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Abstract—The article presents precision and numerically stable 

method of calculation of the characteristic impedance of 

cylindrical multilayer waveguides used in high-precision 

wideband measuring instruments and standards, especially 

calculable thermal converters of AC voltage and precision 

wideband current shunts. Most of currently existing algorithms of 

characteristic impedance calculation of such waveguides are 

based upon approximations. Unfortunately, application of such 

methods is limited to waveguides composed of a specific, usually 

low number of layers. The accuracy of approximation methods as 

well as the number of layers is sometimes not sufficient, especially 

when the coaxial waveguide is a part of precision measurement 

equipment. The article presents the numerically stable matrix 

analytical formula using exponentially scaled modified Bessel 

functions to compute characteristic impedance and its 

components of the cylindrical coaxial multilayer waveguides. 

Results obtained with the developed method were compared with 

results of simulations made using the Finite Element Method 

(FEM) software simulations. Very good agreement between 

results of those two methods were achieved. 

 
Keywords—AC voltage standard; current shunt; characteristic 

impedance; multilayer cylindrical conductor; FEM simulation; 

modified Bessel functions; numerical stability; calorimetric 

thermal voltage converter; ac-dc transfer difference  

I. INTRODUCTION 

ultilayer cylindrical waveguides are used in high-

precision wideband measuring instruments and 

standards, including calculable thermal converters used in 

voltage AC-DC transfer [1],  

[2] and precision high frequency current shunts [3]-[5]. 

Characteristic impedance of waveguides used in 

abovementioned metrology instruments must be calculated 

with a very high accuracy, achieving parts per million. One of 

the oldest concept of the waveguide is a cylindrical coaxial 

cable (coax) invented in 1880s and widely used presently [6], 

[7]. The development of the material science and techniques, 

such as electroless deposition of the metal onto the plastics 

(e.g. Teflon), opened up the new viabilities of the coaxial 

waveguides applications [8]. Due to the multilayer 
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composition, the performance of the waveguide can be 

improved. Some of the stacked layers are used because 

 

of their good mechanical properties such as stiffness, while the 

others ensure high electrical conductivity, protection against 

oxidation, humidity or other environmental factors. 

 Today, one of the most popular approach of determination 

of the electrical parameters of cylindrical multilayer 

waveguides is the Finite Element Method [9]-[13]. The method 

allows computation of the characteristic impedance of the 

multilayer cylindrical conductors without usage of complex 

equations. However, usually it is necessary to use more than 

one solver, especially when the waveguide is working in wide 

frequency range [14]. The skin effect, which impact becomes 

substantial at higher frequencies, demands special meshing 

tools to ensure high level of accuracy.  

 On the other hand, the analytical methods of the 

computation of the characteristic impedance and its 

components can be implemented into the numerical software 

such as Mathematica, Matlab or its free equivalent software 

Octave. The analytical methods allow much faster 

computations than FEM. Moreover, characteristic impedance 

computation by analytical formulas allows easy 

implementation of the built-in algorithms, such as genetic 

ones, to provide the structure optimization. 

Frankly speaking, in this sort of methods, magnetic vector 

potential is obtained from the product of the second order 

Maxwell’s differential equations [15]. These solutions include 

the couples of the Bessel or similar functions [16]. Numerical 

calculations using these functions are often instable, especially 

for to low and high frequency, conductivity etc., respectively 

[17]. The calculation of wave impedance of the coax 

waveguide demands the knowledge of internal complex 

impedance of the inner and outer wire. Today, in the literature 

a few stable algorithms for computations of the impedance of 

the cylindrical structure, can be found. These methods use 

approximations, for example polynomial approximations [18], 

asymptotic approximation of equations of characteristic 

impedance  [17], [19] approximation of the skin effect [20], 

[20], approximation of concentrated parameters by Gauss-

Seidel algorithm [21]. The other group of numerically stable 

calculation formulas use scaled modified Bessel functions 

[22], [23].  
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Fig. 1. The example of cross section of multi-layer cylindrical conductor 

All of abovementioned methods are stable at extreme 

frequencies, but their results depend on the number of 

iterations or are suitable for coaxial waveguides composed of 

very limited structure only.  

One of the method utilizing complex composition is 

presented in [24], but it does not consider the instability issue. 

Another approach described in [25] is a transfer matrix method 

of the multilayer composition. The stability have been 

provided  by replacing Bessel functions with Hankel one for 

large arguments. However, the method is instable at very high 

frequencies [25]. The only known numerically stable method 

of computation of the internal impedance of the multilayer 

cable is the method described in [26]. The method is a 

combination of the transfer matrix and scaled modified Bessel 

functions method. It allows the computation of the internal 

impedance of the inner wire and its components also at high 

frequencies. Moreover, the method uses so called “fictional” 

layers to improve the computations in the case of the thick 

conducting layers. Actually, to the best of authors’ knowledge, 

there is no known stable analytical formula of computations of 

the internal impedance of the outer wire of the coax with any 

number of layers. 

In this article, we are going to propose numerically stable 

formulas for computations of the multilayer outer conductor 

parameters of the coaxial cable based on matrix approach, 

without number of layers restriction. Consequently, the 

methods presented in this article and in [26] allow computing 

together the characteristic impedance of the cylindrical 

waveguide for any number of layers with high accuracy and 

numerical stability. The proposed algorithm have been 

validated by comparing its results with results from 

simulations using FEM Ansys Multiphysics software [27]. The 

algorithm can be used in many different applications which 

call for high precision such as e.g. waveguides used in high 

frequency voltage or current standards.   

II. THE IMPEDANCE OF THE MULTILAYER WAVEGUIDE 

A. Internal impedance of the multilayer inner wire 

The cross section of assumed structure of the multi-layer 

circular waveguide is presented in Fig. 1. It is composed of 

two cylindrical conductors (centermost and outer), both built 

from more than one material. A dielectric (e.g. dry air) is 

located between both pipes. As a general rule, the 

characteristic impedance of the coaxial line per unit length 

( cZ ) is given by  equation [28]: 

CjG

LjR
Z





+

+
=c  ,        (1) 

where   is angular frequency, R , L , C , G  are the 

resistance of the wires, inductance (internal and mutual), 

capacitance between wires and conductance of the dielectric 

between cylindrical conductors, respectively. The numerator of 

the equation (1) can be computed as the sum of internal 

impedance of the inner ( iZ ) and outer ( oZ ) pipes and mutual 

inductance between conductors as [29]: 
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where sL  is a self-inductance per unit length determined by 

the outer dielectric  diameter D  and inner dielectric diameter 

d , given by: 
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The impedance of the dielectric between both cylindrical 

conductors is given by the capacitance and conductance: 
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where '  and "  is the real and imaginary part of electric 

permittivity, respectively.  

The complex impedance iZ  of the multilayer conductor is 

calculated by the matrix method described in [26]. The method 

allows the numerically stable computation of the iZ , even at 

high frequency and for thick layers as well.  

B. Internal impedance of the thin multilayer outer wire 

The cross section of the outer wire of a multilayer 

cylindrical waveguide is presented in Fig. 2.  

It consists of N layers, where upper and lower boundaries, 

of a particular layer, are represented by 1+ir  and ir , 

respectively. The innermost layer is always assumed to be a 

perfect insulation (vacuum) of zero conductivity.  
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Fig. 2. The cross section of outer multilayer wire with particular boundaries 
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Physical properties of each i-th sections are: magnetic 

permeability i  and electrical conductivity i . Each section 

has also its wave number i  [30]: 

iiiii  2j −= .      (6) 

Following the Poynting’s theorem of conservation of energy 

[31], the internal impedance of the outer wire is given by: 
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where 1E  and  1H  are the phasors of electrical field intensity 

and magnetic field intensity in the first layer, respectively. 

Because the current of the outer pipe flows in opposite 

direction to the current in the inner wire, the boundary 

conditions for the electric and magnetic field intensities of 

particular layers can be expressed as: 
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where I  represents the phasor of the total current flowing in a 

wire or pipe. The upper boundary of the outermost layer 

N ( Nrr = ) has a boundary condition: 

0== NrrNH .       (9) 

Assuming longitudinal current and neglecting proximity 

effect due to perfect concentricity of the geometry of the inner 

wire and outer pipe, using the cylindrical coordinate system, 

the phasor of magnetic field intensity, given by second order 

Maxwell’s differential equation is in the form [32]: 
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 The solution of equation (10) as well as Ampere’s law, 

phasors of the electric and magnetic field intensities in the i-th 

layer, presented in [30], have the form: 
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where iC , iD  are the unknown complex-valued coefficients 

for the i-th layer, 1I , 1K , 0I  and 0K  are the complex-valued 

modified Bessel functions of the first kind of order one,  

second kind of order one, first kind of order zero and the 

second kind of order zero, respectively.  

 The phasors of the electric and magnetic fields intensities of 

the i+1 layer, using the boundary conditions (8), have the 

form: 
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Parameters iC  and iD  are calculated after converting the 

equation (12) into the matrix form: 
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where i  is a determinant equal to: 

)()()()( 10111110 ++++ += iiiiiiiii rKrIrKrI  .  (14) 

Aiming the Wronskian of modified Bessel functions [33], 

the equation (14) can be substituted by its simplified form: 
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Finally, substituting (13) into the equation (11), the 

dependence between electric and magnetic field phasors of 

upper and lower boundaries of the particular layer can be 

expressed as: 
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where iT  is the transfer matrix equal to: 
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The matrix iT  can be converted using equations (11) and 

(12) to the matrix form: 
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The results of (18) are: 
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The internal impedance of the outermost region lower 

boundary is defined as: 
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where NNN rx = −1  and 11' −− = NNN rx  . 
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The impedance of the first layer can be performed from 

transfer matrixes as: 
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and the impedance of the first layer is: 
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Using the equation (7) and boundary conditions, the  

impedance of the outermost wire is: 
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Resistance R  and internal inductance L  can be calculated  

as: 
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where }{Re oZ and }{Im oZ denote the real and imaginary part 

of oZ , respectively. 

The numerical computations of modified Bessel functions in 

equations (19) – (23) are numerically unstable, especially at 

higher frequencies. To get rid of the instability, the modified 

Bessel functions are exchanged with scaled modified Bessel 

functions according to their definition [23]: 

n
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n
s
n KxxK = )exp()( ,       (29) 

where 
s
nI  is a scaled modified Bessel function of the first kind 

of order n  and 
s
nK  is a scaled modified Bessel function of the 

second kind of order n . The computation methods of the 

scaled modified Bessel functions with discussion are presented 

in [32]. 

 Taking (28) and (29) into account, the equations (19) – (23) 

can be rewritten as: 
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1Z  and oZ  are computed using equations (25) and (26), 

respectively. 

The numerically stable solution of the equations (30) - (34) 

is provided by reduction of the argument of the exponent equal 

to )( 1+− iii rr  and )( 1 iii rr −+ . However, at higher 

frequencies and for thick layers, the computed parameters ia , 

ib , ic , id  and, as a consequence, iZ  are large and cause 

numerical instability. To reduce values of mentioned 

parameters, thick layers can be divided into additional thin 

“fictional” layers. This approach is described in [26] in details.  

III. THE VALIDATION OF THE NEW ANALITYCAL FORMULA  

A. Multi-thin-layer coaxial waveguide computation 

In the first exemplary calculation, the structure of the 

coaxial conductor presented in Fig. 3 was considered. This 

waveguide is composed of two cylindrical conductors. The 

core of internal cylindrical wire of radius equal to 0.7 mm is 

made of stainless steel of relative permeability 1.02 and 

electrical conductivity 1.32∙106 S/m. The next layer is 10 μm 

thick copper of relative permeability 0.99994 and electrical 

conductivity 5.96 ∙107 S/m. The last layer is 5 μm thick gold of 

relative permeability 0.999966 and electrical conductivity 4.4 

∙107 S/m. The relative permittivity was set to 1 for all of used 

materials. The outer cylindrical conductor is composed of three 

conductive materials. The first layer (counting from the inside) 

is 5 μm thick gold, then 10 μm thick copper and then stainless 

steel pipe of 100 μm thick wall. The inner radius of gold layer 

is 1.6 mm. The insulation is dry air of relative permeability and 

permittivity equal to 1.00054 and 1, respectively. The 

conductivity of air was assumed as equal to 0. Exactly the 

same material properties, geometry and dimensions were 

implemented into the Matlab, to prepare calculations by the 

developed formulas and to ANSYS FEM software. The FEM 

solvers were chosen depending on frequency. For lower 

frequencies (conventionally when the D100 ), Maxwell 

solver was chosen, while for higher frequencies ( D100 ), 

High-Frequency Structure Simulator (HFSS). The detailed 

description of methods and solvers used in validation may be 

found in [14].  

As stated previously, the presented analytical formula 

allows to calculate the characteristic impedance of the 

Transverse Electro-Magnetic (TEM) mode. The cut-off 

frequency of the TE11, calculated according to [34], equals 

approximately 41.5 GHz for the assumed geometry of the 

coax.  

 

stainless 
steel

stainless steel

copper

gold

air

 

Fig. 3.  The cross section of the multilayer coaxial waveguide, used in the first 

example 
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TABLE I 

COMPARISON OF THE MODULE OF CHARACTERISTIC IMPEDANCE  OF COAXIAL 

WAVEGUIDE FROM THE FIRST EXAMPLE 

f 
|Z| 

Matlab 
|Z| 

ANSYS 

Δ|Z| 

Matlab - ANSYS Δ|Z| 

Hz Ω Ω Ω % 

100 25424 25431 7 

0.027 

101 8039.9 8042.1 2.2 

102 2542.4 2543.1 0.7 

103 804.00 804.21 0.22 

104 254.34 254.41 0.07 

105 83.227 83.249 0.022 

106 50.382 50.395 0.014 

107 48.737 48.750 0.013 

108 48.534 48.541 0.006 0.013 

109
 48.368 48.383 0.015 0.031 

1010
 48.318 48.333 0.015 0.031 

4∙1010 48.307 48.321 0.015 0.030 

 

Therefore, the computations were performed in the 

frequency range from 1 Hz to 40 GHz. The TE11 and higher 

order modes are insignificant and their propagation is 

negligibly small. The module of characteristic impedance, 

resistance per unit length and inductance per unit length is 

presented in Tab. I, Tab II and Tab. III, respectively.  

The difference between modules of characteristic impedance 

calculated with Matlab and FEM models, shown in Tab. I, is 

between 0.006 Ω and 7 Ω, i.e. the relative difference is from 

0.013% to 0.027%, respectively. Calculated values of 

characteristic impedance module shown in Tab. I strongly 

confirm correctness of new analytical formulas presented in 

this paper. In the whole assumed frequency range, the relative 

difference between Matlab and ANSYS results is less than 

0.04%.  

Table II contains results of resistance calculations from the 

first example. The absolute difference between results obtained 

from our method and from FEM simulations equals zero in 

frequency range from 1 to 107 Hz. The difference increases 

above 100 MHz. The highest difference between results 

obtained with analytical model and FEM simulations is at 40 

GHz, which is close to the waveguide cut-off frequency. The 

relative difference is equal to approximately 2%. Nevertheless, 

it is less than 0.15% in frequency range from 1 Hz to 10 GHz.  

The last comparison of the parameters of the first structure,  

inductance per unit length, is presented in Table III.  
 

TABLE II 
COMPARISON OF RESISTANCE  PER UNIT LENGTH OF COAXIAL WAVEGUIDE 

FROM THE FIRST EXAMPLE 

f 
R 

Matlab 
R 

ANSYS 

ΔR 

Matlab - ANSYS ΔR 

Hz Ω/m Ω/m Ω/m % 

100 0.2806685 0.2806685 

0 
>0.01 

101 0.2806685 0.2806685 

102 0.2806685 0.2806685 

103 0.2806685 0.2806685 

104 0.2806714 0.2806714 

105 0.2809538 0.2809538 

106 0.3003694 0.3003695 

107 0.3733909 0.3733909 

108 0.8968540 0.8968598 0.0000058 

109
 3.0633201 3.0635665 0.0002464 0.01 

1010
 9.6498060 9.6366049 0.0132012 0.14 

4∙1010 19.2967858 18.9145209 0.3822649 2.02 

 
 

 

TABLE III 

COMPARISON OF THE INDUCTANCE PER UNIT LENGTH  OF COAXIAL 

WAVEGUIDE FROM THE FIRST EXAMPLE 

f 
L 

Matlab 
L 

ANSYS 

Δ L 

Matlab - ANSYS L 

Hz μH/m μH/m μH/m % 

100 0.1708578 0.1708578 

0 

>0.01 

101 0.1708578 0.1708578 

102 0.1708578 0.1708578 

103 0.1708578 0.1708578 

104 0.1708575 0.1708575 

105 0.1708273 0.1708273 

106 0.1687718 0.1687718 

107 0.1640388 0.1640388 

108 0.1627767 0.1627772 0.0000005 

109
 0.1616674 0.1616791 0.0000117 

1010
 0.1613358 0.1613468 0.0000110 

4∙1010 0.1612590 0.1612687 0.0000097 

 

Similarly to the case of the resistance, the nominal 

difference between inductance per unit length, calculated using 

the new developed Matlab formula and FEM software is equal 

to zero in the frequency range from 1 to 107 Hz. Above this 

frequency, the difference is slightly rising, but the relative 

difference remains below 0.01%, which strongly confirms 

correctness of the new analytical formula.The capacitance 

calculated using the Matlab formula and FEM simulation 

equals 69.11 and 69.07 pF/m, respectively. It corresponds to 

absolute difference equal to 0.04 pF/m, or 0.05% relatively. 

B. Thick-layer coaxial waveguide computation 

In the second example, a thick-wall coaxial waveguide will 

be considered. Its geometry is presented in Fig. 4. The inner 

cylindrical conductor of 2 mm radius is made from copper. 

The outer copper tubular conductor has the internal radius 

equal to 4.6 mm and external 6.6 mm, which corresponds to 

the 2 mm wall thickness. The space between both conductors 

is filled with dry air. The physical properties of air and copper 

are the same as in the first example. The thick walls of the 

outer conductor are the potential reason of numerical 

instability at high frequencies.  

copper

air

copper

 
Fig. 4.  The cross section of the coaxial waveguide, used in the second 
example.  

 

Therefore calculations were performed using 1) Matlab 

without additional “fictional” layers, 2) Matlab with additional 

“fictional” layers as presented in [26] and 3) ANSYS FEM 

simulations. Numerical instability in the assumed range of 

frequency disappears when the number of fictional layers 

equals 8. The cut-off frequency for this geometry is 

approximately 14.5 GHz. Thus, the parameters were calculated 

in the frequency range from 1 Hz to 14 GHz. The calculated 

results: the module of characteristic impedance, resistance per 

unit length and inductance per unit length are presented in Tab. 

IV, V and VI, respectively. 
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TABLE IV 

COMPARISON OF THE MODULE OF CHARACTERISTIC IMPEDANCE  OF COAXIAL 

WAVEGUIDE FROM THE SECOND EXAMPLE 

f 

|Z| 

Matlab without 

fictional layers 

|Z| 

Matlab with 

fictional layers 

|Z| 
ANSYS 

Δ|Z| 

Matlab  - 

ANSYS 

Δ|Z| 

Hz Ω Ω Ω Ω % 

100 1936 1936 1937 1 0.06 

101 612.2 612.2 612.6 0.4 0.06 

102 194.08 194.08 194.20 0.12 0.06 

103 72.888 72.888 72.931 0.042 0.06 

104 57.232 57.232 57.264 0.032 0.06 

105 52.197 52.197 52.226 0.029 0.06 

106 50.645 50.645 50.674 0.028 0.06 

107 50.162 50.162 50.190 0.028 0.06 

108 50.010 50.010 50.024 0.014 0.03 

109
 NaN 49.962 49.976 0.014 0.03 

1010
 NaN 49.947 49.961 0.014 0.03 

1.4∙1010 NaN 49.946 49.960 0.014 0.03 

 
TABLE V 

COMPARISON OF THE RESISTANCE PER UNIT LENGTH OF COAXIAL WAVEGUIDE 

FROM THE SECOND EXAMPLE 

f 
R 

Matlab without 

fictional layers  

R 
Matlab with 

fictional layers 

R 

ANSYS 

ΔR 
Matlab - 

ANSYS 

ΔR 

Hz Ω/m Ω/m Ω/m Ω/m % 

100 0.0015736 0.0015736 0.0015742 0.0000006 0.04 

101 0.0015736 0.0015736 0.0015742 0.0000006 0.04 

102 0.0015741 0.0015741 0.0015746 0.0000006 0.04 

103 0.0016194 0.0016194 0.0016199 0.0000006 0.03 

104 0.0032419 0.0032419 0.0032426 0.0000006 0.02 

105 0.0095770 0.0095770 0.0095789 0.0000018 0.02 

106 0.0296605 0.0296605 0.0296650 0.0000045 0.02 

107 0.0931969 0.0931969 0.0931904 0.0000065 0.01 

108 0.2941252 0.2941252 0.2938590 0.0002662 0.09 

109
 NaN 0.9295189 0.9291945 0.0003244 0.03 

1010
 NaN 2.9388112 2.9089523 0.0298588 1.03 

1.4∙1010 NaN 3.4771987 3.4080757 0.0691230 2.03 

 
TABLE VI 

COMPARISON OF THE RESISTANCE PER UNIT LENGTH OF COAXIAL WAVEGUIDE 

FROM THE SECOND EXAMPLE 

f 

L 

Matlab without 

fictional layers 

L 

Matlab with 

fictional layers 

L 
ANSYS 

Δ L 
Matlab - ANSYS 

Δ L 

Hz μH/m μH/m μH/m μH/m % 

100 0.245251 0.245251 0.245295 0.000044 0.018 

101 0.245251 0.245251 0.245295 0.000044 0.018 

102 0.245240 0.245240 0.245284 0.000044 0.018 

103 0.244192 0.244192 0.244236 0.000044 0.018 

104 0.212730 0.212730 0.212776 0.000045 0.021 

105 0.181437 0.181437 0.181477 0.000040 0.022 

106 0.171348 0.171348 0.171387 0.000039 0.023 

107 0.168151 0.168151 0.168189 0.000038 0.023 

108 0.167139 0.167139 0.167146 0.000006 

>0.01 
109

 NaN 0.166820 0.166826 0.000006 

1010
 NaN 0.166719 0.166724 0.000006 

1.4∙1010 NaN 0.166711 0.166717 0.000005 

 

The absolute difference between modules of characteristic 

impedance is between 0.014 Ω and 1 Ω, which corresponds to 

relative differences of 0.03% and 0.06%, respectively. 

Numbers presented in Tab. IV, V and VI show strong 

agreement between results obtained from the our analytical 

formulas and FEM simulations. There is no significant 

difference between results obtained with Matlab models with 

and without “fictional” layers.  Table V presents resistance 

per unit length of a waveguide with and without fictional 

layers. These results were calculated using Matlab and 

validated with FEM simulations. The difference between them 

is from 0.0000006 to 0.0691230 Ω/m, which corresponds to 

0.04% and 2.03%, respectively. It confirms correctness of 

results obtained with the new analytical formula up to 1 GHz. 

At 1 GHz and above, the relative difference is increasing from 

0.03%, through 1.03% up to 2.03% at 14 GHz. The increase in 

error is caused by the operation of the waveguide near the cut-

off frequency. Despite of this, the relative difference is ≤ 2%, 

which also confirms correctness of the developed model. 

Again, there is no significant difference between results 

obtained using Matlab model with and without “fictional” 

layers.  

As the last parameter, inductance per unit length was 

calculated and presented in Table VI. The relative difference 

between results is from 0.01% to 0.023% in the assumed 

frequency range. Like before, there is no significant difference 

between inductance per unit length computed by the Matlab 

formula with and without additional fictional layers. Moreover, 

the upper limit of calculation was extended from 100 MHz to 

14 GHz. The capacitance calculated with the new analytical 

Matlab formula and FEM simulations is equal to 66.83 and 

66.77 pF/m, respectively. It corresponds to absolute difference 

of 0.06 pF/m or relative difference of 0.09%. 

IV. CONCLUSION 

The new robust and numerically stable algorithm presented 

in the article can be used for calculation of wave impedance 

and its components of cylindrical coaxial waveguides 

composed of unlimited number of layers. The presented 

analytical formula was checked with FEM ANSYS models in 

frequency range depending on geometries and dimensions of 

the waveguide, especially for thin and thick layers. The results 

of the comparison well agree with results obtained with the 

new analytical model and FEM simulations. The achieved 

relative error of the module of characteristic impedance 

between presented methods, for discussed frequency range, is 

much lower than 0.1%, which proves the correctness of the 

new analytical approach.  

The presented work shows also that in case of calculations 

performed for thick layers at higher frequencies it is necessary 

to divide the thick layer into additional “fictional” layers to 

provide numerical stability. The results of calculations also 

assured, that the additional “fictional” layers do not degrade 

their accuracy. Moreover, results obtained for models with and 

without additional “fictional” layers are identical. The latter 

case allows an easy extension of frequency range without 

sacrificing the numerical stability. The presented algorithm 

allows much faster computations of characteristic impedance 

of coaxial waveguides than FEM and does not require a high-

performance computer.  

The method is especially useful for optimization of 

cylindrical multilayer waveguides for wideband calculable 

thermal converters used in voltage AC-DC transfer and 

precision high frequency current shunts. 
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