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Optimization of purchasing plans based on
forecasted demand for resources

Szymon Niewiadomski, and Grzegorz Mzyk

Abstract—The challenge of enhancing purchasing strategies
within a large organization, taking into account non-linear
constraints, has been thoroughly examined and formalized. The
increase in demand for resources over time, changes in prices
and the costs of tender procedures are taken into account. The
purchasing strategy integrates forecasts derived from historical
data and is in accordance with the capacity plan. A simple, linear
autoregressive model is used to predict demand changes and a
predictive control technique with a moving horizon. Furthermore,
the findings from experiments utilizing the genetic algorithm are
presented. Finally, important open problems are discussed, the
solution of which would expand the scope of applicability and
universality of the developed tool.
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I. INTRODUCTION

THE fundamental assumptions of the problem are rooted
in the real-world challenge of developing a procurement

strategy for IT resources in an energy sector company. Based
on historical data on resource utilization and the results of
tender proceedings, a long-term budget for IT procurement
had to be developed. The quantity and diversity of resources,
as well as the numerous factors that need to be considered,
led us to develop an algorithm that may not necessarily find
an optimal solution but will assist in creating long-term plans
and procurement strategies.

In this article, we address the challenge of ensuring re-
sources in a company, taking into account many practical
aspects such as:

• for resources such as machines, disks, and computing
power, there is a limited lifespan. After a certain period,
these resources need to be phased out of production;

• the time from order to delivery is a random variable
influenced by global market conditions;

• the cost of the procurement process depends on the vol-
ume of goods purchased, which is particularly important
for entities subject to public procurement regulations
that impose thresholds requiring additional procedural
requirements;

This work is supported by the Polish Minister of Education and Science
as part of an implementation doctorate, grant No. DWD/5/0286/2021.

Sz. Niewiadomski and G. Mzyk are with Faculty of Information and
Communication Technology, University of Science and Technology, Wrocław,
Poland (e-mail: {szymon.niewiadomski, grzegorz.mzyk}@pwr.edu.pl).

• the estimation of the demand curve is uncertain, with
variance increasing as the horizon of our predictions
extends;

• the demand curve can be a combination of several func-
tions, such as the natural growth of resource demand,
sudden spikes in demand due to capital acquisitions, the
initiation of large projects, or the launch of a new product
in the market;

• when developing a procurement plan, it is essential to
consider the time value of money.

The mentioned aspects indicate the nonlinear nature of the
problem under conditions of probabilistic uncertainty. General
classification of problems, methods and notations in context of
resource-constrained project schedule can be found in [1]. This
work however, addresses a critical optimization challenge that
is economically significant for large enterprises. These organi-
zations frequently grapple with the need to devise an effective
purchasing strategy. They must navigate price fluctuations
over time, uncertain resource consumption, and the nonlinear
relationship between order size and procurement costs. Beyond
its application in the field of information technology, our
article can also be effectively utilized for the procurement of
goods classified as Routine Products according to the Kraljic
Portfolio Matrix [2]

It is unrealistic to assume that we can develop a perfect
long-term procurement plan. Due to the uncertainty of esti-
mates, the plan must adapt to the changing reality. Each day
brings new information about technological changes or global
conflicts that impact most of our estimates. Therefore, we pro-
pose an adaptive approach and a corresponding organization
of the process within the company.[3].

Two distinct procurement strategies emerge at a glance.
The first involves making a single, large purchase – ”big
order”– which secures resources for an extended period. The
second strategy – ”as late as possible” – emphasizes frequent
procurement actions to maximize utilization. The ”big order”
strategy is most advantageous when resource prices remain
stable, and significant discounts are available for bulk orders,
while the ”as late as possible” is better suited for scenarios
where commodity prices are on the decline and pricing is not
dependent on volume [4].

However, there are many strategies in between which can
be the optimal one, and we developed a solution to search for
it. The algorithm developed here is tailored for optimizing
IT storage resources but can also be adapted to various
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applications, including computing power, subscription-based
products, and decisions related to the duration of service
contracts.

The problem as defined is quite broad, lacking guarantees
of convexity in the optimization criteria, and it features com-
plex nonlinear constraints alongside a degree of randomness
inherent in demand forecasting.

II. PROBLEM STATEMENT

The problem is to find the optimal plan for purchasing
resources. We assume that we have given data and some
historical sample sets:

• we have sample set of historical data regarding utilisation
of our resources {yg, t̄g}, g ∈ {1, ..,M}, where M is a
number of samples, and y is utilisation. These data we
will use to estimate demand function. Time symbol t̄ is
continues, refers to moment form the past - later in the
paper t is a set of points in the future;

• we have a sample set of historical prices of the resource.
{pj , qj , t̄j}, j ∈ {1, .., P}, where P is a number of
samples in the set, p - is a price of the transaction, best
offer or buying option, q-represents quantity of the goods
or volume of the order;

• We know the cost of the procurement process, denoted as
ξ, varies non-linearly with the order quantity, expressed
as ξ = ξ(p̄), where p̄ represents the anticipated trans-
action price. In most companies, spending thresholds are
established that necessitate additional steps in the process,
such as conducting further analyses and making decisions
at higher management levels, which increases the costs
of the procedure. This introduces non-linearity into the
proposed model.

• we have {dk, tk}, k ∈ {1, .., D}, where D is a number
of samples, and d is a delivery time;

• we have given r – interest rate;
• we possess detailed information regarding the available

resources and their current utilization at time t0. Addi-
tionally, it is imperative to have comprehensive knowl-
edge of the planned decommissioning dates for each
component. For instance, the total disk storage capacity
comprises several disk arrays, necessitating awareness of
the sunset dates for all individual arrays.

By a purchasing plan we understand that at equidistant
discrete time points {ti}ni=1, ti = i−1

n T , we can acquire
any amount of resources. Let introduce also delivery time –
resources will be available after delivery time d which can be
estimated based on historical data. Therefore, we are making
decisions in ti−d and the resource become available in ti. So
taking into consideration delivery time the purchasing plan
cosist of decisions in discrete points: {ti}n−d

i=1 , ti = i−1
n−d (T−d)

Based on our decisions resources {mi}ni=1 become available
in our infrastructure. The period the resource can be available
in the infrastructure (lifetime) is assumed to be identical for
all orders and denoted by l. Hence, the resource (memory)
availability function related to the ith order has the following
form:

si(t) = mi {1 (t− ti)− 1 (t− ti − l)} . (1)

The boundary condition (constraint) ensures that the quantity
of resources is at least equal to the demand:

n∑
i=1

si(t) ≥ Y (t) (2)

for each t ∈ [0, T ]. The total expense/cost for the i-th order is

ci (mi) =
mip(ti) + ξ (mi)

(1 + r)ti
. (3)

The denominator represents discounts for cost based on the
time ti and the interest rate r. This means that future costs are
”cheaper” when viewed in present terms, which is essential in
financial modeling. The decision variable is therefore a vector

m = (m1,m2, ..,mi, ...,mn) ∈ Rn (4)

The optimization criterion is the total cost of all purchases
along with the expenses related to the procurement process:

Q (m) =

n∑
i=1

ci (mi) → min
m

, (5)

provided that inequality (2) is satisfied.

III. THE ALGORITHM

A. Solution overview

We have decision points {ti}ni=1. The solution starts in t0.
The idea is to find optimal purchase plan till the end of time
horizon, then to execute the purchase in the t0, and move to
the point t1 to collect new data from reality, to adjust our
forecasts and then to run optimisation again. In the end our
purchase plan will be updated and execution of the decision in
t1 will be ready. Optimization at each step is carried out using
forecast models. The general form of the model is presented
in the Appendix (Section VI), and a special case of the model
described there is given below.

The first step in our algorithm is to estimate price and
demand functions. Similar problem was considered by as-
sumption that proces is Wiener and the demand curve follows
a poisson distribution [5]. However, we propose heuristic
method based on Genetic Algorithm to find optimal purchasing
plan. We analysed different methodslike Bellman dynamic
programming [6], convex optimization techniques ([7], [8]),
neural networks based on stochastic gradient (e.g. Adam
algorithm [9]), ant search algorithm [10]. The tabu-search
technique ([11], [12]) and the simulated annealing method
([13]). The results obtained are presented in the article [14].

B. Price Function

Our proposal is to use model with following key features:
• polynomial in time – the price trends over time are

captured with a 4th-degree polynomial. This gives the
model flexibility to fit non-linear temporal trends such as
growth, decline, or inflection points.

• logarithmic in volume – the model assumes that price re-
ductions due to higher order volumes follow a logarithmic
curve, meaning price decreases more quickly at smaller
order volumes but more slowly as the volume increases.
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Examples of such functions are presented in Fig.1 and Fig.2.
Estimator for predicted price has the following form:

P̂ (q, t) = β̂0 + β̂1t+ β̂2t
2 + β̂3t

3 + β̂4t
4 + β̂5 log(q)

where the coefficients β̂0, β̂1, β̂2, β̂3, β̂4, β̂5 are estimated using
the least squares formula

β̂ = (XTX)−1XT y

in which β̂ is the vector of estimated coefficients
[β̂0, β̂1, β̂2, β̂3, β̂4, β̂5], the information matrix X is as follows

X =


1 t̄1 t̄1

2
t̄1

3
t̄1

4
log(q1)

1 t̄2 t̄2
2

t̄2
3

t̄2
4

log(q2)
...

...
...

1 ¯tM ¯tM
2 ¯tM

3 ¯tM
4

log(qM )


and

y = (p1, p2, ..., pn)
T (6)

denotes the vector of observed prices (historical). Interesting
approach how to handle discount policy is presented in [15].

Fig. 1: Example 1 of Price function

C. Demand function estimator

To forecast demand, we will use historical data and select a
model that best represents the natural growth of the company.
We will then enhance the prediction with knowledge of sig-
nificant upcoming events within the organization. Our model
will therefore be a combination of three functions:

• Y1 – a dynamic model representing natural development,
• Y2 – events within the company that influence the be-

havior of our dynamic model (multiplying demand and
forecast),

• Y3 – additive events that affect demand on a one-time
basis.

Y = Y1Y2 + Y3

Fig. 2: Example 2 of Price function

Y2, Y3 is given, and Y1 can be estimated based on sample set of
historical data regarding utilisation of our resources {yg, t̄g},
g ∈ {1, ..,M}, where M is a number of samples, and y is
utilisation.

We propose very simple AR(1) model defined as:

yt = λyt−1 + ϵt

Where yt is the value of the time series at time t, λ is the
autoregressive coefficient, ϵt is the error term with zero mean
and variance σ2. We can estimate λ using OLS as follows

λ̂ =

∑M
g=2(yg − ȳ)(yg−1 − ȳ)∑M

t=2(yg−1 − ȳ)2
,

where ȳ is the mean of the time series. Alternative and
interesting method for demand curve estimation was proposed
in [16]

D. Application of genetic algorithm (GA)
The method used in the article follows the recommendations

from [17] (Chapter 10.4.2). Following algorithm description
and figures is done assuming that interest rate r = 0%,
delivery time d = 0, and initial demand starts in 0 and initial
availability of resources is none.

1) Basic components of GA:
• Chromosome – m = (m1, ...,mn) – represents a distinct

and valid order plan;
• Gene – i – represents specific moment when a purchase

may take place;
• Allele – mi – reflects the decision planned at specific

moment within the particular plan
2) Initial population: Let ∆ ≜ ti − ti−1 = T

n be the
time interval between consecutive purchases (constant for all
i’s). Assuming that l ≥ ∆, purchase mi affects resources in
ti, ti+1, ...., ti+h, i.e., in the horizon

h =

⌊
l

∆

⌋
. (7)
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Fig. 3: Example of valid purchasing plans.

The components mi of each new individual (candidate solu-
tion) (4) are generated successively (i = 1, 2, ..., n), from a
uniformly distributed random generator

mi ∼ U [mi,min,mi,max] , (8)

where mi,min refers to the minimal volume of the resource that
ensures the satisfaction of the demand until the next, (i+1)th,
purchasing procedure. Example of valid strategies is shown in
Fig. 3.

mi,min = u(ti+1)−
∑
j<i

sj (ti+1) , (9)

whereas mi,max guarantees sufficient resources until time ti+h,
i.e.,

mi,max = u(ti+h)−
∑
j<i

sj (ti+h) . (10)

Our crossover approach typically gravitates towards the mean,
making it essential to produce a substantial number of individ-
uals near the limits of feasible solutions. We have established
the following guideline: 20% of individuals will correspond to
a single large order in the first available position, another 20%
will represent numerous small purchases, while the remaining
60% will be distributed randomly. Initial seed is presented in
Fig. 4.
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Fig. 4: Initial population.

3) Selection of Parents: We decided to use fitness propor-
tionate selection (roulette wheel). The cost inversely affects
the likelihood of an individual being selected for the group
that will produce the subsequent generation; thus, a lower cost
increases the probability of qualification. The probability of
selecting the kth individual from the population

{
m(κ)

}N

κ=1
is calculated according to the following equation

P
(
m(k) is selected

)
=

q
(
m(k)

)∑N
κ=1 q

(
m(κ)

) , (11)

where q (·) represents the adaptation function, e.g., q
(
m(κ)

)
=

Qmax −Q
(
m(κ)

)
with Qmax ≜ maxκ=1,2,...,N Q(m(κ)).

4) Crossover: We assume that the new generation produced
from the parents must satisfy the conditions of the problem,
meaning the strategies should be valid (ensuring the minimum
amount of resources defined by the demand curve). The
allowable strategy space following the exchange of genes
between individuals A and B shows Fig. 3. Our suggested
technique for generating offspring entails randomly selecting
a time point to transition from one strategy, as illustrated in
Fig. 5, to strategy 2, while further employing the features
of the second individual. Feature blending can occur in two
directions, and Fig. 6 presents the offspring resulting from the
merging of two individuals (strategies). The alternative method
for crossover involves calculating the average for each m

Fig. 5: Valid crossover area.

Fig. 6: Valid crossover - proposed solution.

5) Mutation: In the algorithm, we incorporated mutations
that take place whenever a new population is created. This mu-
tation consists of relocating an order from a random time point
to either the preceding or succeeding time point, provided that
the strategy continues to be valid.

6) Termination condition: The mean expense for the entire
population is fluctuating by less than ϵ over the subsequent
three generations. This parameter is contingent upon the
overall cost of the strategies and must be taken into account
each time a new resource is evaluated.
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IV. RESULTS

The algorithm was assessed in edge cases where the solu-
tions are clearly defined. In the first test we checked algorithm
under following parameters:

• constant product price over time;
• constant procurement expenses;
• significant discounts for bulk purchases.

In this case, the best plan is to make the largest single order.
Solution was found by our simulation. Results are presented
on Fig.7. Then, we’ve considered another case:

• no discounts;
• decreasing product price over time;

The optimal tactic is to postpone the purchase for as long as
possible. The behavior of the population within the genetic
algorithm is depicted in Fig.8.
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Fig. 7: Preference for big orders. Generations 10,20,40,80.
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Fig. 8: Preference for the last minute orders. Generations
10,20,40,80.

The proposed solution is capable of identifying non-obvious
outcomes when we introduce a limited lifespan for resources

within the organization. An example of an interesting strategy
discovered by the algorithm is presented in Fig.9. To evaluate
the effectiveness of the solution, the strategy found by the al-
gorithm was compared to several standard strategies—namely,
the regular replenishment strategy and the edge strategies of
making a large purchase or delaying the order as much as
possible. The algorithm was able to find strategies that resulted
in savings of 5 to 20 percent.

Fig. 9: Exploring a genetic algorithm approach to address
a problem involving restricted time availability of resources.
(Generations: 1, 5, 10, 15, 20, 25).

V. OPEN PROBLEMS

A. Innovative Approaches to Crossover

An enhancement of this algorithm could entail exploring
alternative strategies for feature blending. The scope of valid
solutions outlined in this paper can be broadened, potentially
alleviating the algorithm’s inclination to converge towards
averaging across generations and focusing on niche solutions.
Nonetheless, it is essential to ensure the integrity and precision
of strategies as they progress through subsequent generations.

B. Incorporating Resource Degradation Over Time

Certain resources intended for use in enterprises may suffer
from diminished performance, resulting in a reduction of
their capacity and functionality. While the algorithm currently
employs a binary representation of resource availability, it can
be further developed to incorporate functions that define the
nature of resource degradation. A pertinent example would
be photovoltaic panels, where the evaluation of purchasing
strategies might take into account the reduction in device
efficiency over time.

C. Sensitivity Analysis

Conducting a sensitivity analysis on the algorithm’s param-
eters, such as the mutation rate or the size of the population,
would offer deeper insights into its stability. It would also
help to identify optimal configurations for various procurement
scenarios, potentially improving the robustness of the results.
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D. Risk Management

Another area of potential development is integrating risk
management into the model. By assessing the risk of supply
chain disruptions or price spikes, the algorithm could provide
more resilient procurement strategies, safeguarding against
sudden market shifts

VI. APPENDIX. APPLICATION OF MODEL PREDICTIVE
CONTROL METHODOLOGY

In this section, we will present the problem under consid-
eration in the context of predictive control. Each purchasing
decision will be considered as an excitation of the uncertain
system (i.e., control) at a given moment in time. Uncertainty
about the obtained effect on the output of the system is due
to lack of knowledge about the future demand for resources
and possible price changes. Moving to the next purchasing
period means gaining additional knowledge about current
prices and resource consumption. The forecast horizon can
therefore be shifted each time, and all calculations can be
repeated from the point of view of the new (current) reference
moment. The peculiarities of the problem considered here do
not entail problems related to the required rate of calculations.
Purchasing periods are, as a rule, on the order of a few weeks
or months, which makes the computational aspect no longer
critical here. Below we present an example of how to predict
the behavior of the process using a general nonlinear model
of the NARMAX type [18] [19]. Let yi = y (ti) be splitted
into two components xi = x (ti) and κi = κ (ti), i.e.

yi = xi + κi, (12)

where
• κi represents the non-stationary (unpredictable) compo-

nent of process yi, and,
• xi represents the stationary component modelled by non-

linear autoregresion

xi =

p∑
j=1

λjη(xi−j) + εi (13)

and εi denotes the random error.
We assume that the nonlinear function η(·) is of given

parametric form

η(x) =

q∑
l=1

clgl(x) (14)

where g1(), ..., gq() is a set of linearly independent functions,
and the order of memory, p, is given a priori. Let

Λ = (λ1, .., λp)
T (15)

c = (c1, ..., cq)
T

denote true (unknown) parameters of the process. Since the
description of the process given by (13) is not unique (the
formulas with vectors Λ, c and βΛ, c/β are equivalent) we
assume technically that the matrix ΞΛc = ΛcT is not zero,
||Λ||2 = 1, and first non-zero element of Λ is positive.

Let

ϑ = (λ1c1, ..., λ1cq, ..., λpc1, ..., λpcq)
T (16)

= (ϑ1, ..., ϑpq)
T

be the aggregated parameter vector obtained by combining
(14) with (13), and let ϕi be respective regressor vector

ϕi = (g1(xi−1), ..., gq(xi−1), ..., g1(xi−p), ..., gq(xi−p))
T

(17)
Equations (13)-(14) can be simplified to the form xi = ϕT

i ϑ+
εi. For i = 1, ..., N we get

XN = ΦNϑ+ EN (18)

where XN = (x1, ..., xN )T , ΦN = (ϕ1, ..., ϕN )T , and EN =
(ε1,..., εN )T .

The goal is to identify parameters in Λ and c (given by (15)),
using the measurements {xi}Ni=1. Vector ϑ can be estimated
by the least squares as follows

ϑ̂
(LS)
N = (ΦT

NΦN )−1ΦT
NXN . (19)

Next, the estimator Ξ̂
(LS)
Λc of the matrix ΞΛc = ΛcT can be

built to run the SVD (singular value decomposition)

Ξ̂
(LS)
Λc =

min(p,q)∑
n=1

δnϖ̂nω̂
T
n (20)

and extract individual parameters

Λ̂
(LS)
N = sign(ξ̂1[κξ1 ]) · ϖ̂1 (21)

ĉ
(LS)
N = sign(ξ̂1[κξ1 ]) · δ1ω̂1

where κw = min{i : w[i] ̸= 0}.
Remark 1: In the simulation example we mainly used

simplified linear AR(1) model, which can be obtained from
(12) and (13) by putting κi = 0, p = 1 and η (x) = x.

VII. CONCLUSION

The developed solution demonstrates significant potential
for yielding savings in corporate environments. The algorithm
can identify purchasing strategies that outperform baseline
approaches typically used in companies by 5-20%. This im-
proved efficiency in decision-making is crucial for companies
seeking to optimize resource procurement in the face of non-
linear constraints, price volatility, and fluctuating demand.

One of the standout advantages of the solution is its adapt-
ability to different market conditions and organizational needs.
Although the algorithm has been designed to optimize procure-
ment in IT infrastructure, its versatility suggests that it could
be easily adapted to other industries, such as manufacturing,
energy, or telecommunications. By tweaking the parameters to
fit specific market demands, the model could serve a broader
range of procurement challenges.

A crucial factor influencing the algorithm’s performance is
market volatility. In highly fluctuating markets, the genetic
algorithm’s ability to adapt to new data in real-time offers
a significant advantage over static, long-term procurement
strategies. This adaptability could lead to better decision-
making and cost-saving opportunities in unpredictable eco-
nomic climates.



OPTIMIZATION OF PURCHASING PLANS BASED ON FORECASTED DEMAND FOR RESOURCES 425

Additionally, the robustness of the solution lies in its ability
to incorporate publicly available data, such as the results from
public tenders, to enrich the sample collection necessary for
accurate price estimation. This capability reduces the reliance
on proprietary data, making the system more accessible to a
wide range of companies, including those with limited internal
resources for price prediction.

However, it is important to note that accurate demand esti-
mation remains a challenge. To achieve precise predictions, a
mature capacity management process is required. This involves
not only understanding historical demand trends but also being
able to anticipate future changes based on external factors
such as market fluctuations, technological advancements, and
organizational events.

Overall, the solution provides a comprehensive framework
for procurement optimization that balances the need for flex-
ibility, accuracy, and cost-effectiveness. While further refine-
ment, particularly in demand estimation and crossover meth-
ods, could enhance its performance, the current system offers
substantial improvements over conventional strategies and is
poised to deliver significant financial benefits for companies
willing to adopt it.

REFERENCES
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