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Abstract—The rapid progress of AI has made computer-assisted 

systems essential in medical fields like cervical cytology analysis. 

Deep learning requires large datasets, but data scarcity and 

privacy concerns pose challenges. Data augmentation addresses 

this by generating additional images and improving model 

accuracy and generalizability. This review examines effective 

augmentation techniques and top-performing deep-learning 

models for segmentation and classification in cervical cancer 

detection. Analyzing 57 articles, we found that hybrid deep feature 

fusion with augmentation (rotation, flipping, shifting, brightness 

adjustments) achieved 99.8% accuracy in binary and 99.1% in 

multiclass classification. Augmentation is vital for enhancing 

model performance in limited data scenarios. 

 

Keywords—cervical cancer; data augmentation; deep learning; 

artificially generated images 

I. INTRODUCTION 

S artificial intelligence advances rapidly, computer-

assisted systems have turned into crucial tools for medical 

professionals across various fields, including cervical cytology 

analysis [1][2]. Deep learning (DL) techniques have greatly 

improved the screening process for cervical cancer, especially 

in the analysis of Pap smears [3]. Among these methods, 

convolutional neural networks (CNNs) are especially prominent 

due to their capability to automatically learn and identify 

hierarchical patterns and features. This makes CNNs highly 

effective for extracting intricate information from images [4]. 

CNNs are commonly used for image classification, object 

detection, and segmentation tasks.  

Deep learning techniques typically require large datasets to 

train models effectively [5], [6]. However, in medical imaging, 

obtaining sufficient data can be challenging due to concerns 

over patient privacy and data scarcity [7]. A common issue in 

such scenarios is class imbalance, where certain classes are 

overrepresented in the training data. This imbalance can lead to 

biased models that perform poorly on underrepresented classes, 

affecting the overall model performance. Another challenge is 

overfitting, where the model excels on the training data but 

struggles to generalize to new, unseen data, diminishing its real-

world effectiveness. To mitigate these issues, data augmentation 

is often employed. This technique artificially increases the size 

of the training dataset by applying transformations such as 

rotations, flips, or color changes to existing images [8]. By 

diversifying the training data, data augmentation enhances 

model performance, reduces overfitting, and improves the 

model’s ability to generalize, especially in scenarios with 

limited data [9]. 
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Several studies have been conducted using data augmentation 

to improve performance in segmentation and classification tasks 

for cervical cells. In paper [10] a comprehensive review of 

various data augmentation strategies specifically for brain tumor 

segmentation is presented, focusing on techniques that improve 

segmentation outcomes. Paper [11] emphasizes augmentation 

techniques aimed at medical image classification. Meanwhile, 

[12] offers a systematic review of cervical cancer diagnosis, 

addressing both detection and classification methodologies. 

Additionally, [13], provides a broader review of data pre-

processing and augmentation methods, covering general 

applications. Furthermore, study [14] explores the use of 

generative adversarial networks (GANs) in medical image 

segmentation and classification. Each of these review papers 

addresses distinct aspects, from segmentation and classification 

to GAN-based augmentation in medical imaging. Finally, the 

paper [15] identifies data augmentation techniques specifically 

for the segmentation and classification of cervical cancer using 

deep learning. The paper highlights the techniques employed in 

both tasks and recommends future work, such as comparing 

model performance in cervical cancer detection. Therefore, in 

this study, we reviewed a data augmentation technique for the 

segmentation and classification of cervical cells to compare the 

performance of DL models. We formulate the following 

research questions: 

RQ1: Which data augmentation techniques are used for 

segmentation tasks, and which algorithm performs best? 

RQ2: Which data augmentation techniques are used for 

classification tasks, and which algorithm performs best? 

The remainder of the paper is structured as follows: Section 

2 outlines the methods used in the review. Section 3 presents the 

results and discussion of the findings. Lastly, Section 4 provides 

the conclusion, followed by the references. 

II. MATERIALS AND METHODS  

The materials and the methods used in the study are presented 

in this section. The analysis follows the PRISMA protocol, a 

framework commonly used to guide the reporting of items in 

systematic reviews and meta-analyses [16]. This protocol is 

widely favored in the majority of review papers [17]. 

A. Search Term  

In this review, we conducted a search for relevant studies 

published from January 2017 to September 2024 using the 

keywords "data augmentation," "cervical cancer," and "deep 

learning." This search yielded a total of 614 articles, retrieved 

from databases such as Scopus, Web of Science, PubMed, 

andrzej.rusiecki@pwr.edu.pl, https://orcid.org/0000-0003-2239-1076 

krzysztof.halawa@pwr.edu.pl, https://orcid.org/0000-0001-6508-0468). 
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IEEEXplore, and ScienceDirect, along with manual searches on 

Google Scholar.  

B. Eligible Criteria 

The inclusion and exclusion criteria for the papers are 

described in Table I.  
TABLE I 

THE INCLUSION AND EXCLUSION CRITERIA TO INCLUDE THE PAPER   

 
No Inclusion criteria Exclusion criteria 

1 Publication year between 
2017 and 2024 

Articles published before or after 
the specified date range 

2 Papers published in the 

English language 

Papers published in a language 

other than English 
3 The article type is either a 

journal or conference  

Article types are categorized out of 

the specified type 

4 Research papers related to 
data augmentation techniques 

for the segmentation and 

classification tasks in the 
diagnosis of cervical cancer 

Papers lack information about data 
augmentation techniques for 

segmentation and classification 

tasks in the diagnosis of cervical 
cancer 

 

C. Selection Process 

In this section, we explain the paper selection process. 

Initially, 614 articles were gathered from five databases and 

manual searches. After removing 73 duplicates, 541 unique 

papers remained. Applying inclusion and exclusion criteria led 

to the exclusion of 445 papers, leaving 96. Of these, 16 were 

inaccessible, and 80 required further analysis. Following a 

detailed review, 57 articles were finalized for inclusion. The 

selection process is shown in Fig. 1. 

D. Data Extraction 

We selected papers to address the research questions by 

categorizing data augmentation techniques into two groups: 

basic and artificial data generation methods. We identified 

whether these techniques were applied to segmentation or 

classification tasks with the DL algorithm, considering the 

publication year of each study. Additionally, we detailed the 

augmentation methods, the segmentation and classification 

algorithms, their performance, and the metrics used in each 

study. 

III. RESULTS AND DISCUSSIONS 

This section addresses the research questions by identifying 

the data augmentation techniques used for segmentation and 

classification tasks, the algorithms applied, and their 

performance in cervical cancer detection. The studies employed 

basic augmentation techniques such as rotation, flipping, 

cropping, translation, and zooming to segment cervical cells. In 

contrast, basic augmentation techniques and artificially 

generated images were used for classification tasks to improve 

the diversity of training data. 

A. Data Augmentation in the Segmentation Task 

For Research Question 1 (RQ1), we present the data 

augmentation techniques used in the segmentation task and the 

deep learning algorithms employed. Various studies utilize 

different datasets, and the results of segmentation using basic 

data augmentation techniques are summarized in Table II. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. Selection process of the studies 

In Tables II-VI, Acc is accuracy, Pre is precision, Rec is 

recall, F1 is the F1-score, dice is the dice coefficient, IoU is the 

intersection over union, SN is sensitivity, SP is specificity, AR 

is average recall, AP is average precision, mAP is mean average 

precision, AUC is the area under the curve, Ref for reference, 

and Qty indicates the amount of the data used in the study. 

Comparing model performance can be difficult when the data is 

collected from different sources. Additionally, even when using 

the same dataset, variations in segmentation algorithms for 

detecting cervical cancer make it challenging to compare 

studies, especially when different augmentation techniques are 

applied. Moreover, various studies use different performance 

metrics to evaluate their models, and we present each study’s 

performance metrics where they differ. However, in this study, 

we considered this issue during our comparisons. 

As shown in Table II, the best model for the Herlev dataset 

achieved a 96.1% recall using augmentation techniques such as 

rotation, cropping, flipping, contrast adjustment, and elasticity 

with the Lightweight Feature Attention Network (LFANet) 

algorithm [18]. The dice coefficient is predominantly used in 

other datasets, and we compared studies based on this metric. 

For example, in the HU-UFSC dataset, using U-Net as a 

baseline with ResNet50 as a backbone, the augmentation 

techniques of flipping, rotation, zooming in, increasing contrast, 

and symmetric warping achieved a dice coefficient of 99% [19]. 

In [20], the two numbers in the results section represent values 

for different datasets: the first value is for the PEG dataset, and 

the second is for the Mobile Eva dataset.  
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TABLE II 

DATA AUGMENTATION TECHNIQUES USED IN THE SEGMENTATION TASK, ALONG WITH THE ALGORITHMS AND MODEL PERFORMANCE 

Ref Dataset Qty Class Augmentation Segmentation  Performance metrics 

[19] HU-UFSC (University Hospital 

Professor Polydoro Ernani de Sao 
Thiago of Federal University of 

Santa Catarina) 

2540 - flip, rotation, zoom up, 

contrast up, symmetric wrap 

U-Net and ResNet18 as a 

backbone  
 

Dice= 99 

IoU=87 

[21] Thammasat University (TU) 
Hospital 

178 - rotation, translation, 
cropping 

Mask-RCNN Acc= 89.8 
SN=72.5 

SP= 94.3 

[22] Division of Cancer Epidemiology 
and Genetics of the National 

Cancer Institute (DCEG-NCI) 

256 - rotation, flipping CNN (Inception V3 AUC= 98 

[23] PatchSeg,  

ClusterSeg,  

DomainSeg TargetA, 

DomainSeg TargetB 

3487, 

2362, 

381, 
332 

 transformation. Flip, random 

crop 

AL-Net Dice=83.01 

81.65 

73.59 
71.42 

[24] Tertiary referral center with a 

dedicated interdisciplinary 

gynecological oncology MRI 

169  - Rotation, shift, crop U-Net SN= 89 

Dice=82 

[25] University of Oklahoma Medical 

Center 

453 3 Flip, rotation, blur contrast, 

noise  

DeepCIN, 

 

Acc=88.5 

Pre=88.6 

Rec=88.5 

[20] PEG &  

Mobile EVA system dataset 

978, 

1342 

2 Rotation, translation, shear Faster-RCNN Acc=78.1, 66 

Pre=68.9, 63.3 

Rec=83.3, 44.1 

[26] High-resolution micro-endoscope 

in Brazil (HRME) 

1600 

 

5 Rotation, flipping, and 

random cropping 

Multi-Task 

Network 

SN=94 

SP=58 

AUC=87 

[27] Gland datasets 213 - flip, brightness, contrast NuClick (multiscale conv 

block) 

Dice= 95.6 

[28] Herlev 917 7 Horizontal inversion, RFN, RCNN with SPFNet AP=78.4 

[18] Herlev 917 7 Rotation, crop flipping, 

contrast elasticity, 

LFANet (lightweight feature 

attention network) 

Pre=93.01 

Rec=96.1 

Dice=94.1 

[29] Herlev 917 7 Rotation, translation  Pyramid 

Scene Parsing 

Acc=Pre=Rec=96 

IoU=74 

[30] Herlev 917 7 Translation, reflection, 
rotation 

Mask R-CNN 
& ResNet10 as backbone 

Pre=92 
Rec=91 

 

[31] CX22,  
Herlev,  

SIPaKMeD 

1320,  
917, 

4049 

- 
7 

5 

 

Rotation, flip, color 
transform 

CerviSegNet-DistillPlus Acc= 94, 93.65, 92.5 
SP=92.2, 91, 89.9 

SN=96.2, 96.2, 93.7 

[32] ISBI, and  

Herlev 

- 

917 

- 

7 

Rescaling, flipping, and 

rotation 

 

CNAC-Seg Dice= 92.39 and 

94.92 

[33] ISBI, and  

Herlev 

- 

917 

- 

7 

Flipping, rotation, and 

cropping 

PATrans Dice= 94.06, 94 

IoU= 88.8, 89.7 

 
[34] Pomeranian 419 3 Rotation, flipping, and 

scaling 

U-Net & DenseNet121 as a 

backbone 

Acc= 99.86, 

Pre=97.7, Rec=98.1, 

IoU=99.8 

 

B. Data Augmentation in the Classification Task  

In RQ2, we examine the data augmentation techniques used 

for the classification task. The class refers to the number of 

categories used in the study or the type of cervical cells. The 

results from using the Herlev dataset with basic augmentation 

techniques are presented in Table III
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TABLE III 

BASIC DATA AUGMENTATION TECHNIQUES USED IN THE CLASSIFICATION TASK, ALONG WITH THE ALGORITHMS AND MODEL 

PERFORMANCE ON THE HERLEV DATASET 

Ref Dataset Quantity Class Augmentation Classification  Performance metrics 

[30] Herlev 917 7, 2 Rotation, translation, reflection VGG Net Rec=95, 96 

 
[35] Herlev 917 7, 2 Rotation, flip, shift, brightness Hybrid deep feature fusion 

(HDFF) 

Acc=90.3, 98.3 

[36] Herlev 917 4 flip, zooming, rotation, shearing, shift, feature-
wise center & standard deviation, brightness 

increase, full mode, and normalization 

MASO-optimized DenseNet 
121 (Mutation-based Atom 

Search Optimization)  

Acc=98.38 
Pre=98.6 

Rec=99.3 

F1=98.3 

[37] Herlev 917 2 

 

Zooming, shifting, flipping, 

and rotation 

MobileNetV2 

InceptionResNetV2, 

(ensemble) 

Acc=98.97 

Pre=98.7 

Rec=98.5 

[38] Herlev 917 2 Rotation, mirroring, flipping Ensemble TL (Inception-V3, 

Xception, VGG-16, and 
Resnet-50) 

Acc=98.37 

Pre=98.5 
Rec=99.3 

F1=98.9 

[29] Herlev 917 2 Rotation, translation  Ensemble of NB, J48, RF, 
SVM and ANN 

Acc=99.7 

 

[39] Herlev 917 2 Rotation, mean filter, salt and pepper noise IFDL GoogleNet (Improved 

Fuzzy DL) 

Acc=99.2 

Rec=99.3 
SP=99.75 

 

The number ‘2’ represents a binary classification, while 

numbers other than 2 represent a multi-class classification. For 

example, the widely used Herlev dataset contains seven classes: 

squamous cell carcinoma in situ, intermediate squamous non-

keratinizing dysplasia, severe squamous non-keratinizing 

dysplasia, moderate squamous non-keratinizing dysplasia, mild 

squamous non-keratinizing dysplasia, normal columnar 

epithelial, intermediate squamous epithelial, and superficial 

squamous epithelial, with 150, 197, 146, 182, 98, 70, and 74 

images, respectively. The first four are classified as abnormal, 

while the last three are normal in binary classification. 

In contrast, the SIPaKMeD dataset includes five classes of 

cervical cells: superficial-intermediate cells, parabasal cells, 

meta-plastic cells, dyskeratotic cells, and koilocytotic cells, with 

831, 787, 793, 825, and 813 images, respectively. In binary 

classification, the first two classes are considered normal, while 

the last three are classified as abnormal.  

In the Herlev dataset, almost all of the models perform well 

which is more than 90% accuracy. In [29], using the rotation and 

translation basic augmentation, the model achieves an accuracy 

of 99.7% using the ensemble of Naïve Bayes, J48 decision tree, 

random forest, support vector machine, and artificial neural 

network in binary classification. On the other hand, in a 

multiclass classification, the model scores a recall value of 96% 

using the rotation, translation, reflection basic augmentation and 

VGG Net is a classifier algorithm. In [30] and [35], the two 

numbers in the results section represent values for multiclass 

and binary classification. The results for the SIPaKMeD dataset, 

using basic augmentation techniques, are presented in Table IV.  

 

TABLE IV 

BASIC DATA AUGMENTATION TECHNIQUES USED IN THE CLASSIFICATION TASK, ALONG WITH THE ALGORITHMS AND MODEL 

PERFORMANCE ON THE HERLEV DATASET 

Ref Dataset Qty Class Augmentation Classification  Performance metrics 

[40] SIPaKMeD 4049 5 crop, flip, rotate, copy paste Voting (ensemble 12), ViT 

(vision transformer) 

Acc=91.8, 92.9, Pre=92.6, 93.9 

Rec=91.9, 92.7, F1=92.3, 93.3 
 

[37] SIPaKMeD  4049 5 Zooming, shifting, flipping, 

rotation 

MobileNetV2 

InceptionResNetV2, 

(ensemble) 

Acc=96.96 

 

[41] SIPaKMeD 4049 5 Flip, rotation, shift ViT-CNN ensemble Acc=97.65, Pre=99.5, Rec=97.7, 

F1=98.6 

[35] SIPaKMeD 4049 5, 2 Rotation, flip, shift, 

brightness 

Hybrid deep feature fusion 

(HDFF) 

Acc=99.1, 99.8 

 

[42] SIPaKMeD 4049 5, 2 Rotation, flipping VGG16, ResNet152, 
DenseNet169 (feature 

concatenate) 

Acc=97.5, 99.3, Pre=97.9, 98.9 
Rec=98, 100, F1=98, 99.5 
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[43] SIPaKMeD 4049 5 Rotation, resize, flipping, FL CNN (federated learning) 

 

Acc=94.36 

[44] SIPaKMeD 4049 5 Fliping Dual-stream self-attention 

(DSA) 
 

Acc= 99.01, Pre=99.02,  

Rec= 99. 02, F1=99.01 

[45] SIPaKMeD 4049 5 Rotation, zooming ViT & SeNet with ResNet and 

DenseNet 
 

Acc= 95.88, Pre= 95.37,  

Rec= 96.25, F1= 95.79 

[46] SIPaKMeD 4049 5 Cropping, flipping, 

rotating, copy-pasting, and 
scaling. 

ConvNextTv2-based Multi-

Axis Vision Transformer 
model (MaxCerVixT)  

Acc= 99.02, Pre= 99.03,  

Rec= 99.04, F1= 99.02 

 

In the SIPaKMeD dataset of [35], the hybrid deep feature fusion 

achieves an accuracy of 99.1% for multiclass classification and 

99.8% for binary classification using rotation, flip, shift, and 

brightness as basic augmentation techniques. The fused feature 

algorithms are VGG16, VGG19, ReseNet50, and Xception. The 

results for the other datasets, using basic augmentation 

techniques, are presented in Table V.  

In other datasets, such as the Mendeley dataset, the model 

achieves an accuracy of 99.68% using an ensemble of 

MobileNetV2 and InceptionResNetV2 algorithms, combined 

with zooming, shifting, flipping, and rotation as basic 

augmentation techniques [37]. The second augmentation 

method generates artificial images to classify cervical cells, as 

shown in Table VI. This data augmentation technique focuses 

on creating artificial images based on the original ones, 

producing synthetic images that closely resemble the real ones. 

In Table VI of [47],  using the generative adversarial network 

(GAN) augmentation technique with the Herlev and SIPaKMeD 

dataset, which includes 8 different classes, the VGG16 model 

achieves an accuracy of 99.81%. In the 

TABLE V 

BASIC DATA AUGMENTATION TECHNIQUES USED IN THE CLASSIFICATION TASK, ALONG WITH THE ALGORITHMS AND MODEL 

PERFORMANCE ON THE OTHER DATASET 

Ref Dataset Qty Class Augmentation  Classification  Performance metrics 

[48] Intel&MobileODT 1500 3 Rotation, cropping, flipping 

 

DCNN AUC=82 

[49] Intel&MobileODT 8215 3 flips, translations, shears, and 

zooms 

ResNet Acc=69.93 

[50] Intel&MobileODT 9378 3 Rotating, brightness, 

cropping 

VGG19, Colposcopy 

Ensemble Network 

(CYENET) 

Acc=73.3, 92.3 

Rec=33, 92.4 
SP=79, 96.2 

[51] Mendeley LBC 2376 4 Rotation, shift, shear, zoom, 

flip 

ResNet50V2 Acc=Pre=Rec=F1 = 

97  

[37] Mendeley LBC 963 4 Zooming, shifting, flipping, 

and rotation 

MobileNetV2 

InceptionResNetV2, 

(ensemble) 

Acc=99.68 

Pre=99.34 

Rec=99.87 

[45] Mendeley LBC 963 4 Rotation, zooming ViT & SeNet with ResNet and 

DenseNet 

Acc= 98.44, 

Pre= 97.34,  

Rec= 97.99,  
F1= 97.66  

[46] Mendeley LBC 963 4 Cropping, flipping, 

rotating, copy-pasting, and 
scaling. 

ConvNextTv2-based Multi-Axis 

Vision Transformer model 
(MaxCerVixT)  

Acc= 99.48,  

Pre= 99.26,  
Rec= 99.8,  

F1= 99.52 

[25] University of Oklahoma Medical 
Center 

453 3 flip, rotation, blur contrast, 
noise  

DenseNet  Acc=88.5 
Pre=88.6 

Rec=88.5 

[20] PEG &  
Mobile EVA system dataset 

978, 
1342 

2 Rotation, translation, shear VGG16 Acc=72.6, 67.5 
Pre=66.5, 63.5 

Rec=69.6, 45.9 

[52] HMCHH (Heilongjiang maternal & 
child & Harbin Medical University 

Cancer hospital) 

335 2 Flip, rotation, brightness 
change, Gaussian blur 

(Affine transform) 

AttFPN (Attention FPN) 
DenseNet-169 backbone 

Acc=90.91 
Rec= 91.3 

SP=90.62 

[53] JA Shizuoka Kohseiren Enshu 
Hospital 

- - Flip, Rotate, RandomGrid 
Shuffle, Brightness Contrast, 

and random Gamma 

EfficientNet Acc=87.3, 
F1=83.3, 

AUC=90.8 
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[54] Gynecological oncology 

database 

485 3 rotation, zoom, flipping CNN Acc=50 

[55] Fujian Maternal and Child Health 

Hospital 

8839 4 Light change, blur, crop, 

rotate 

DenseNet121 Acc=73.08 

AUC=75 

[56] CRIC 400 2 rotation, scaling, shear, blur, 

flip, noise 

YOLOv5 mAP= 83 

[57] National Cancer Institute, 

Bethesda, USA 

2120 

 

5 Rotation, zoom, translation, 

flip, warp, gaussian blurring 

DenseNet121 Acc=96.3 

SN=94.97 
SP=98.86 

[58] Obafemi Awolowo University 

Teaching Hospitals Complex 

(OAUTHC) 

1331 2 Flip sparse attention-based multiple-

instance learning 

Acc=84.55 

[59] Provincial Hospital of Shandong 

First Medical University Central 

90 3 rotation, flip, shift 
  

ResNet50 Acc=74.36 

[60] Affiliated Hospital of WanNan 
Medical College at Wuhu 

3294 - Rotation, translation EfficientNet Acc=90.0 
Rec=87.1 

F1=89.1 

 
[61] Obstetrics and Gynecology Hospital 

of Fudan University 

9562 4 Rotation, translation, and 

scaling 

Improved EfficientNet-B3 Acc=90.5, Pre=76.5, 

Rec=83.6,  

SP=93.2 
 

[62] ComparisonDetector, DST 7410& 

3807 

4, 

4 

Scaling, rotation, and 

flipping 

DETRwith Improved deNoising 

anchOr boxes (DINO) 
 

AP=24.6 & 15.4 

AR=46.6 & 45.1 

[63] CRIC, CLBC 340 & 

50 

 Cropping, Flipping Dual-path Proposal 

Discriminative detection 
Network (DPD-Net) 

 

AR=55.32 & 36.47 

mAP=35.2& 13.3 

[64] Pap Smear 4800 4 Rotation, brightness, 

contrast, and zoom 

ResNet50 Acc=91 

 

Cervix93 dataset, the model reaches 100% in accuracy, 

precision, recall, and F1 score using the Self-Attention 

Generative Adversarial Network (SAGAN) augmentation 

technique and a multi-scale transformer-based ensemble 

learning classifier (CervixFormer) [65]. 

This systematic review highlights the data augmentation 

techniques applied in cervical cancer detection, a critical area in 

medical imaging. The findings indicate that basic augmentation 

methods such as rotation, flipping, translation, cropping, and 

zooming are utilized in both segmentation and classification 

tasks, to improve model performance. In contrast, artificially 

generated techniques, such as those using generative adversarial 

networks (GANs), are exclusively employed for classification 

tasks, reflecting a more advanced approach to enriching the 

dataset. In the classification task, binary classification performs 

better than multiclass classification across different datasets. 

The data proportions are described in Fig. 2. Of the 57 selected 

studies, 13 papers (23%) used basic augmentation for the 

segmentation tasks, 29 papers (51%) used basic augmentation 

for the classification task, 4 papers (7%) used basic 

augmentation for both tasks, and 11 papers (19%) employed 

artificially generated augmentation for the classification task.  

By synthesizing results from existing studies, this review 

aims to deepen the understanding of how data augmentation 

impacts model performance when paired with deep learning 

algorithms. The incorporation of these techniques not only 

increases the training size but also enhances the models’  

performance and generalizability, making them more robust 

note that the test set was not utilized for image generation; 

instead, it served solely for evaluating model performance, 

ensuring that the assessment reflects true predictive capabilities. 

Our future research will explore additional data augmentation 

techniques that were not covered in this review. This could 

include more sophisticated GAN architectures that can generate 

diverse and representative synthetic images. Expanding the 

variety of augmentation techniques will be crucial in further 

improving the robustness of cervical cancer detection systems, 

ultimately leading to better diagnostic accuracy and patient 

outcomes. 

IV. CONCLUSIONS 

In this systematic review, we examined 57 studies focused on 

data augmentation techniques for segmentation and 

classification tasks in cervical cancer detection. In the medical 

field, where image availability is often limited, data 

augmentation proves to be a valuable approach to improving 

model performance. Throughout the review, we encountered the 

challenge of identifying the best segmentation and classification 

algorithms, as different studies utilized diverse datasets, deep 

learning algorithms, and performance metrics. We took this 

variability into account in our comparisons to pinpoint the most 

effective models. Most of the reviewed papers emphasize the 

use of basic data augmentation- 

  



A SYSTEMATIC REVIEW OF EFFECTIVE DATA AUGMENTATION IN CERVICAL CANCER DETECTION 375 

 

 

 

TABLE VI 

ARTIFICIALLY GENERATED AUGMENTATION TECHNIQUES USED IN THE CLASSIFICATION TASK, ALONG WITH THE ALGORITHMS AND 

MODEL PERFORMANCE  

Ref Dataset Qty Class Augmentation Classification  Performance metrics 

[66] Herlev 917 7 GAN  VGG16 Acc=82.8, Pre=59.5, Rec=52.4, F1=51.7, SP=90.5 
 

[47] Herlev & SIPaKMeD 

 

4807 8 GAN VGG16 Acc=99.81 

[67] Fourth central hospital of 

Baoding city, China 
 

124 

 

2 GAN CNN Acc=93.8, Pre=47.8, F1=63.8, 

SP=93.6, AUC= 98.4 

[68] Liquid based-cytology 

Pap smear 
 

963 4 GAN EfficientNet Acc=99.1, Pre=99.2, Rec=99.4 

[69] Pap smear image 3400 2 DCGAN  Acc=79.5, Pre=74, Rec=91, F1=81.6 

 

[70] Herlev 917 2 RCGAN CNN Acc=88.87 

 

[71] 
 

Herlev 917 7 VGGAN T2T ViT (token to 
token 

Acc=SN=99.9, SP=99.64 
Mendeley 963 4 Acc=98.8, SN=98.6, SP=97.54 

SIPaKMeD 4049 5 Acc=99.6, SN=98.3, SP=98.6 

 
[65] 

 

 

SIPaKMeD 4049 5 SAGAN CervixFormer Acc=Pre=Rec=F1=98.3 

CRIC 400 6 Acc=95, Pre=97, Rec=95, F1=95 

Mendeley 963 4 Acc= Pre=Rec=F1= 99.4 
Cervix93 93 3 Acc= Pre= Rec=F1=100 

 

[72] Health center  5000 4 cGAN (DCGAN) ResNet18 Acc=71.7, SN=60.2, SP=88.2, AUC=81.1 
[73] SIPaKMeD 4049 5 denoising diffusion 

probabilistic 

model (DDPM) 

FusedDLAM (DL 

Arch with 

Attention 
Mechanisms 

 

Acc=99.29, Pre=99.3, Rec=99.3, F1=99.3 

[74] Pomeranian, SIPaKMeD 2219, 
8000 

3, 
2  

Residual DCGAN 
(RES_DCGAN) 

Xception, & 
DenseNet121 

with self-attention 

Acc=Pre=Rec=F1= 98 & 
Acc=Pre=Rec=F1= 95 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Selection process of the studies 

techniques, particularly for classification tasks. Furthermore, 

GAN-based augmentation techniques were exclusively 

employed for classification, further underscoring their potential 

to enhance model performance in this area. Overall, data 

augmentation has played a significant role in improving both the 

performance and generalizability of deep learning models. This 

review provides a comprehensive analysis of numerous studies 

to identify the best models for cervical cancer detection, 

offering valuable insights that may contribute to the 

advancement of future detection methods. By synthesizing 

findings from a wide range of research, this work highlights key 

areas for further exploration, such as the comparison of more 

advanced augmentation techniques and their impact on both 

segmentation and classification tasks. This may ultimately lead 

to more accurate and reliable cervical cancer detection models.  
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