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Dimensionality reduction in kernel-based identification
of Wiener system by cyclostationary excitations

Gabriel Maik, and Grzegorz Mzyk

Abstract—The topic of nonparametric estimation of nonlinear
characteristics in the Wiener system is examined. In this regard,
the traditional kernel algorithm faces difficulties stemming from
the dimensionality associated with the memory length of the
dynamic block. A particular class of input sequences has been
proposed, which aids in reducing dimensionality and conse-
quently improves the convergence rate of the estimator to the true
characteristics. A theoretical analysis of the suggested method is
presented.
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I. INTRODUCTION

DESCRIBING reality using mathematical models is a
common practice and is of fundamental importance

in forecasting, making optimal decisions, automatic control,
simulation, fault detection, noise reduction, etc. Even when
trying to describe seemingly simple processes, we do it
ineptly, because reality reveals various nuances, such as dy-
namic memory, strong nonlinear dependencies, nonstationarity
(variability of process behavior over time), or uncertainty
connected with a random nature of the observed processes.
Taking into account all these factors leads to very complicated
descriptions, which in turn increases the computation time.
The concept of the so-called predictive control, i.e. one in
which a forecast of the behavior of a given phenomenon
is determined on an ongoing basis, and then the optimal
control/decision is obtained based on it. Of course, for such a
controller to be able to work online [1], an appropriate speed
of computation is required to be ready with a decision on time.
In automation systems, times are often measured in millisec-
onds. It is therefore necessary to simplify the actual process
and approximate it using a model from a specified a priori
class. Since the 1980s, models with block-oriented structures,
consisting of not only linear dynamic (L) but also nonlinear
static (N) blocks, have gained common acceptance. Among
them, the Wiener-type structure (L-N) is considered one of
the most promising due to its good approximation properties
of many real phenomena. This is confirmed by numerous
publications in automatic control, telecommunications, and
econometrics (see e.g. [2] and references cited therein). This
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work investigates an approach to estimate nonparametrically
the nonlinearity in the Wiener system based solely on the
external signals’ measurements in the presence of random
disturbances. Importantly, the proposed method fits into the
so-called nonparametric identification [3]–[5], where a wide
class of nonlinear characteristics is allowed, not necessarily
described by a finite number of parameters. Compared to the
Hammerstein (N-L) system, the Wiener system has had a much
larger number of spectacular practical applications. They cover
not only automatic control problems, but also issues related to
telecommunications, biocybernetics, econometrics, chemistry,
mechanics, geology, etc. [6], [7]. Many years of experience of
engineers indicate that the L-N structure better reflects most
real phenomena. Unfortunately, the problem of identifying
the Wiener system is extremely difficult from a theoretical
point of view. In particular, when the input excitation is
treated as a random process, it is transferred through a linear
dynamic filter, and therefore the interactive internal signal
(not available for direct measurement) is correlated. This
entails malicious problems in constructing estimators of the
impulse response and nonlinear characteristics and analyzing
their asymptotic consistency. Modern approaches emphasize
the most general description of individual model blocks. A
linear dynamic subsystem is usually described in terms of
its impulse response, while a nonlinear static subsystem is
treated nonparametrically. This leads to the formulation of
a problem that is essentially an optimization problem in a
multidimensional space, and the number of dimensions is
equal to the number of considered impulse response elements.
Therefore, in light of the preceding discussion, increasing the
complexity of the model causes an exponential increase in its
variance. This is due to the fact that in a multidimensional
space the likelihood of getting measurements close to the
operating point declines rapidly. This phenomenon, called
the ’curse of dimensionality’, means that the identification
algorithms with nonparametric nonlinearity developed so far
have a very limited range of applicability. Applying them
to systems with long memory is rather out of the question.
Reducing the dimensionality is one of the crucial challenges in
the field of optimization, which has been intensively analyzed
in the past decades.

Solutions range from ones intended for linear modeling [8]
to nonlinear manifold learning [9]–[12], where for the latter,
such methods as Isomap and locally linear embedding are
often considered. Dimensionality reduction is also significant
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in dynamic systems identification [13], including nonlinear
systems [14], [15] similar to this paper.

The main intention of this work is therefore to formulate
classes of specific input signals, which are postulated to guar-
antee dimensionality reduction and have practical justification.

The article addresses the prevalent issue of input dimen-
sionality in the modeling of data. In the contexts of system
identification [16] and pattern recognition [17], the objective
is to minimize either the model’s order or the number of
features taken into account. Specifically, when employing a
nonparametric approach to model nonlinear phenomena, the
likelihood of encountering input sequences that are proximate
to the reference point of interest diminishes noticeably as input
dimensionality rises. For instance, in the kernel method, this
leads to a limited selection of cases, which in turn causes
a significant increase in the estimates’ variances. On the
contrary, in methodologies that utilize the nearest neighbors
technique, an increase in the number of features tends to
amplify the bias of the estimators.

Significant efforts have been dedicated to address this
issue. Notable methodologies in this area include the Akaike
information criterion [18] and L1 lasso regularization [19].
The application of small parametric models facilitates variance
reduction even with a limited dataset, however, this approach is
inherently linked to a systematic non-zero approximation error
(bias) in the asymptotic sense. To eliminate this asymptotical
approximation error, one can enhance the model’s complex-
ity as long as the number of observations increases. This
strategy is referred to as nonparametric [4], [5]. Techniques
such as kernel algorithms and orthogonal series expansion
algorithms exemplify such an approach. Nevertheless, the
challenge is the curse of dimensionality, which often results in
a slow rate of increase in model order (or kernel narrowing)
necessary to ensure asymptotic consistency. In the context
of Wiener systems, numerous strategies have been proposed
in the literature to tackle this obstacle, primarily focusing
on the generation of specialized input sequences, such as
piecewise constants periodic inputs [20], multisinusoids [21],
or cyclostationary processes [6]. Generally, it is assumed that
the input is contained within a manifold characterized by a
reduced internal dimension [12], [22], [23].

The primary contribution of this work lies in the usage
of a supplemental ARMA (autoregressive moving average)
filter to construct special sequences of the system’s excitation.
The identification of the Wiener system is performed under
conditions, where the autoregressive component functions in
a free state, meaning that the generated input is solely derived
from the filter’s initial state. In this context, we demonstrate
the feasibility of constructing a kernel estimator for nonlinear
characteristics that operates within a lower-dimensional space,
which is determined by the autoregression’s order of the
employed filter. While a similar approach is discussed in
references [24] and [25], this study extends the input signal’s
class to include any order ARMA time series.

The structure of the paper is outlined thusly. In Section
II, the problem is articulated comprehensively, including the
foundational assumptions regarding the input signal and the
system being identified. Subsequently, Section III elaborates

on the proposed algorithm and presents a theorem explaining
to which extent the dimension of the problem is reduced.
Section IV shows possible ways to aggregate the rescaled esti-
mators. The properties of the proposed identification algorithm
are illustrated with the help of the numerical experiment in
Section V. A concise discourse along with final observations
is presented in Section VI. Finally, the formulated theorem is
proven formally within the Appendix in Section VII.

II. STATEMENT OF THE PROBLEM

This work addresses the task of identifying nonparametri-
cally the static nonlinearity of the dynamic-nonlinear system
with the Wiener structure. The entire procedure is performed
based on solely N -samples long sequences of the input, {uk},
and the output, {yk}, while N represents the data set’s size.

ku ky
zkxk

FILTER
k

 ii0
S 

Fig. 1. Wiener system with input signal obtained through filtering
.

[System] The dynamic component in the Wiener system is
represented by a finite impulse response filter, characterized
by the coefficients λ = [λ0, λ1, ..., λS ]

T . The length of the
memory, denoted as S, is assumed to be beforehand known.
In turn, the static nonlinearity is defined by a function µ(·),
that is L-Lipschitz continuous. In summary, the unavailable
for measurement internal signal {xk}, and the noiseless output
{vk} can be described in the following manner

xk =

S∑
j=0

λjuk−j , vk = µ(xk). (1)

[Input signal] The sequence {uk} is generated based on
unknown process {εk} filtered by stable1 ARMA(r, s) object
as shown in Fig. 1. An order of the autoregression should
not exceed the memory length of the entire system, such that
r ≤ S. Otherwise, the system could still be identified, but no
longer with reduced dimensionality.

The signal {uk} contains P segments, where each of them
consist of Tp samples, while 0 ≤ p ≤ P − 1. Each interval
is initiated by T

(on)
p samples of stochastic part of the {εk}

process, where the remaining T
(off)
p -samples long subsequence

within the period is characterized by zeroed εk. Stochastic part
of {εk} originating from the entire input sequence constitutes a
finite idependent identically distributed (i.i.d.) series of random
variables, formally defined as ∀kP(|εk| ≤ εmax < ∞) = 1.
Additionally, ∀p(r ≤ T

(on)
p ≤ T

(on)
max < ∞∧S+s+1 ≤ T

(off)
p ≤

T
(off)
max < ∞), where T

(on)
p and T

(off)
p generally are i.i.d. In

special case, T
(on)
p as well as T

(off)
p could remain constant,

and, as a result, the entire {uk} process would be a strict-
sense cyclostationarity. For all 0 ≤ p ≤ P , intervals’ lengths,
Tp, are known beforehand, including values of T (on)

p and T
(off)
p .

1Proposed algorithm could also be used when the ARMA object is
unstable, but its state is set to initial every time a new period begins.
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Fig. 2. Illustration of assumed properties of the input signal along with adopted notation: Tp, T (on)
p , T (off)

p , εmax.

The size of the data set, denoted as N , equals the total length
of the input/output sequence, such that, N =

∑P−1
p=0 Tp =∑P−1

p=0 (T
(on)
p + T

(off)
p ).

ARMA object condition should belong initially to the set
of all states achievable at the start of the interval in the
asymptotical sense, i.e., when p → ∞.

Assumption II can be interpreted with the help of the
Fig. 2, in which a single interval is visualized. Additionally,
Fig. 3 provides insight into how trajectory can be positioned
in the state space. The ARMA object is understood as the
surroundings before the considered system, where the latter
shall be identified when the input-forming object works in a
free state. Visually, vectors of considered sequences in state
space can be compared to the ones from the previous works as
in Fig. 4. Adequate directions in state space are not limited to
impulses [26], piece-wise constants [27], or randomly initiated
cyclo-exponential (RICE) signals [24].

[Disturbances] The process {zk} is an error in output
observations, yk = vk + zk, and consists of random variables,
which are i.i.d. and do not depend on the input sequence {uk}.
The noise has a zero expected value, E{zk} = 0, and its
variance is finite, var{zk} < ∞.

III. THE ALGORITHM

The main concept originates from the observation that
merely r newest samples of {uk} process can determine
unambiguously not only the state of the ARMA object at
the input, but also the state of the entire system under
certain condition2. Therefore, the state vector, denoted as
φk = [uk, uk−1, ..., uk−r+1]

T , is changing through the entire
process according to the rule shown below

φk =

[
aT

Ir−1 0r−1

]
︸ ︷︷ ︸

=A

φk−1 +

[
bT

0r−1,s

]
︸ ︷︷ ︸

=B

εk,s, (2)

where a = [a1, a2, ..., ar]
T denotes the vector of the autore-

gression parameters, Ir−1 is the identity matrix of r−1 order,
0r−1 is the (r−1)-dimensional column vector of zeros, 0r−1,s

is the (r−1)×s matrix of zeros, and b = [b0, b1, ..., bs]
T is the

moving average component parameters’ vector associated with

2Condition of free state operation equivalent to zeroing the {εk} for
S + s+ 1 samples in a row, formally ∀i:(0≤i≤S+s) εk−i = 0.

the excitation vector εk,s = [εk, εk−1, ..., εk−s]
T . To enhance

the clarity of the presentation, the initial state is described in
the following equation

φ0 = αu. (3)

In this context, α represents a unit r-dimensional column
vector of direction within a state space, characterized by
the property that ∥α∥2 = 1. Simultaneously, the variable u
functions as a scaling factor. In the case of the sequence {εk}
consisting entirely of zeros, the following holds true

φk = Akφ0, (4)

uk = [1,0T
r−1]φk = [1,0T

r−1]A
kαu, (5)

as well as

E{yS |φ0 = αu} = µ

(
S∑

i=0

λiuS−i

∣∣∣∣∣φ0 = αu

)

= µ

(
S∑

i=0

λi[1, 0
T
r−1]A

S−iα︸ ︷︷ ︸
=const.

u

)
,

(6)

which can be generalized as follows

E{yS |φS−∆k} = µ
(
d
(α)
∆ku

)
, (7)

where ∆k = 0, 1, ..., S, and constant is defined below

d
(α)
∆k =

S∑
i=0

λi[1, 0
T
r−1]A

∆k−iα. (8)

In other words, any r neighboring samples can be chosen
from the sequence of S + r samples (where 0 ≤ k ≤ S + 1,
and additional r− 1 samples are drawn from initial state φ0).
This is because, based on any subsequence of r consecutive
samples, the entire S+ r long sequence can be reconstructed.
Matrix A is always invertible, because its determinant is equal
to ar(−1)r+1, what can be shown by using a standard method
of Laplace expansion. When ar = 0, the problem is simplified
to the one with a lower order of autoregression.

Finally, the estimator of static nonlinear block characteris-
tics is proposed

µ̂
(α)
N (x) =

∑
k∈KN

ykwk, (9)



364 G. MAIK, G. MZYK

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

-1 -0,5 0 0,5 1

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 200 400 600 800 1000

uk

uk uk1

k

Fig. 3. Exemplary sequence entering the system {uk}, when autoregression depends on two last samples, i.e. r = 2, and trajectory in state space {[uk, uk−1]}.

Fig. 4. Directions of scaling in multidimensional space (3-dimensional
example) including impulses [26], piecewise constants [27], randomly initiated
cyclo-exponential (RICE) signals [24], and others.

with the kernel weights

wk =
K
(
1
h∥φk − αx∥∞

)∑
k∈KN

K
(
1
h∥φk − αx∥∞

)
where set KN = {k : εk,S+s = 0S+s+1∧N ≥ k ≥ 1}, and h
is bandwidth parameter depending on the data set’s size, i.e.,
it is a function of N . Kernel function K(·) may be choosen
arbitrarily as long as K(x) = 0 for |x| > 1, and 0 < Kmin ≤
K(x) ≤ Kmax < ∞ when |x| ≤ 1. Estimate µ̂

(α)
N (x) converges

uniformly to the true nonlinearity up to the scale factor, i.e. to
µ(α)(x) = µ(d

(α)
0 x). When the denominator is equal to zero,

the value of the estimator is assumed to be also zero.
To define the considered domain of identifiability, first, the

supplementary notation is introduced. Function p̃(k) returns a
number of interval containing k’th sample, i.e.,

p̃(k) = argmin
p1

(
p1∑
p=0

Tp ≥ k

)
. (10)

Based on that, function k̃0(k) provide a number of sample
within period p̃(k) as follows

k̃0(k) = k −
p̃(k)−1∑
p=0

Tp, (11)

with possible values from 1 to Tp̃(N). When the upper bound
of the sum is lower than zero, i.e., p̃(k) − 1 < 0, then the
sum is empty and equal to zero. In the next step, a subset
of KN consisting of samples’ numbers belonging to only one
considered interval is defined as

KN,p = {k : p̃(k) = p ∧ k ∈ KN}. (12)

With the help of the introduced notation, state φk can be
expressed as a sum of the component depending on the {εk}
process samples from the current interval, φ

(new)
k , and the

impact of previous intervals, φ(old)
k , i.e.,

φk =

Initial
Condition︷ ︸︸ ︷
Akφ0 +

Impact of old εk︷ ︸︸ ︷
k−1∑

j=k̃0(k)

AjBεk−j,s

︸ ︷︷ ︸
def
=φ

(old)
k

+

Impact of new εk︷ ︸︸ ︷
k̃0(k)−1∑

j=0

AjBεk−j,s︸ ︷︷ ︸
def
=φ

(new)
k

.

(13)
Consequently, the contribution of previous intervals to the
current state can be rewritten as follows

φ
(old)
k = Ak̃0(k)−1φ

(old)
init,p̃(k), (14)

where φ
(old)
init,p is the value of φ

(old)
k when the p’th interval

begins, with the formal definition specified below

φ
(old)
init,p = φ

(old)
k : k̃0(k) = 1 ∧ p̃(k) = p. (15)

All possible values of φ(old)
init,p, in asymptotical sense for p → ∞

and N → ∞, form the set φ, which can be defined as follows

φ = {φ(old) : ∀h>0 lim
N→∞

P
(
∥φ(old)

init,p̃(N) − φ(old)∥∞ ≤ h
)
> 0}.

(16)

Finally, the domain of identifiability can be described with the
help of the subsequent equation

D(α) =
{
x : ∀

h>0,k∈KN,p̃(N),φ
(old)
init ∈φ

lim
N→∞

P
(∥∥φ(new)

k +

Ak̃0(k)−1φ
(old)
init − αx

∥∥
∞ ≤ h

)
> 0
}

.
(17)

Nonlinearity could also be identified at certain points be-
yond the defined domain of identifiability, but under more
restrictive requirements, which imply a slower rate of conver-
gence. Nevertheless, most commonly, φ(old)

k is approximately
equal to 0r due to being affected only by older non-zero
samples of εk with indices that are at least r + 2(S + s+ 1)
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smaller than the current index. The above results in the
dissimilarity among the previously mentioned domains being
minimal. As a result of the previously discussed factors, those
kinds of scenarios are not considered further in the paper.
The theorem is hereby introduced in a formal manner, with
the necessary conditions for achieving the convergence. If
Nhr → ∞, and h → 0, then µ̂

(α)
N (x) converges to µ(α)(x) in

the mean squared sense,

MSE
{
µ̂
(α)
N (x)

}
= E

{(
µ̂
(α)
N (x)− µ(α)(x)

)2}
→ 0, (18)

in each point x ∈ D(α), for any given α, as N → ∞.

Proof. See Appendix A.

[Wiener-Hammerstein system identification] Based on the
same concept, the set of scaled values of the interconnection
signal {xk} can be obtained and the entire Hammerstein-like
part could be identified up to the scale factor (instead of
just a nonlinear block), which implies potential application
in Wiener-Hammerstein system identification.

IV. AGGREGATION

Note that the proposed estimator (9) uses only a narrow
subset of available data, i.e., which are in proximity of the
linear space spanned by the direction vector α. Therefore,
the gain resulting from dimensionality reduction comes at the
cost of impoverishing the set of data. From the perspective
of estimation efficiency, it is therefore crucial to find a way
to aggregate many estimators with different values of the α
vector. Intuitively, using more estimators promises to reduce
the variance of the final result.

In this section, we show an idea for aggregating many
identified nonlinearities. Nevertheless, for simplicity of the
presentation, the reasoning is limited to only two estimators,
µ̂
(α1)
N (x) and µ̂

(α2)
N (x), with unknown scaling factors d

(α1)
0

and d
(α2)
0 , respectively, i.e., with the limits

µ̂
(α1)
N (x) → µ(d

(α1)
0 x) and µ̂

(α2)
N (x) → µ(d

(α2)
0 x).

Without losing the generality of the approach, we can assume
that d(α1)

0 = 1. When the bias and errors’ dependency on the
estimators are negligible, the following weighted average is
optimal in terms of variance reduction

µ̂
(aggr)
N (x) =

n1µ̂
(α1)
N (x) + n2µ̂

(α2)
N

(
x

d
(α2)
0

)
n1 + n2

, (19)

where

n1 =
∑

k∈KN

K
(
1

h
∥φk − α1x∥∞

)
,

n2 =
∑

k∈KN

K
(
1

h

∥∥∥φk − α2
x

d
(α2)
0

∥∥∥
∞

)
.

Implementing the idea presented in (19) requires knowledge
of the d

(α2)
0 scale. Below, we propose two intuitive methods

for estimating the scale factor. At this stage, we present them
without formal justification and treat their analysis as open
problems.

Fitting curves by numerical minimization of the following
mean square error measure

d̂
(α2)
0 = argmin

c

1

∥D∥

∫
D

(
µ̂
(α1)
N (x)− µ̂

(α2)
N (cx)

)2
dx. (20)

The set D should be determined so that both µ̂
(α1)
N (x) and

µ̂
(α2)
N (cx) are well defined within the considered range of the

scaling variable c. When nonlinearity exhibits some fractal-
like patterns, there may be more than one solution.

Estimation of directional derivatives of functions at some
point φ = φref and comparison of them with each other, where
µ(α)(x) = µ(d

(α)
0 x) = µ(V Tαx) = µ(V Tφ), and V T is a

constant part of (8) without α. This approach, for k ∈ KN ,
leads to

∇αµ(V
Tφ) = αT∇µ(V Tφ) = αTV︸ ︷︷ ︸

=d
(α)
0

µ′(V Tφ), (21)

and

∇α2

[
µ(V Tφ)

]
φ=φref

∇α1

[
µ(V Tφ)

]
φ=φref

=
d
(α2)
0

d
(α1)
0

= d
(α2)
0 if µ′(V Tφref) ̸= 0.

(22)
The estimation of the derivative of the nonlinearity in a

system with the Wiener structure can be realized, for example,
using the local linearization as in the method described in [6].

V. NUMERICAL EXPERIMENT

In this section, the convergence of the algorithm is illus-
trated with the help of the numerical experiment. The method
considered in the paper is suited for the special class of
excitations, and is intended for the identification of nonlinear
blocks in the Wiener systems. Identification of the entire
Wiener system based on a known nonlinear block is not a
trivial problem, which is not considered in this paper. Due
to the aforementioned facts, finding a reasonable method
for comparison is difficult. Other approaches often focus, in
the first place, on the identification of the dynamic block
in the Wiener system, the knowledge of which makes the
identification of the entire system straightforward. In contrast,
in this paper, the advantage of the opposite approach, i.e.,
dimensionality reduction, is considered.

The settings of the experiment are shown in the Tab. I.
In Fig. 5, two identified nonlinear characteristics for different
directions in a state space, which differ in scale factor, are
presented. The same scale factors were used to show a
reference, i.e., scaled versions of true nonlinearity. In Fig.
6, the relationship between the RMSE (root mean squared
error) and the number of data is shown, and consequently,
the convergence of the algorithm is illustrated. The RMSE
was computed based on identified nonlinearities and their
references, using the grid of 201 uniformly distributed points,
within the interval x ∈ [−1, 1], where distances between
neighboring points were equal to 0.01.
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TABLE I
EXPERIMENT SETTINGS

Tp T
(on)
p T

(off)
p S λi µ(x) a (AR) b (MA) zk P N h

25 (const.) 10 (const.) 15 (const.) 6 S+1−i
S+1

0.5x2 [0.6,−0.39]T [1, 3]T ∼ U [−1, 1] 40000 1000000 N−1/4

-1 -0.5 0 0.5 1
x

0

0.5

1

1.5

2

2.5

3

3.5

N
o
n
li
n
ea

ri
ty

b7(,1)
N (x); ,1 = [1; 0]T

b7(,2)
N (x); ,2 = [0; 1]T

7(,1)(x)

7(,2)(x)

Fig. 5. Nonlinear characteristics identified for different directions in state
space α, and number of data equalt to N = 106.

103 104 105 106

Number of data N

10-1

100

R
M

S
E

b7(,1)
N (x); ,1 = [1; 0]T

b7(,2)
N (x); ,2 = [0; 1]T

Fig. 6. RMSE vs. number of data.

VI. SUMMARY

The proposed algorithm appears to hold great potential for
practical applications. Usually, the input signal is the output of
another dynamic system. When such a preceding object is an
ARMA filter then, disabling thereof enables the identification
to be performed with a higher convergence speed.

A relevant generalization of the proposed method involves
extending its applicability to the identification of systems
with Wiener-Hammerstein structure, which offers enhanced
approximation capabilities for dynamic-nonlinear phenomena
modeling.

Another generalization worth consideration is the aggrega-
tion of the estimators obtained under the conditions of many
unique direction vectors in the state space. Specified problem
is challenging as each nonlinearity estimator has an unknown,
and in general, different scale. Furthermore, identified charac-
teristics also model true nonlinearity in different parts of its
domain, which are unknown too, except not affected by scaling
point zero. The presence of estimation errors makes fitting
curves to each other even more difficult. Some nonlinearities
with fractal-like patterns can lead to ambiguity and multiple
solutions when attempting to estimate scale factors.

VII. APPENDICES

APPENDIX

Proof. Let K
(α,h,x)
N =

{
k : K

(
1
h∥φk − αx∥∞

)
> 0 ∧ k ∈

KN

}
be a set of data indices selected by the kernel for given x,

h, and α. Considering the set D(α), guaranteeing identifiability,
the number of selected samples is random, and asymptotically,
i.e., for N → ∞ and h → 0, its expected value behaves like

E
{
#K

(α,h,x)
N

}
= PE

{
#
(
K

(α,h,x)
N ∩KN,p

)}
= PE

{ T (off)
max −S−s∑

τ=1

#

{
k : k ∈

(
K

(α,h,x)
N ∩KN,p

)
∧

k =

p−1∑
q=0

Tq + T (on)
p + S + s+ τ︸ ︷︷ ︸

def
=κ(p,τ)

}}
= P︸︷︷︸

=c1N

T (off)
max −S−s∑

τ=1

P
(
T (off)
p − S − s ≥ τ ∧ K

(
1
h∥φκ(p,τ) − αx∥∞

)
> 0
)

= c1N

T (off)
max −S−s∑

τ=1

P
(
T (off)
p − S − s ≥ τ

)
︸ ︷︷ ︸

=c2,1,τ

·

P
(
K
(
1
h∥φκ(p,τ) − αx∥∞

)
> 0
∣∣∣T (off)

p − S − s ≥ τ
)

︸ ︷︷ ︸
=c2,2,τhr

= c1N

T (off)
max −S−s∑

τ=1

c2,τh
r = c1c2Nhr = c3Nhr, (23)

where c1, c2, and c3 denote some unknown constants. Ob-
viously, E

{
#K

(α,h,x)
N

}
→ ∞, provided that Nhr → ∞.

Assuming that the set of selected observations is not empty,
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i.e.,#K̃
(α,h,x)
N ≥ 1, where K̃

(α,h,x)
N detotes realization of

K
(α,h,x)
N , we get asymptotically

µ̂
(α)
N (x)− µ(α)(x) =

∑
k∈KN

( =yk︷ ︸︸ ︷
µ(xk) + zk −µ(α)(x)

)
K
(
1
h∥φk − αx∥∞

)∑
k∈KN

K
(
1
h∥φk − αx∥∞

)
=

∑
k∈KN

zkK
(
1
h∥φk − αx∥∞

)∑
k∈KN

K
(
1
h∥φk − αx∥∞

)︸ ︷︷ ︸
def
=δ

(1)
N

+

∑
k∈KN

(
µ(xk)− µ(α)(x)

)
K
(
1
h∥φk − αx∥∞

)∑
k∈KN

K
(
1
h∥φk − αx∥∞

)︸ ︷︷ ︸
def
=δ

(2)
N

(24)

and since the disturbance is independent of the inputs, we
obtain

MSE
{
µ̂
(α)
N (x)

}
= E

{
δ
(1)
N + δ

(2)
N

}2

= E
{
δ
(1)
N

2}
+

2E
{
δ
(1)
N

}
︸ ︷︷ ︸

=0

E
{
δ
(2)
N

}
+ E

{
δ
(2)
N

2}
. (25)

Asymptotically, the first term in eqn. (25) can be evaluated in
the following way

E
{
δ
(1)
N

2}
≤ E

{ ∑
k∈K

(α,h,x)
N

z2kK2
max(∑

k∈K
(α,h,x)
N

Kmin
)2
}

= var{zk}
K2

max

K2
min

E

{
1

#K
(α,h,x)
N

}
.

(26)

Then, let us introduce the following decomposition of the
number of active measurements with respect to p

#K
(α,h,x)
N =

P−1∑
p=0

Kp, (27)

where Kp
def
= #

{
K

(α,h,x)
N ∩KN,p

}
.

With the above notation we can write that 1
Phr#K

(α,h,x)
N =

1
P
∑P−1

p=0
1
hrKp, and based on the formula (23), for h → 0 we

obtain asymptotically

E
{

1
hrKp

}
= 1

hr E
{
Kp

}︸ ︷︷ ︸
=c4hr

= c4, (28)

and

var
{

1
hrKp

}
= 1

h2r var
{
Kp

∣∣Kp = 0
}

P
(
Kp = 0

)
+

1
h2r var

{
Kp

∣∣Kp ≥ 1
}

P
(
Kp ≥ 1

)
< 1

h2r

(
0− E

{
Kp

})2(
1− c5h

r
)
+

1
h2r

(
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{
Kp

}
− min

{
Kp

})2
c5h

r

≤ 1
h2r c

2
4h

2r
(
1− c5h

r
)
+ 1

h2r

(
T (off)

max − S − s
)2
c5h

r

≤ c6
hr

(29)

Moreover, since {Kp}Pp=0 constitutes an i.i.d. sequence, and

P−1∑
p=0

var
{
Kp

}
P2

<
Pc6
P2hr

=
c6
Phr

, (30)

the strong law of large numbers holds, and consequently

1

Phr
#K

(α,h,x)
N =

1

P

P−1∑
p=0

1

hr
Kp → c4 (31)

with probability one as Phr → ∞, which is fulfilled for
Nhr → ∞ as P = c1N for N large. Since 1

Nhr#K
(α,h,x)
N be-

comes constant with probability one, by the Slutsky’s theorem
we have that

c7E

{
1

#K
(α,h,x)
N

}
= c7E

{
1

Nhr

1
Nhr#K

(α,h,x)
N

}
=

c8
Nhr

, (32)

which leads to

lim
N→∞

E
{
δ
(1)
N

2}
≤ lim

N→∞

c8
Nhr

= 0 ⇐⇒ Nhr → ∞. (33)

To convergence of second term, E
{
δ
(2)
N

2}
, will be proven

using the Lipschitz condition∣∣µ(d(α,h,x)k xk)− µ(d
(α)
0 x)

∣∣ ≤ L
∣∣d(α,h,x)k xk − d

(α)
0 x

∣∣, (34)

where d
(α,h,x)
k denotes the scale with respect to k’th sample.

For k ∈ K
(α,h,x)
N ∧ #K̃

(α,h,x)
N ≥ 1, the following properties

take place

∣∣d(α,h,x)k xk − d
(α)
0 x

∣∣ ≤ ∣∣
def
=∆d

(α,h,x)
k︷ ︸︸ ︷

(d
(α,h,x)
k − d

(α)
0 )xk

∣∣+∣∣d(α)0 (xk − x)
∣∣ ≤ ∣∣∆d

(α,h,x)
k xk

∣∣+ c9h,

(35)

and |µ(xk)− µ(α)(x)| ≤ L
(∣∣∆d

(α,h,x)
k xk

∣∣+ c9h
) def
= β

(α,h,x)
k ,

and further

E
{
δ
(2)
N

2}
≤ E

{∣∣∣∣∣
∑

k∈KN
β
(α,h,x)
k K

(
1
h∥φk − αx∥∞

)∑
k∈KN

K
(
1
h∥φk − αx∥∞

) ∣∣∣∣∣
2}

≤ max
k∈KN

β
(α,h,x)
k

2
.

(36)

Regarding (8) we get

∆d
(α,h,x)
k = d

(α,h,x)
k −d

(α)
0 = V Tαeff+V Tα = V T (αeff−α),

(37)
where V T is a 1× r vector of constants. Similarly to formula
(3), vector αeff determines selected direction in r-dimensional
state space. For x ̸= 0 and h → 0, it holds that αeff → α,
and consequently ∆d

(α,h,x)
k → 0. Moreover, for x = 0 and

h → 0, xk → 0 for each selected observetion. Based on the
above conclusions, β(α,h,x)

k → 0 as h → 0, and

lim
N→∞

E
{
δ
(2)
N

2}
≤ lim

N→∞
max
k∈KN

β
(α,h,x)
k

2
= 0, (38)
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when h → 0, and #K̃
(α,h,x)
N ≥ 1. Obviously, since Nhr → ∞

we get finally

lim
N→∞

MSE
{
µ̂
(α)
N (x)

}
= lim

N→∞
E
{
δ
(1)
N

2}
+

lim
N→∞

E
{
δ
(2)
N

2}
= 0,

(39)

as h → 0 what ends the proof.
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