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Position Estimation in Mixed Indoor-Outdoor
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Deep Learning Approach
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Abstract—To improve the user’s localization estimation in
indoor and outdoor environment a novel radiolocalization system
using deep learning dedicated to work both in indoor and outdoor
environment is proposed. It is based on the radio signatures using
radio signals of opportunity from LTE an WiFi networks. The
measurements of channel state estimators from LTE network and
from WiFi network are taken by using the developed application.
The user’s position is calculated with a trained neural network
system’s models. Additionally the influence of various number
of measurements from LTE and WiFi networks in the input
vector on the positioning accuracy was examined. From the
results it can be seen that using hybrid deep learning algorithm
with a radio signatures method can result in localization error
24.3 m and 1.9 m lower comparing respectively to the GPS
system and standalone deep learning algorithm with a radio
signatures method in indoor environment. What is more, the
combination of LTE and WiFi signals measurement in an input
vector results in better indoor and outdoor as well as floor
classification accuracy and less positioning error comparing to
the input vector consisting measurements from only LTE network
or from only WiFi network.

Keywords—radiolocalization; deep neural network; hybrid lo-
calization

I. INTRODUCTION

ADEMAND for indoor and outdoor localization systems is
constantly growing due to the need of increasing people’s

safety and comfort. Indoor localization is used in order to
localize and navigate users in shopping centers, hospitals or
in underground parking lots [1], [2] and outdoor localization
can be used to localize and navigate autonomous cars [3].
Undoubtedly, position estimation in both indoor and outdoor
environment will be crucial in creating smart cities in the
future. What is more, it is needed to use the already existing
radiocommunication infrastructure for the localization system
to be cheaper in implementation and more accessible.

Global Positioning System (GPS) which is a frequently used
radiolocalization system nowadays is not accurate enough,
especially in the indoor environments [1]–[4]. Satellite systems
are vulnerable to multipath propagation, path loss, lack of line
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of sight (LOS) or signal scattering. It is especially noticeable
in indoor environment making it nearly impossible in practical
usage. Problems with the propagation of signals through the
walls and ceilings cause that the position of the user is
often indicated outside of the buildings. It is also completely
impossible to determine the floor on which the users are
located in the buildings.

There are localization methods that use measurements of a
Received Signal Strength (RSS) from base stations (BS) of
cellular networks or access points (AP) of Wireless Fidelity
(WiFi) networks [2], [3], [5]. The biggest advantage of this
approach is that it uses an already existing infrastructure, and
what is important, in terms of WiFi an infrastructure created
inside of buildings.

In this article the localization system based on the RSS
measurements and a fingerprinting method [6], [7] is pre-
sented. What is more, proposed position estimation system
is assisted with deep learning (DL) algorithms. Taking into
account the non-linearity of localization process the demand
for using DL algorithms and the number of research papers
using DL algorithms in localization are rising [8], [9]. In the
fingerprinting method it can be used in measurement phase
[10], [11] or in localization estimation phase [12].

In existing research it is common to consider either in-
door or outdoor localization separately with relatively small
localization areas [12], [15]. Researchers also usually take
measurements of only WiFi Received Signal Strength Indicator
(RSSI) [8]–[10], [12], [16], [17]. Considering the current state
of the literature, the mere use of deep learning is not an
innovative solution. However, the developed comprehensive
system that combines algorithms for the implementation of
user radiolocation in both multifloor indoor and outdoor en-
vironments along with the detection of the environment in
which it is located should be considered innovative in relation
to the existing solutions. Additionally, measurement studies
were carried out, which showed that the hybrid approach
(using cellular networks and local WiFi networks data) allows
to increase the accuracy of user’s localization estimation in
indoor environments.

Innovative radiolocation system described in this paper lo-
cates users in both indoor and outdoor environments and works
on the basis of measurements from both Long Term Evolution
(LTE) network and WiFi. Additionally it is supported with DL
algorithms.
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The main contributions of the paper are:
• An innovative indoor and outdoor radiolocalization sys-

tem that uses channel state estimators measurements
from LTE and WiFi networks with DL algorithms was
designed.

• A measurement software application that measures WiFi
RSSI, LTE RSSI, LTE Reference Signal Receive Power
(RSRP) and LTE Reference Signal Receive Quality
(RSRQ) was created.

• With this application the measurements were carried out,
fingerprinting database was generated and data sets were
formed.

• Deep neural networks (DNN) were implemented. DNNs
were given a vector of measurements data sets from one
user and user’s position was computed.

• The effectiveness of the developed localization system i.e.
trained models of deep neural networks, was verified on
the basis of the measurement campaigns.

• The results show that the hybrid approach of using
signals from both LTE and WiFi network gives more
accurate position estimation than using signal from only
one network.

The rest of the paper is organized as follows — in Section II
a discussion of the related work on the WiFi and LTE signal
based positioning methods using DNN algorithms is presented.
In Section III a proposed system prototype is described.
Conducted measurement scenarios are presented in section
IV. The result analysis of the proposed system is discussed
in Section V and the summary of this paper is presented in
Section VI.

II. RELATED WORKS

Deep learning based localization using signals from LTE or
WiFi networks has been already studied in the past. In this
section different approaches from previous research were pre-
sented. Authors of those articles usually take into consideration
only an indoor environment.

When using a radio signatures method the process of
collecting measurements from a vast area can be time and
memory consuming. In [10] authors created radio maps using
deep gaussian process which describes a relation between
RSS measurements and position in which the measurements
were taken. Thanks to this approach they constructed a radio
map using only 20% of measurements similar to the one
constructed with 100% of measurements.

Using only measurements of WiFi RSS can result in small
localization accuracy. To address this problem, a hybrid RSS
and channel state information (CSI) system is proposed in
[8], [12]. In [8] fingerprint database is made of RSS and
CSI with a high correlation. Measurements from 28 reference
points (RP) were collected in 16× 8 m room. About 90% of
localization errors is less than 1.5 m in this system. In [12]
it has been found that DL using CSI signals achives better
localization accuracy than DL using RSS signals. Convolution
neural network (CNN) using CSI signals achieved maximal
localization error of 0.92 m with probability of 99.97%.

Giving the non-linearility and complexity of position es-
timation using RSS signals researchers tend to implement

a systems of different algorithms [16]–[18]. In [16] authors
proposed a DL system integrating CNN, Siamese architecture
and regression network. Proposed method achieved mean
positioning error of 1.3 m in the 80 × 20 m area with the
fast-moving user. In [17] system which includes DNN, CNN,
Dempster-Schafter theory and AutoEncoder in the 14.4×7.2 m
room achieved Root Mean Square Error (RMSE) of 1.5 m.
In [18] authors used pedestrian dead reckoning with WiFi
weighted path loss algorithm and linear Kalman filter. This
system uses accelerometer, gyroscope and magnetometer sen-
sors. With the path over a rectangular of size 29 × 45 m the
maximum positioning error was 1.5 m.

In [19] authors decided to consider a heterogenous indoor
localization system including measurements from both LTE
and WiFi network. They also examined localization accuracy
when using only the LTE signals or only the WiFi signals. In
the localization area of two 3, 5 × 4, 5 m rooms the smallest
RMSE localization error was 0.9 m for the combination of
both networks.

In the table I a summary of already described in this
chapter and other published articles in which authors proposed
radiolocalization fingerprinting systems supported with DL
algorithms is presented.

TABLE I
SUMMARY OF EXISTING RESEARCH ABOUT RADIOLOCALIZATION

FINGERPRINTING SYSTEMS SUPPORTED WITH DL ALGORITHM

Article Area size Data
sources

Algorithm Performance

Indoor localization
[8] 16× 10 m WiFi DNN 90% errors

less than 1.5
m

[9] 390× 270 m WiFi DNN 5 m - max er-
ror

[10] 2300 m2 WiFi DNN 1.3 m - mean
error

[12] 13, 82 × 8, 56
m

WiFi DNN, CNN 0.9 m - max
error

[16] 80× 20 m WiFi DNN, CNN 1.2 m - mean
error

[17] 14, 4× 7, 2 m WiFi DNN, CNN 1.5 m - mean
error

[19] two 3, 5 × 4, 5
m rooms

WiFi,
LTE

DNN 0.9 m - mean
error

[20] two
3000 m2floors

WiFi Bayes filter,
hidden
Markov
Model

1.9 m - mean
error

[21] 10 × 10 m
floors

WiFi Weighted
Fuzzy
Matching,
Kalman Filter

0.4 m - mean
error

Outdoor localization
[15] 60× 60 m WiFi,

LTE
DNN 0.4 m - mean

error
[22] 100× 100 m simula-

tion
RSS

DNN 5.5 m - mean
error

From the analysis of existing research it can be concluded
that there is a lack of system combining both indoor with
multifloor classification and outdoor radiolocalization systems.
It can be also noticed that there are not many papers in which



596 S. URWAN, D.R. WYSOCKA, A. PIETRZAK, K.K. CWALINA

authors designed a heterogeneous systems with measurements
from both LTE and WiFi networks.

III. SYSTEM PROTOTYPE

The system created as part of this project aims to locate
users in multifloor indoor and outdoor environments. Locating
users is based on the deep learning algorithm. Due to the
use of the fingerprinting method, it is necessary to collect
measurements of channel state estimators from WiFi and LTE.
Moreover, the system works on commercial available mobile
phones. Therefore, the software implementation of the project
assumes the creation of a measuring station in the form of
an application for mobile phones with the Android system,
used to obtain low-leveled channel state estimators from WiFi
and LTE networks. No need to purchase additional specialized
devices, only the use of the existing infrastructure of selected
networks makes the construction of the system universal at
the expense of less accurate measurements. A deep learning
algorithm, specifically a feedforward neural network (FNN),
was chosen as the locating algorithm. In the training phase
of the neural network, a genetic algorithm was used, which
is responsible for the determination of such hyperparameters
defining the network architecture, for which the trained model
obtains the lowest possible user’s localization Root Mean
Square Error. However, in the test phase, the collected vector
of input data is processed by the selected trained network
model.

A. Concept

Positioning system developed for the purpose of this paper
requires only generally available mobile phones with Android
system. As there is no need to use additional specialized
devices, the use of the existing infrastructure of LTE and
WiFi networks makes the construction of the system universal
at the expense of less accurate measurements. The collected
data is stored in a dedicated database on a Hypertext Transfer
Protocol (HTTP) server. The second part of the radiolocation
system is responsible for processing information about signals
from the LTE cellular network and WiFi network, training
and verification of deep neural networks and visualization of
the estimated positions using the Python programming lan-
guage and the QGIS program. After collecting the necessary
information about the signals measured by the user’s device,
the system determines its localization. Described radiolocation
system is presented in Fig. 1.

B. Android measurement application

Measurement application prototype was developed for mo-
bile phone with Android system to collect information for
positioning system and send it to the external server. Accord-
ing to the structure and stack of Android system there is a
possibility to obtain information about radio signal derived
from LTE and WiFi networks via Java. For this project
authors used three Xiaomi Redmi Note 8 Pro smartphones.
The specification is presented in Table II.

The object-oriented programming language Java 1.8 and
the Android Studio 4.2 programming environment under the

Fig. 1. Diagram of used components and their connections in the designed
radiolocation system

TABLE II
USED SMARTPHONES

User Android ver. API level Build number Operator

1 11 30 RP1A.200720.011 Plus

2 10 29 QP1A.190711.020 T-Mobile

3 10 29 QP1A.190711.020 Orange

open-source license were used to implement all the functions
of the measuring application. The application implements a
method that periodically collect information about the signals
received by the mobile phone, emitted by nearby LTE en-
hanced Node B (eNB), nearby WiFi AP and GPS satellites.
Measurements from the GPS system were performed in order
to compare the localization errors of the designed system
with the existing reference radiolocation system. The obtained
parameters update rate of 1 Hz was assumed on the basis
of article [23]. Additionally, in accordance with the design
assumptions, in order to identify and distinguish users and
check their movement history, a unique identifier of user
equipment and the current time stamp are obtained from the
Android system. In the described measuring application, the
functionality of saving the collected information locally in
the devices’ memory has also been implemented in order
to protect against the loss of data sent via the Internet to
the external server. Measurements can be performed in two
modes: measurement performed for a specified period of time
or measurements performed for an indefinite period of time
until the user stops the application.
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On the HTTP server side, incoming requests (POST) of
the mobile application are directed to port 80 and handled
by a script written in PHP language. The mobile application
uses the Volley library for connecting the application with
the server, creating requests to send the measurement data,
creating listeners responsible for handling the 200 OK message
and errors from the server. In addition, the PHP code on the
server verify users and allow database to create new data
records. One cycle of the processing and transmission loop
of the measurement data set is completed upon receipt of the
server feedback on the status of the operation performed.

It should be mentioned, that there are few limitations
associated with Java programming language for Android and
application layer of Android system. First of all, reffering to
Android’s documentation [26] there is a correlation between
the version of Android installed on the mobile phone and
available Java language methods. All used methods and fields
are presented in Table III.

TABLE III
SUMMARY OF REQUIRED API FOR USED METHODS

Classes CellInfo, CellIdentityLte, CellSignalStrengthLte

Method name Min API level Proper functioning on tested phone

getPci 17 Yes

getTimeStamp 17 Yes

getRsrp 26 Yes

getRsrq 26 Yes

getRssi 29 Yes/No

getCqi 26 No

getRssnr 26 No

Class ScanResult

Field name Min API level Proper functioning on the phone

timestamp 17 Yes

frequency 1 Yes

SSID 1 Yes

BSSID 1 Yes

level 1 Yes

Class Location

Method name Min API level Proper functioning on the phone

getLatitude 1 Yes

getLongitude 1 Yes

getAltitude 1 Yes

The analysis presented previously shows the following
limitations in the designed radiolocation system for mobile
phones with the Android system:

• API level versions consist of different lists of usable
classes and methods, which excludes the use of e.g.
getRssi method,

• the correct operation of the methods that can be used
in Android Studio for each API level depends on the
decisions of Android mobile phone manufacturers regard-
ing the implementation of individual methods in their
devices, e.g. the getCqi method, despite the availability
for API level 29, does not function properly on mobile
phone Xiaomi Redmi Note 8 Pro,

• it is not possible to implement the radiolocation system
application on every Android mobile phone with correct
operation guarantee.

C. Positioning method

Fingerprinting method assisted with DL algorithms consists
of offline and online phase:

1) offline phase: during an offline phase the signal’s mea-
surements are taken in chosen reference points (RP). In this
project it was decided to collect measurements of WiFi RSSI,
LTE RSSI, LTE RSRP and LTE RSRQ. As a result with data
preprocessing deep neural networks’ input vectors are created.
Input vectors with corresponding reference coordinates are
then used to train neural network models.

2) online phase: testing data were collected in the online
phase. The same measurements as in an offline phase are taken
and with data preprocessing input vectors are created which
are then processed by trained neural network model and an
estimated user’s position is calculated.

D. Data preprocessing

One of the goals of this paper is to examine an input vec-
tor configuration influence on position estimation. Therefore,
vectors consisting of different number of measurements from
WiFi and LTE networks were created. In case of not having
enough measurements the gaps were filled with zeros [24].

For the outdoor scenario measured reference longitude and
latitude were changed to the ECEF coordinates for RMSE
calculation in meter unit.

In order to process data set in different ranges with neural
network it is necessary to normalize it. It improves neural
network calculations and decreases training error. It was
decided to normalize our data by scaling it to a range of (0,
1) [25] with an equation (1):

xnorm =
x− xmin

xmax − xmin
(1)

where:
xnorm - normalized value
x - not normalized value
xmin - minimum value of data
xmax - maximum value of data

E. Deep learning

Given the non-linearity of position estimation based on the
signals of opportunity a deep learning approach as localization
algorithm was chosen.

1) Deep neural networks: The FNN was used as an ex-
ample of simple deep neural network in order to simplify
parallelization and implementation, which provides a low-
computational final solution.

In order to obtain the smallest possible error in user local-
ization, a hierarchical deep learning solution was developed
(Fig. 4). In the context of user localization, in which indoor
and outdoor localization were performed, the hierarchical neu-
ral network system developed in this project firstly determines
whether the user is outside or inside the building. In case of an
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Fig. 2. Construction of the input vector of a deep neural network

outdoor classification data is passed to FNN model dedicated
to position estimation in outdoor environment. On the other
hand, if it has been assigned indoors, the classification of the
floor on which the user is located takes place. Once the floor is
designated, data is passed to FNN model dedicated to position
estimation in indoor environment on given floor.

The number of hidden layers, the number of nodes in
each hidden layer, the number of training epochs, the mini-
batch size and the learning rate were selected using a genetic
algorithm, which is described in detail in point 4. The Rectified
Linear Unit (ReLU) activation function and the Adaptive
Moment Estimation (ADAM) algorithm were used in the
hidden layers in either regression (position estimation) and
classification (floor estimation) networks. Additionally, in the
output layers of regression networks as well as binary and
multi classification networks, the linear, sigmoidal and softmax
activation functions were used respectively. For classification
networks the error function is the cross entropy function, while
for regression networks the error function is the mean square
error function.

The position estimation error obtained from regression net-
work models is described by Mean Square Error (MSE) which
is then computed into RMSE in order to obtain error value
given in meters. The accuracy of the classification network
models is determined by the percentages [0% - 100%].

Deep neural networks models were implemented with the
use of programming language Python 3.9 and the library Py-
torch 1.9. All models were trained and tested on a Windows 10
21H1 workstation with Ryzen 5 3600 CPU (6-core 3.59 GHz),
32 GB RAM, GTX 1660 Super (GPU) and 512 GB SSD in a
Protolab laboratory of Gdańsk University of Technology.

2) Input vector structures: As mentioned earlier, based
on the fingerprinting method, the input data vector for the
neural networks consists of measured RSRP, RSRQ and RSSI
values from LTE networks and RSSI from WIFI networks. In
order to identify signal sources, dynamic MAC addresses of
access points and local Physical Cell Identity (PCI) of eNB
were used. Moreover, it was decided to investigate the effect
of the number of selected signal sources on the localization
accuracy while their order does not influence the accuracy
of the system. Localization accuracy was also investigated
using measurements only from WIFI or only from LTE. The
structure of the input data vectors for configurations with N
signal sources from WIFI and M signal sources from LTE is
shown in fig. 2.

Reference vectors, which are necessary in supervised learn-
ing, have to be defined for both analyzed neural network model
type (classification and regression). For the classifier network,
the reference vector consists of a single number specifying the
class for indoor and outdoor environment classification or for

floor classification. For the outdoor regression, the reference
data are the longitude and latitude converted to ECEF system
coordinates. For the indoor regression, the reference data are
the x, y local coordinates which can be mapped using anchor
reference point to global system coordinates in ECEF.

3) Supervised learning: The processed input data is then
divided into training, validation and test parts in a ratio of
60:20:20. The training and validation process continues for
a predetermined number of iterations or until an interruption
condition is met. In the design, the network training is inter-
rupted if during the next 30 iterations the validation RMSE
increases or the difference between the training and validation
error is greater than a predetermined threshold of 1 cm (for
indoor environment) and 50 cm (for outdoor environment)
and during the next 30 iterations the validation RMSE does
not decrease. This is necessary to avoid overtraining the
network as well as to reduce the training time when smaller
training error values are not achieved. Importantly, training is
interrupted and the saved neural network model is the stored
model from before the 30 iterations countdown began.

4) Hyperparameters tuning: The effectiveness of deep neu-
ral networks operation depends on many factors, including
architecture hyperparameters or noise of the data provided
to the input layer. The selection of hyperparameters of deep
neural networks can be performed e.g. by grid search algo-
rithm, random search algorithm or genetic algorithm [27],
[28]. In this project, authors decided to implement a genetic
algorithm in order to search a limited set of values of the tested
hyperparameters for the optimal model architectures for each
of measurement scenarios. Table IV present ranges of values
of all tested hyperparameters.

TABLE IV
RANGES OF THE TESTED HYPERPARAMETERS

Hyperparameter values range for clas-
sification

values range for re-
gression

Number of hidden
layers

{1, 2, 3, 4, 5, 6}

Number of nodes {10, 20, 30, ..., 400}
Number of epochs {10, 11, 12, ..., 100} max 500

Batch size {32, 64, 128, 256, 512}
Learning rate {1e-5,5e-5,1e-4,5e-4,1e-3,5e-3,1e-2,5e-2,1e-1}

The presented ranges were selected based on the research
described in [28]. The ranges of values of hyperparameters
vary and similar effectiveness of the network operation can be
achieved for extremely divergent values of the hyperparame-
ters. The selection of a wide range of hyperparameter values
for the grid search algorithm and the random search algorithm
will allow to increase the number of possible solutions giving
similar network efficiency results. However, such a choice will
increase algorithm’s operating time. According to the literature
and conducted research, the use of a genetic algorithm allows
an effective search for a multidimensional set of hyperparam-
eters [28]. This results in a reduction of the time needed to
find the optimal combination of hyperparameters.

In order to function properly, the genetic algorithm requires
the determination of the conditions for interrupting its oper-
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ation. There are many methods and approaches used in the
literature [28], [32], however, in the implementation of this
project, two mechanisms of stopping the genetic algorithm
were used:

• when a certain number of generations of solutions were
exceeded,

• when the most effective solution of a given population
reaches a certain threshold of the accuracy of the classi-
fication or the accuracy of the localization estimate.

In this project it was established that the limit value of
the iteration of the genetic algorithm generations will be
10, although other values are also used in scientific works,
e.g. 5 [32]. It is worth emphasizing that this number may
directly affect the results of the searched hyperparameter
space. Consequently, a small number of iterations may not
lead to finding the optimal solution. On the other hand, too
many iterations can significantly increase the working time
of the algorithm by searching the multidimensional space of
hyperparameters more accurately. For each tested measure-
ment scenario a threshold was defined upon reaching which
the genetic algorithm would be interrupted. The threshold
values have been determined on the basis of scientific research
conducted in the field of radiolocation and the results achieved,
summarized in Table I. In order to interrupt the work of the
genetic algorithm at the right moment, i.e. taking into account
the computational complexity and the result in the form of the
most effective architecture found, the method of comparing
the effectiveness between successive models of deep neural
networks should also be used. Small differences in values,
e.g. the RMSE between the best models after several iterations
of the genetic algorithm may indicate the lack of new, better
solutions on the examined plane.

A block diagram of a genetic algorithm implemented for
the purposes of this project, supporting the selection of hy-
perparameters of deep neural networks is shown in Fig. 3.
The genetic algorithm developed for this project is limited
by a maximum number of 10 iterations, and each population
consists of 20 individuals, i.e. solutions. Each individual of the
population is a set of values of the examined hyperparameters.
The algorithm begins by uniform randomizing the initial
population of deep neural network architectures. On the basis
of all models training of a given population, the models are
sorted according to the results of the achieved work efficiency.
Then, the best 10 models by means of minimizing RMSE are
selected that will be involved in further processes of the ge-
netic algorithm. The most effective models from the previous
population from sequence number 2 to 10 are involved in the
mutation process. It was decided that with a probability of
0.05 [28] each model would be able to be mutated with an
equal probability of one of the 5 hyperparameters (in the case
of classification) and one of the 4 hyperparameters (in the
case of regression). The mutation process was carried out by
drawing a new value of a given hyperparameter from the range
constituting +/- 10% of the entire specified range of values
in relation to the last value of a given hyperaparameter [28].
The value of 10% will allow a more detailed examination of
the searched space, verify the effectiveness of the individual’s

Fig. 3. Block diagram of used genetic algorithm

operation, i.e. architecture with a modified gene value, and
assess whether the introduced change was beneficial.

F. System architecture

The hierarchical approach requires the interconnection of
individual neural networks, with the output of one network
indicating which network will be used in the next step. A
functional block diagram of the created neural network system
is shown in Fig. 4.

Each of the deep neural networks that make up the hierar-
chical approach described previously consists of an input layer,
n hidden layers and an output layer with the number of output
elements in the vector depending on the network model.

IV. SCENARIOS

The purpose of the proposed deep learning system is to
locate users inside and outside of the buildings. It is there-
fore necessary to carry out measurements in both of these
environments. In outdoor environment only one static scenario
was defined, while in indoor environment four static scenarios
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Fig. 4. Network of connected classification and regression DNN models

were defined. For each of the static scenarios there was corre-
sponding dynamic scenarios. 1077647 data records of WiFi’s
information and 70081 data records of LTE’s information were
gathered in both offline and online phases.

Due to the lack of information on the localizations of nearby
WiFi access points, cellular networks base stations and infor-
mation on propagation loss, which also are used for estimating
UE localizations [29], the method of creating a radio map
with the use of radio signatures was selected. The localization
process using RSS parameter is divided into two phases: the
offline phase (static scenarios) and the online phase (dynamic
scenarios). In the offline phase, a radio map with reference
points (user’s positions) was created, while in the online phase
the effectiveness of the tested localization algorithms was
estimated. For this reason, separate measurement scenarios
for both of the mentioned phases were distinguished. Three
mobile devices were held by the users at a height of 100-120
cm above the ground in a gesture representing the use of the
device.

Measurements for the training set in the offline phase were
taken for one minute at each reference point, with all of
the single measurement data sets being gathered every 0.5
seconds. The three users were in a static position - standing
motionless with the UE in front of them. In order to test the
designed radiolocation system in the online phase the testing
route was covered by three users at a walking pace without
stopping at individual reference points.

A. Outdoor scenario

The studied environment in the described scenario is the
area of the campus of the Gdańsk University of Technology,
where a 1760 m long route was marked out. The first (starting)
point in the easternmost area of the campus. The end point was
located in front of the main entrance to the building A of the

Fig. 5. Outdoor measurement scenarios

Faculty of Electronics, Telecommunications and Informatics.
The measurement route runs through the campus area of the
university due to the need of investigation the effectiveness of
the localization algorithm in various propagation conditions,
i.e. corresponding to the canyon streets environment, half-
open area, and LOS/Non LOS situations according to the base
station localizations around the campus. It is also worth noting
that the positions of LTE base stations and WiFi access points
were not known a priori.

In the offline phase a radio map was created. The proposed
online phase route (gray line) with 90 reference points (orange
points) of the offline phase marked on it is presented in Fig.
5. The distance between nearest reference points vary from
10 to 30 meters due to the need to conduct the measurement
campaign as accurately as possible. RPs were situated in the
so-called characteristic places. This resulted in decreasing the
values of possible errors caused by the wrong mapping of the
actual reference points positions on the map from which values
such as latitude and longitude were gathered. Furthermore,
according to [30] there is a visible connection between the
density of data position used for training data sets and the
efficiency of deep learning algorithm, where the value should
be equal to 4.5-6.5% of the distance between base station
or 2.3-3.3% of the measurement area. Unfortunately, in the
first case the positions of neither WiFi’s APs nor LTE’s eNBs
were known. Nevertheless, area distance of the wider axis is
approximately equal to 680 m, where these 2.3-3.3% gives the
distances around 15-22 m.

B. Indoor scenarios

All indoor scenarios measurements were carried out inside
of the building A of the Faculty of Electronics, Telecommu-
nications and Informatics (ETI A) of the Gdańsk University
of Technology. A reference point of the local coordinate
system has been established for each of the distinguished
floors. Measurements from each of the floors were additionally
marked with the floor number on which they were carried out.
Similarly, as in the outdoor scenario, there was information
about the received signals from WiFi, GPS and cellular net-
works as well as additional user information in one set of
measurement data.

The research [30] on the impact of forming learning datasets
on the effectiveness of deep learning in radiolocation appli-
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Fig. 6. Radio map for indoor scenario II A

Fig. 7. Radio map for indoor scenarios II B, II C and II D

cations shows that the positions of nearby reference points
should be set with constant distance intervals. The RPs’ grid
distance was also examined in [33]. Thus, a constant distance
value between adjacent RPs of the created radio map was used.
A systematic review of the literature shows that for the indoor
environment the discussed value vary from about 1 m to 2 m
[12], [16], [17], [31]. For the studied case the need to obtain
a high UE position localizations accuracy, it was decided to
use the mean value of the distance between nearby reference
points equal to 1.5 m. This value was the same for all of the
indoor scenarios.

In the indoor environment, several measurement scenarios
have been distinguished, depending on the measurement con-
ditions and the localization of measurement points. Scenario II
A focuses on the environment with poor propagation properties
- the basement of the ETI A building. This scenario has
the highest number of reference points among the indoor
scenarios. Next indoor scenarios are scenarios II B, II C and
II D, where the offline phase RPs and the testing route of the
online phase look the same. However, mentioned scenarios
differ by the floor number on which measurements were taken.
In Fig. 6 and Fig. 7 radio maps of the offline phase are
presented, respectively for the scenario carried out in the
basement (II A) and the scenarios carried out on floors: 3,
4 and 5 (II B, II C, II D).

V. RESULTS

This chapter of the paper is intended to present the results of
the measurement application, genetic algorithm and deep neu-
ral networks in the designed radiolocation system. The wide
scope of the performed research will allow to determine the
capabilities of the prototype system in terms of time resolution
and possible accuracy of users’ localization estimation in the
described measurement scenarios. At the beginning, the ability
of a UE to retrieve information about received signals via a
mobile phone was presented. Then, the results of research on
various structures of input vectors were presented, using the
most effective architectures of neural network models obtained
from the genetic algorithm.

A. Measurement application results

Before commencing the process of acquiring information
about the radio signals received by the user’s device for the
designed radiolocation system, a series of test measurements
was performed. The purpose was to empirically confirm the
choice of selected time of radio signals indicators refreshing.
The times between new information about radio signals that
can be read by the Android application layer are summarized
in Table V.

TABLE V
TIME RESULTS OF TEST MEASUREMENTS FOR OUTDOOR SCENARIO

WiFi scanning throttle limits turn on (default option)

Min refreshing time 1.7s

Avg refreshing time 20s

Max refreshing time 89.4s

WiFi scanning throttle limits turn off

Min refreshing time 1.1s

Avg refreshing time 2s

Max refreshing time 6.3s

LTE

Min refreshing time 5s

Avg refreshing time 5.9s

Max refreshing time 27.7s

Selected time resolution of online measurement phase 1s

It was found that the average time of refreshing information
about signals from the WiFi network is about 20 seconds (for
the user using the default Android settings), and for the LTE
network it is about 6 seconds. This means that the sufficient
average time to create the input vector to the deep neural
network will not be shorter than the average time to obtain
new information about signals from the LTE or WiFi network.

In Figures 8, 9 and 10 the time dependencies between
successive updates of information on received signals from
the LTE network, WiFi network and the GPS system are
shown. It has been noticed that depending on the environment
in which the measurements are performed, the time between
reading the information about signals from the LTE network
received by mobile phones available to the programmer is
variable. This time for each scenario is greater than or equal
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Fig. 8. The time between successive scans of information of received signals
from the LTE eNBs

Fig. 9. The time between successive scans of information of received signals
from the WiFi APs

to about 5 seconds. A dispersion of the refreshing time was
noticed even on the adjacent floors of the Faculty of ETI A
building. Table V and Fig. 9 present the test results related
to the limitations of the Android system. According to the
documentation available for Android application developers,
it follows that the limitations related to the increase in the
interval between the available new information about signals
from cellular networks and WiFi networks are dictated by the
energy saving process of mobile phones. Disabling the default
setting in the developer options for limiting WiFi network
scanning reduces the average waiting time (from about 20 s
to 2 s) for a new WiFi network information scan made by
mobile phones in the expense of energy saving process. The
average time of updating the user’s position from the GPS
system that can be obtained by the measurement application
is about 2 s. Summing up the considerations - in the designed

Fig. 10. The time between successive estimated user’s localizations

Fig. 11. Correct and incorrect measurements of the RSSI of the LTE eNBs

radiolocation system it is not possible to obtain a higher time
resolution for receiving the position update than in the GPS
localization system.

In Fig. 11 the discrepancy between the number of mea-
surements received by user 1 (U1), user 2 (U2) and user 3
(U3) is shown. The number of measurements taken by the
U1 is greater for the presented scenarios from about 27% to
even about 50%. It should be mentioned here that the working
time of the UE, and thus the acquisition time of measurement
sets containing information about radio signals in each of the
measurement scenarios, was the same for the three devices.
Furthermore, the U1 device has recorded a valid measurement
of the RSSI parameter in each read measurement data set. It
can be concluded that the implementation of a radiolocation
system based on the radio signature method for devices with
Android system depends not only on the brand and model of
the device, which was presented in the theoretical introduction
in this documentation, but also on the version of the Android
system on a given device. It has been confirmed that the use
of identical methods provided in different versions of the API
may cause a different result, which may directly translate into
the effectiveness of the prototype radiolocation system due to
the missing actual values in the input vector of the neural
network.

B. Statistical Analysis of the Received Radio Signals

1) Relationship between scenarios and most common num-
ber of PCI/BSSID appearances in input vectors: To create
the input vector of the deep neural network data, the number
and the power of measured signals at a given reference point
are important. Most frequently occurring numbers of BSSID
and PCI addresses in the input vectors of the basement, 3rd
floor, 4th floor, 5th floor and outdoor measurement scenarios,
respectively are shown in table VI. It was observed that in the
case of WiFi networks, the most frequent number of BSSID
addresses in the input vectors is 16. Only in the indoor scenario
of the basement floor, the input vectors most often consisted
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TABLE VI
MOST COMMON NUMBER OF LTE AND WIFI ADDRESSES’ APPEARANCES

IN INPUT VECTORS

PCI BSSID

Indoor basement 2 14

Indoor 3rd floor 2 16

Indoor 4th floor 3 16

Indoor 5th floor 3 16

Outdoor 1 16

Fig. 12. Interpolated average RSSI power distribution for one user and one
BSSID address - Inverse Distance Weighting Interpolation

of 14 BSSID addresses. In the case of cellular networks, the
number of PCI addresses most frequently found in the input
data vector is not so clear-cut. In the input vectors of the
outdoor scenario, 1 PCI address was the most common, in
the data obtained from the indoor scenarios on the basement
floor and the 3rd floor most often there were 2 PCI addresses,
while on the 4th and 5th floors, the most frequent number of
PCI addresses was the number 3. Statistics of the frequency of
occurrence of a given number PCI and BSSID addresses in the
input vectors of deep neural networks are important from the
perspective of the relationship between the selection of their
appropriate combination and the effectiveness of deep neural
networks.

2) Interpolated power distribution of the received signals:
In order to present the maps of the interpolated power dis-
tribution of the received signals, it was decided to select the
data obtained for one BSSID / PCI address by one user. The
set of data needed to visualize the signal power distribution in

Fig. 13. Interpolated average RSRP power distribution for one user and one
PCI address - Inverse Distance Weighting Interpolation

the outdoor scenario was selected on the basis of the largest
number of occurrences of a given address of obtained data for
one user and the greatest possible number of its occurrences
at various measurement points. An example of the distribution
of average RSSI and RSRP for data sets for one user and one
BSSID and PCI address is shown in the figures 12 and 13.

From the visualization of interpolated power distribution
maps, it can be observed that the values of the measured
powers differ significantly depending on the place of mea-
surement. Power values vary from -90 dBm to -60 dBm for
RSSI and from -112 dBm to -82 dBm for RSRP, nevertheless
the power ranges on maps were chosen empirically to ensure
better visualization. The strength of the received signals may
be influenced by factors such as the topography, LOS/NLOS
and the user’s distance from base stations and access points.

C. Selection of DNN hyperparameters

To test the effectiveness of the neural network models, the
input vector structure was used, consisting of information from
ten WiFi access points and three eNBs of the LTE network.
The results of the best architectures found after 10 iterations
of the genetic algorithm for each measurement scenario are
shown in the following tables VII and VIII.

TABLE VII
RESULTS OF GENETIC ALGORITHM FOR CLASSIFICATION

Indoor-Outdoor
Classification

Floor
Classification

Iteration of Genetic Algorithm 2 6

Number of Hidden Layers 3 5

Number of Nodes 355 250

Batch size 256 128

Learning Rate 0.001 0.0005

Training Acc 99.9% 99.3%

Validation Acc 99.7% 97.1%

Testing Acc 99.6% 96.7%

The efficiency of indoor and outdoor environment classifi-
cation is higher than the indoor floor classification by approx-
imately 3%. The efficiency of classification is a limitation of
the designed system. In the case of a wrong indoor-outdoor
or floor classification, the results of the position estimation in
the coordinate system will not be reliable. System obtained
similar floor classification accuracy as in existing articles e.g.
97% and 98% [13], [14].

The accuracy of the estimation of the localization of users
on the floors does not differ significantly (0.3 m between the
3rd and 4th and between the 3rd and 5th floors), and the
greatest similarity of the obtained efficiency results occurs
between the 4th and 5th floor. Indoor results are decent
because RMSE values are smaller than the distance between
the measurements points. The largest RMSE error in the user’s
localization estimate was obtained for the outdoor scenario
and it was 15m for a network structure with 4 hidden layers
and 169 nodes in each layer. In general, the structures of the
best architectures for the regression problem are similar. In
conclusion the number of hidden layers should be in a range



604 S. URWAN, D.R. WYSOCKA, A. PIETRZAK, K.K. CWALINA

TABLE VIII
RESULTS OF GENETIC ALGORITHM FOR REGRESSION

Basement 3rd
Floor

4th
Floor

5th
Floor

Outdoor

Iteration
of Genetic
Algorithm

1 7 10 9 2

Number
of Hidden
Layers

2 5 3 3 4

Number of
Nodes

311 213 247 239 169

Batch size 64 32 32 128 32

Learning
Rate

0.001 0.001 0.001 0.001 0.0005

Training
RMSE

0.5 m 0.3 m 0.4 m 0.4 m 6.8 m

Validation
RMSE

2 m 0.7 m 1 m 1 m 15.9 m

Testing
RMSE

1.5 m 0.7 m 1.1 m 1.1 m 15 m

of 3 to 5 and the number of nudes should be greater than 200
for indoor environment.

D. Radiolocation system results
On the basis of the most effective architectures selected

from the previous chapter, in this article the authors examined
the influence of the content and structure of input vectors of
deep neural networks. Figures 14, 15 and 16 show the results
obtained by the best models trained on various m WiFi and
n LTE input vector configurations, where m is the number of
measurements from the WiFi network and n is the number of
measurements from the LTE network in the input vector.

1) Classification error: The results of classification accu-
racy for the indoor and outdoor classification as well as the
floor classification are presented in the Fig. 14. The highest
classification accuracy for both scenarios were obtained using
models trained on the vectors consisting of a combination of
WiFi and LTE measurements. Changing the input vector in
the floor classification of the indoor scenario has greater effect
than in the indoor and outdoor classification. Different number
of used WiFi signal indicators in the input vector of the indoor
and outdoor classification causes approximately about 0,4%
accuracy difference. However, there is a significant reduction
in classification accuracy to 79% using signals indicators from
5 AP and to 76.3% using signal indicator from 1 eNB. The
difference of 20,3% in accuracy shows that for the floor
classification the number of used signals indicators in the input
layer has enormous impact.

2) Positioning error: The results of RMSE error of user’s
localization in the indoor and outdoor scenarios are presented
in the Fig. 15, 16.

The results obtained by the models trained on the vectors
consisting of WiFi measurements or a combination of WiFi
and LTE measurements reached the smallest RMSE localiza-
tion errors for regression. For the indoor regression on floors
3rd, 4th, 5th, basement and the outdoor regression the dif-
ferences between the largest and smallest RMSE localization

Fig. 14. Accuracy of classification of indoor and outdoor scenarios for the
most effective architecture for various input vector structures

Fig. 15. RMSE error of user’s localizations in the indoor scenarios for the
most effective architectures for various input vector structures

error obtained by the given vectors are 1.5 m, 0.6 m, 1 m, 0.3
m and 19.1 m, respectively. The smallest localization RMSE
errors for each scenario were obtained using models trained
on vectors consisting of a combination of WiFi and LTE
measurements. The lowest RMSE error of 0.9 m of user’s
localization was obtained for the indoor scenario on the third
floor.

From the visualization of the users’ localization estimates
by the deep learning algorithm presented in Figure 17, 18,
19 and 20 it can be observed that the number of determined
position estimates is smaller than the number of positions

Fig. 16. RMSE error of user’s localizations in the outdoor scenario for the
most effective architectures for various input vector structures
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Fig. 17. Map of GPS route points (blue colour)

Fig. 18. Map of route points estimated by deep neural network models for
the ’LTE2’ input vector (blue colour)

Fig. 19. Map of route points estimated by deep neural network models for
the ’WiFI15’ input vector (blue colour)

Fig. 20. Map of route points estimated by deep neural network models for
the ’WiFi15LTE2’ input vector (blue colour)

determined by the GPS system. It can be seen that the density
of points representing the estimated localization of users is
different in relation to the input vectors containing separately
information about signals from these networks. This results
in the advantage of the classic GPS localization system over
the method developed by the authors of this article, based on
radio signals from WiFi and LTE networks. In the case of
the GPS system, the assumption described in the theoretical
introduction is confirmed that the GPS system provides greater
measurement time resolution. The presented results of the
localization accuracy confirmed as expected the effectiveness
and usefulness of the proposed deep learning system over
the GPS system in the indoor scenario. Furthermore, it can
be concluded that the signals of the hybrid WiFi and LTE
networks significantly (up to 5.5 m in the basement indoor
scenario) contribute to increasing the accuracy of the users’
localization estimates. The difference in accuracy in the indoor
scenario is from 3.8 m to 16 m, which is a significant increase
in the accuracy of the localization compared to the GPS system
regarding usage of only WiFi or only LTE signals indicators.
Only in the outdoor scenario, the GPS system works more
efficiently, achieving a 3.6 meters lower average localization
error. However, it is known that even the GPS system, espe-
cially in the conditions of dense urban environment, may be
characterized by an increase in errors, and the use of signals of
opportunity would allow, e.g. to maintain localization services.
On the third floor, the highest accuracy of position estimation
was obtained. Those results are comparable to the accuracy of
determining the place of reference measurements. Therefore
further improvement of the accuracy of position estimation
requires, e.g. automation of the measuring process or the use
of a reference location system with an error of at least one
order of magnitude lower.

VI. CONCLUSION

In this paper radiolocation system prototype based on sig-
nals of opportunity with the use of deep neural networks
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was presented. It has been shown that the use of input
vectors consisting of the parameters of WiFi and LTE signals
gives greater accuracy of users’ position estimation than those
consisting of only WiFi parameters or only LTE parameters.
On the basis of the obtained results, it can be concluded that:

• the correct functioning of the prototype radiolocation
system largely depends on the user’s UE type and the
version of the operating system,

• the most effective solutions - architectures of deep neural
networks obtained by the genetic algorithm - do not differ
from each other in terms of the obtained accuracy of sys-
tem, and the range of hyperparameters for which similar
values of effectiveness are obtained is wide (number of
hidden layers from 2 to 5, number of nodes from 169 to
311, batch size from 32 to 128 and learning rate from
0.0005 to 0.001),

• the use of a combination of measurements from WiFi and
LTE networks allows for a more accurate localization of
users in a radiolocation system based on the deep learning
method compared to using measurements only from the
WiFi network or only from the LTE network,

• user’s localization determined by the designed radiolo-
cation system, using the deep learning algorithm, have
RMSE error lower of even 24.3 m (in case of stan-
dalone GPS) than the localization of users designated
by standalone GPS, WiFi and LTE systems in an indoor
environment. Thus, localization services used e.g. to
monitor people using the existing infrastructure can be
provided,

• the effectiveness of such a comprehensive system depends
on the effectiveness of the classification of the propaga-
tion environment, which, thanks to deep learning, was
achieved with the accuracy of 99.7% for indoor-outdoor
classification and 96.6% for floor classification,

• the prototype of the proposed radiolocation system based
on the measurements of radio signals is characterized
by a lower time resolution compared to the classic GPS
localization system due to the commercial UE limitations.

In the future works searching for the most effective combi-
nation of information of received signals by UE’s with the
use of filtration can be performed. It is necessary to increase
the number of measurements in various environments and in
different geometries of the localization of reference stations in
the localized area, to conduct research on the impact of the
density of reference point implementation on the effectiveness
of the localization system based on deep learning.
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