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Fuel Level Estimation in Tank of Truck in Motion
Pawel Biernacki and Urszula Libal

Abstract—The paper presents the results of a case study on
estimating the fuel level in the tank of a motor vehicle. A method
based on the concept of particle filtering of noisy measurement
data is proposed. The algorithm designed using the Sequential
Monte Carlo method with Sequential Importance Sampling is
combined with classical digital filters used for signal filtering. In
the simulations, real data obtained by measuring fuel levels in
the tanks of TIR heavy trucks from one of the Polish trucking
companies are used. The performance of the applied method was
considered in various measurement situations, such as refueling,
driving on an uneven road surface, driving on steep roads, and
fading of the measurement signals.

Keywords—automotive sensors; particle filter; Sequential
Monte Carlo; fuel level; heavy truck; vehicle in motion

I. INTRODUCTION

IT is crucial for drivers to accurately know the fuel level in
a vehicle’s tank, as this information is vital for predicting

the remaining driving distance and planning routes effectively.
Accurate fuel level readings help to plan trips, determine
optimal fuel fuel times, and adjust driving strategies. Incon-
sistent or inaccurate fuel level measurements can complicate
trip planning and lead to inefficiencies. For motor carriers,
accurately determining the fuel consumption of their fleet of
vehicles is a major concern for both economic and operational
reasons [1]. Monitoring actual fuel consumption is essential for
calculating the true costs of operations, maintaining the tech-
nical condition of vehicles, and identifying potential instances
of fuel theft.

In the literature, various algorithms have been developed
to estimate fuel consumption [2] [3] [4] [5]. However, real-
time implementation of these algorithms has received limited
attention. During the past decade, numerous fuel estimation
algorithms have been proposed. For example, the authors of [6]
developed an algorithm based on a power-based model, which
requires instantaneous values for acceleration and speed; there-
fore, it is not suitable for eco-routing applications. The author
of [2] proposed a non-iterative fuel estimation model. The
technique presented in [7] to address the vehicle routing prob-
lem (VRP) utilizes the Comprehensive Modal Emission Model
(CMEM), which also requires speed and acceleration data to
estimate fuel consumption. Furthermore, the authors of [4]
proposed an algorithm based on RPM and designed a hardware
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Fig. 1. TIR heavy truck with: 1) fuel tank and 2) measuring probe.

architecture using floating-point arithmetic to implement the
fuel estimation algorithm.

In the literature, model-based filters, such as the Kalman
filter [8], the H∞ filter [9] [10], and the RLS filter [11] [12],
are optimal as long as the following criteria are met:

• The system dynamics are linear,
• Process noise and measurement noise are un-correlated

and zero-mean white noise,
• The system dynamics are observable and detectable.
In this paper, methods based on the Sequential Monte

Carlo algorithm combined with digital filters are discussed
and compared. Particle filtering [13] [14] [15] [16] [17] [18]
with Monte Carlo resampling has the ability to estimate
highly nonlinear systems under the right circumstances. It
approximates the distribution of a variable using particles as a
model. For the measurement of fuel level, which represents a
non-linear system, such a solution seems promising and should
be an effective way to estimate the amount of fuel in the tank
of a vehicle in motion.

II. PROBLEMS RELATED TO FUEL LEVEL
MEASUREMENT

The fuel level data recorded by the probe placed in the
vehicle tank is not directly interpretable. This is due to the
constant motion of liquid gasoline caused by the movement
of the vehicle (Fig. 1):

There are sources of disturbances and uncertainties that
affect the precision and accuracy of measured fuel levels.
Mechanical disturbances or process noise affect the measured
fuel levels. The liquid in the tank may cause a sloshing phe-
nomenon in the tank as the car accelerates or decelerates. The
angular orientation of the car also changes the displacement
of the fluid in the tank (Fig. 2). The motion of the fluid and
its displacement in the tank will be influenced by the actual
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Fig. 2. Model of sloshing phenomenon with fuel fluctuating in a tank.

volume of the fluid. The sensor itself may also be noisy, which
is yet another factor that influences fuel level readings.

Possible, but not the only, situations that interfere with the
correct measurement of fuel levels are:

• Driving on uneven pavement,
• Rapid braking or acceleration,
• Torsion,
• No measurement signal.

Taking into account the requirements of motor carriers, the
system for determining the actual fuel burn should correctly
determine the moment of refueling and its value, correctly
estimate the current fuel burn, and detect with some assumed
accuracy the possible fuel spillage from the tank.

III. MEASUREMENTS

All data were collected using pressure probes fitted into
truck tanks that traveled all over Europe. Various road condi-
tions were considered:

• highway driving,
• driving in the mountains,
• refueling,
• accelerating and decelerating

Fig. 3. Pressure probe.

The pressure probe used (Fig. 3) is designed to measure
the fuel levels in the tanks of motor vehicles, work machines,
and locomotives. The fuel level is measured by comparing the
height of the liquid column and resulting from it, hydrostatic
pressure. The probe consists of two parts: a sensing part in a
steel tube and an electronic part in an aluminum housing that
can be sealed. The measuring element is a piezoresistive sensor
separated from the medium by a diaphragm. The pressure is
measured at the diaphragm level of the immersed probe (5 mm
above the tank bottom). Depending on the type of tank (non-
pressurized or pressurized), pressure measurement is related to
atmospheric pressure or pressure inside the tank. An example
of a raw reading from the measuring probe is shown in (Fig. 4).
A sudden increase in fuel level at the beginning of the graph
corresponds to the time when the vehicle is refueled.

Fig. 4. Signal from the measuring probe.

IV. ASSUMPTIONS

Digital averaging (low-pass) filters were used for fuel level
estimation, which was also confronted with the averaging
of measurement data by the particle method. As the tests
showed, the use of only the low-pass filter (averaging) or the
particle method does not allow the correct determination of
the fuel level. It is clear that handling some situations that
disturb the measurement (mentioned above) requires the use
of intelligent procedures for their recognition and processing
in the estimation system. Particularly critical is the moment
of refueling. Determining its beginning, end, and value gives
the opportunity to detect possible fuel spills (most gasoline
thefts take place during refueling), is the starting point for
determining combustion, and is the basis for verifying the
correctness of the operation of the measuring and estimating
system. The accuracy of the measuring system can be verified
on the basis of fuel purchase invoices flowing to the carrier.
Fig. 2) shows an example of probe indications during the
refueling process. In addition to the readings of the measuring
probe placed in the vehicle tank, the estimation system also
uses data on vehicle speed, vehicle distance traveled, and the
elapsed time between successive readings of the probe. This
data greatly facilitates the correct determination of the fuel
level in the tank. Taking into account the above discussion,
the following estimation system is proposed.

1) While the vehicle is at a standstill (zero speed, distance
traveled almost zero) – the check whether a refueling
moment has occurred.

2) While driving – the use of an averaging filter to
determine the current fuel level.

The moment of refueling is determined by the cumulative
incident:

• Stopping time longer than t1 seconds (refueling takes at
least a minute),

• Distance traveled less than s1 meters (measuring the
position of a standing vehicle with a GPS system does
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not always give the same result),

• An increase in the fuel level in the tank by m1 liters.
Selecting the values of the parameters t1, s1,m1 is critical for
the correct functioning of the estimation system. Wrong values
can result in:

1) identification of a refueling event when it is not there,
such as sudden vehicle braking, stopping on an incline,

2) the wrong measurement of the amount of fuel fueled,

3) not detecting refueling [2].
When the vehicle is in motion, the selection of parameters

and the ’intelligence of operation’ of the averaging filters
should take into account the inertia of the fuel in the tank,
the disappearance of the signal, and the inability of the fuel
level in the tank to rise (there is no refueling after all).

V. ESTIMATION OF AVERAGE COMBUSTION BY
SEQUENTIAL MONTE CARLO METHOD

In this article, we focus on fuel level estimation using the se-
quential Monte Carlo method. The approximate measurement
data are estimated and smoothed using the particle method [13]
[14] [15] [16] [17] [18]. This method seems to be an excellent
tool for determining fuel combustion a vehicle in motion due
to the fact that one can freely choose the accuracy of averaging
depending on the ’noisiness’ of the measurement data (Fig. 4)),
changing only the number of repetitions (iterations) of the
algorithm.

A. State Space Model

A particle filter, also known as a Sequential Monte Carlo
(SMC) method [13] [14] [15] [16] [17] [18], is a recursive
Bayesian state estimator used to estimate the state of a dy-
namic system from noisy observations. It is particularly useful
in systems where the process and observation models are
non-linear or non-Gaussian. The particle filter approximates
the posterior distribution of the system’s state using a set of
random samples called particles, each associated with a weight
representing the particle’s probability of being the true state. In
the problem considered, we are actually dealing with a noisy
signal in the form of a certain mapping yk = h(xk, vk) where
the input data xk is the amount of fuel and the output data
yk are associated with certain measurements. The State Space
Model is defined as follows:
State Transition Model:

xk = f(xk−1, wk−1), (1)

where:
xk - State at time step k,
f - Function that describes the dynamics of the system.
wk - process noise.
The particles {x(i)

k }, i = 1, ..., N are samples that represent
possible states of the system (unknown amount of fuel).
The weights {w(i)

k , i = 1, ..., N , represent the likelihood that
each particle corresponds to the actual state, based on the

observations.
Observation Model:

yk = h(xk, vk), (2)

where:
yk - Observation at time step k (signal samples from the
sensor),
h - Function related to the state to the observation.
vk - Observation noise.

B. Particle filter with Sequential Importance Sampling

The particle filter algorithm with Sequential Importance
Sampling (SIS) [13] [14] [15] [16] [17] [18] is a technique
used to estimate the posterior distribution of a system’s state
given observations over time. It does so by representing the
posterior with a set of weighted samples (particles). The algo-
rithm recursively updates these particles as new observations
become available. The particle filter algorithm with sequential
importance sampling for the defined in Section 5.1 State Space
Model, has the following steps:
1. Initialization:
Generate N particles {x(i)

k , i = 1, ..., N}, from the initial
distribution p(x0). Assign an initial weight to each particle,
typically

w
(i)
0 =

1

N
for i = 1, ..., N (3)

2. Prediction (Time Update):
Propagate each particle x

(i)
k−1 to the next state using the state

transition model:

x
(i)
k = f(x

(i)
k−1, w

(i)
k−1) (4)

3. Update (Measurement Update):
Update the weight w(i)

k of each particle based on the likelihood
of the observed data given the predicted state:

w
(i)
k ∞w

(i)
k−1p(yk|x

(i)
k ) (5)

In detail, the updated weight is calculated from:

w
(i)
k = w

(i)
k−1

p(yk|x(i)
k )p(x

(i)
k |x(i)

k−1)

q(x
(i)
k |x(i)

0:k−1, y1:k)
(6)

where
p(yk|x(i)

k ) (7)

is the likelihood of the observation yk given the state x
(i)
k and

q(x
(i)
k |x(i)

0:k−1, y1:k) (8)

is the proposal distribution from which the particles are
sampled. After calculating all the weights, normalize them so
that

N∑
i=1

w
(i)
k = 1 (9)

The normalized weights are derived from the equation:

w̃
(i)
k =

w
(i)
k∑N

j=1 w
(j)
k

(10)
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4. Resampling:
To address the problem of particle degeneracy (where few
particles have significant weights), resample the particles to
form a new set. A common criterion for resampling is the
effective sample size (ESS):

ESS =
1∑N

j=1(w̃
(j)
k )2

(11)

If ESS falls below a certain threshold, resampling is performed
to generate a new set of particles. Particles with high weights
are duplicated, while those with low weights are discarded.
The weights are then reset to 1

N .
5. Output estimate:
The current state estimate can be obtained by the weighted
mean of the particles or also by selecting the particle with
the highest weight. The state estimate derived as the weighted
average of the particles is given by:

x̂k =

N∑
i=1

w̃
(i)
k x

(i)
k (12)

In summary, the particle filter with Sequential Importance
Sampling is a powerful method for tracking and estimating
the state of dynamic systems, particularly when dealing with
non-linearities and non-Gaussian noise. Its strength lies in its
flexibility and ability to approximate complex distributions,
although it requires careful implementation to manage com-
putational costs and prevent degeneracy.

VI. SIMULATIONS ON REAL-DATA
The proposed solution was tested using real data. They

were taken from the vehicle tank using a sensor (Figure
3) and transmitted over the GSM network to the vehicle
fleet monitoring center. There, the data was analyzed by our
system. Having the results from the sensors for many vehicles,
we were able to check the performance of the system for
various parameters of the filters used. We used FIR filters [11]
[12] with an order of 5 to 50 and IIR (Butterworth) filters
[12] with an order of 2 to 10. The procedure for verifying the
accuracy of the system’s operation consisted of the following:

1) refuel the vehicle to full,

2) driving in the field,

3) refueling to a full tank.

This approach allowed us to determine the value of the fuel
combusted. By comparing this quantity with that estimated by
our system, it was possible to determine the accuracy of the
system for different values of its parameters.

The Table I shows the average accuracy of the estimate of
total fuel burned while driving defined as

Q =
1

T

T∑
t=1

(
1− |GT(t)− EV(t)|

GT(t)

)
· 100[%], (13)

where T is the number of refueling events, when the ground
truth (GT) value could be compared with the estimated value

Fig. 5. Fuel measurement for a vehicle in motion - IIR filter of order 5.

Fig. 6. Measurement for a vehicle in motion - FIR filter (Hamming window)
of order 10.

(EV) of the fuel level in a tank of a particular truck. To obtain
the ground truth value, the tank was fully refueled and the
value estimated directly before the visit at the petrol station
as compared with the refueled amount, which was the ground
truth at the moment.

TABLE I
AVERAGE COMBUSTION ESTIMATION ACCURACY Q FOR DIFFERENT

FILTER TYPES AND ORDERS, AND FUEL LEVEL ESTIMATION MEAN ERROR
IN LITERS.

Filter order Q [%] Error [liter]

FIR 5 92.02 31.92

FIR 10 94.42 22.32

FIR 30 96.90 12.40

FIR 50 98.13 7.48

IIR 2 92.62 29.52

IIR 5 96.79 12.84

IIR 10 99.03 3.88

Our observations demonstrate that increasing the filter order
enhances the accuracy of burned fuel estimation. IIR filters
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Fig. 7. Particle filter: noised signal before filtration.

Fig. 8. Particle filter: de-noised signal after filtration.

exhibit superior performance compared to FIR filters in this
context. The system achieves a maximum accuracy of ap-
proximately 99%. Considering the fuel tank capacity of the
surveyed vehicles, which is around 400 liters, the estimation
error for burned fuel remains below 4 liters. Simulation
studies were conducted and visualized using the MATLAB
environment. Representative test results are presented below.

A comparison of Figs. 5 and 6 reveals that the FIR filter
exhibits superior tracking performance of the fuel level trajec-
tory. However, this improvement comes at the cost of a higher
filter order compared to the IIR filter. Furthermore, given the
non-uniform sampling intervals of the probe data, the FIR
filter may introduce significant latency, potentially rendering
the system unsuitable for real-time online operation.

Within the same order of IIR and FIR filters, the IIR filter
generally demonstrates superior performance.

Particle filtering demonstrates high effectiveness in smooth-
ing the signal trajectory, exhibiting competitive performance
with the digital filters presented above (compare Figs. 8 and 9).
However, achieving a denoised signal as depicted in Fig. 9
requires approximately 200 algorithm iterations, significantly
increasing processing time. This computational burden renders
particle filtering impractical for real-time systems monitoring
numerous vehicles simultaneously.

Fig. 10 shows the moments of the refueling process (the
same as in Fig. 4. Selecting the parameters values t1, s1,m1

with the use of an iterative method allowed us to correctly
detect the moments of refueling and determine the level of
refueling with an accuracy of 5 liters - the results were
compared with fuel invoices.

VII. CONCLUSIONS

The results obtained from simulation studies of the system
for estimating the fuel level in the tank of a motor vehicle
allow us to formulate the following conclusions. Identifying
the moment of refueling is critical to the effectiveness of the
system. The IIR filters, because of their smaller order than
FIR filters, appear to be better in a vehicle traffic situation,
with the best result of fuel level estimation for IIR filter

Fig. 9. Vehicle refueling signal (easy case) - IIR filter of order 5.

Fig. 10. Vehicle refueling signal (hard case) - IIR filter of order 5.

of order 10 equal approximately 4 liters. The Sequential
Monte Carlo method in the form of the particle filter, due
to its long processing time, can only be used in off-line
systems; where speed and ongoing monitoring of fuel levels
are important, digital filters are a better solution. Information
on vehicle speed and distance traveled is necessary for the
correct determination of the fuel level estimate, the values
of the parameters t1, s1,m1 determine the suitability of the
estimation system.

The conducted tests enabled the estimation of fuel quantity
in tanks of truck in motion. However, a limitation lies in
obtaining the values of the ground truth, i.e. the values
determined after refueling at a petrol station. The validation
of the system and the accuracy of the estimates remains a
challenging problem.

VIII. POSSIBLE FUTURE IMPROVEMENTS
The accuracy of the calculated average fuel level in moving

vehicles is deemed satisfactory, albeit with potential for further
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enhancement. Incorporating additional vehicular data, such as
sensor readings, can significantly improve the efficiency of the
proposed method.

A valuable addition to the vehicle’s instrumentation would
be a gyroscope. This device measures the vehicle’s inclination.
By analyzing gyroscope data, errors in recorded fuel levels,
which arise during vehicle movement on inclined surfaces and
manifest as abrupt fluctuations in fuel tank content graphs, can
be effectively mitigated.

Another module that can enhance algorithm efficiency is
a simple thermometer mounted on the fuel tank. This device
can detect errors associated with inaccurate fuel level readings
from the fuel sensor caused by temperature variations within
the fuel container.

To further enhance system capabilities, additional function-
alities can be integrated: monitoring driver behavior, satellite
tracking, and detecting the presence of the driver and third par-
ties. To achieve this, modules such as a current sensor for the
gear, an engine rotation sensor, sensors mounted on the front
seats, and a satellite navigation module can be incorporated.
Data from these devices, when processed appropriately, can
significantly improve fuel consumption estimation in operating
vehicles.
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