ( ) ( )

( )( )

, ,

,

exp 2

DTFT  .

D T D T

k

D T

y t y kT j fkT

y kT




=−

= − =

=

F  (21) 

 

(Note that all the derivations presented in (19), (20), and (21) 

are standard. They use standard properties of Fourier 

transforms and Dirac deltas referenced to in textbooks; see, for 

instance,  [2-8].) 

Furthermore, the spectrum of the sequence of discrete 

values, as these ones ( ), sD Ty kT   at the output of the C/D 

processing unit in Fig. 3, is well defined in the literature. It is 

just the ( )( ),DTFT D Ty kT  in this case. 

Let us now check whether or not the C/D processing unit of 

Fig. 3 represents a linear system (circuit); to carry out this task, 

we need to verify whether or not, in this case, the superposition 

principle is satisfied. Therefore, to start, let us assume that the 

input signal ( ),D Ty t  consists of two signals of the form  

 

 ( ) ( ) ( ) ( ) ( ), , ,  1,  2 .
i i

D T D T

k

y t y kT t kT i


=−

= − =  (22) 

 

Further, denote the operator describing the relation between 

input and output signals of the processing unit C/D simply as 

C/D. So, using this and the description of what it does, given 

beneath Fig. 3, we can write   

 

 

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( )( )

1 2 1

, , ,

2

,

1 2

, ,

1 2

, ,

1 2

, ,

1

,

sequence

sequence sequence

= sequence sequen

D T D T D T

k

D T

k

D T D T

k

D T D T

D T D T

D T

C D y t y t C D y kT

t kT y kT t kT

C D y kT y kT t kT

y kT y kT

y kT y kT

y kT

  

  

  

 

 

 



=−



=−



=−


 +  = 




 − + − =




=  +  − =



=  +  =

=  +  =

 + 







( ) ( )( )2

,ce  ,D Ty kT

 (23) 

 

where   and   are some reals. Moreover, the symbol 

( )sequence   stands for a sequence of indexed reals indicated 

in the brackets of this operator, with .., 2, 1,0,1, 2,..k = − −  

playing here a role of an index. 

The final result in (23) shows that the operator C/D fulfills 

the superposition principle. So, we can say that it is a linear 

operator (that is describes a linear circuit (device)). 

Many engineers believe that all linear systems (circuits) 

possess representations in form of convolution integrals (or 

convolution sums) accompanying with well-defined impulse 

responses. Obviously, this is not true – as shown in the 

literature; see, for example, [52-55]. 

It follows from the description of the operator C/D given 

beneath Fig. 3 that this operator does not possess a 

representation in form of a convolution integral as well as an 

accompanying impulse response. Hence, it does not have a 

spectrum (which is the Fourier transform of its impulse 

response). 

So, in view of what was said above, the C/D processing unit 

in the Vetterli’s model of Fig. 3 is a rather quirky one. It 

represents a linear device that possesses no frequency 

characteristic. 

And, obviously, this hinders – in the frequency domain – 

explanation of what happens on the way between the input and 

output of the C/D processing unit. Note that at the input and 

output of this device we have signals possessing the same 

spectra, but evidently different time characteristics. 



400 A. BORYS 

 

 

VI. CONCLUSION 

In this paper, it has been shown that the formula used in the 

literature for the spectrum of ideally sampled signals is 

arbitrary, and there exist at least two possible relevant choices. 

Very strong arguments for their use have been presented. 

Finally, it has been also pointed out that there exist spectrum 

inconsistencies in the Vetterli’s model [14] of sampling 

operation. 
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