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Abstract—The following paper presents research on the 

Automatic Speech Recognition (ASR) methods for the construction 

of a system to automatically transcribe the medical interview in 

Polish language during a visit in the clinic. Performance of four 

ASR models based on Deep Neural Networks (DNN) was 

evaluated. The applied structures included XLSR-53 large, 

Quartznet15x5, FastConformer Hybrid Transducer-CTC and 

Whisper large. The study was conducted on a self-developed 

speech dataset. Models were evaluated using Word Error Rate 

(WER), Character Error Rate (CER), Match Error Rate (MER), 

Word Accuracy (WAcc), Word Information Preserved (WIP), 

Word Information Lost (WIL), Levenshtein distance, Jaro - 

Winkler similarity and Jaccard index. The results show that the 

Whisper model outperformed other tested solutions in the vast 

majority of the conducted tests. Whisper achieved a WER = 

20.84%, where XLSR-53 WER = 67.96%, Quartznet15x5 WER = 

76.25%, FastConformer WER = 46.30%. These results show that 

Whisper needs further adaptation for medical conversations, as 

current volume of transcription errors is not practically acceptable 

(too many mistakes in the description of the patient's health 

description). 

 

Keywords—Automatic Speech Recognition; Transformers; 

Encoder-Decoder; Deep Neural Network 

I. INTRODUCTION 

RTIFICIAL Intelligence (AI) has gained significant 

interest in recent years, due to its increasing abilities to 

automate human operations in multiple applications. One of the 

most prominent is the speech-to-text processing, which allows 

for accelerating the process of creating text documents and 

filling the forms. This is important, for instance, in the daily 

procedures of the medical clinics, which face the problem of the 

overwhelming paperwork. Transition to the electronic 

documents allows for proposing the flexible framework for the 
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document flow. One of its possible applications is the automated 

form-filling, based on the Real-Time speech recording. The 

typical implementation of the system is two-staged: speech-to-

text (aimed at extracting all words) and Natural Language 

Processing (NLP) for extracting keywords, combining them 

through context and uploading them to the form. 

Two main approaches to Automatic Speech Recognition 

(ASR) are conventional (using separate models for acoustics, 

linguistics and lexicon) and End-to-End (E2E), which uses an 

integrated model based on Deep Neural Networks (DNNs). The 

latter mainly uses Recurrent (RNN), Convolutional (CNN) and 

Transformer networks [1].  

The aim of this research was to find the most effective 

Automatic Speech Recognition (ASR) methods that can be used 

to build a system for transcription of the doctor-patient 

conversation in Polish language. Examples of ASR methods 

application in Polish medical terminology are present in 

literature. They are mainly commercial systems such as Google 

ASR, Microsoft ASR and Techno ASR [2]. Consideration of 

Whisper model application to medical terminology was 

presented in [3] (without demonstration of implementation 

results). Analysis of these solutions using a corpus of single 

words was presented in [4], [5]. The more traditional Hidden 

Markov Model was described in [6]. The following paper 

examines selected ASR DNN models with the intention to train 

them on the specifically prepared dataset of doctor-patient 

conversations in a medical interview scenario. 

In such a scenario, ASR models face challenges like ambient 

sounds, noise, reverberation and overlapping conversations 

(cocktail party scenario) [7]. Utterances of words and phonemes 

for both parties may overlap. Also, another person - such as 

nurse entering the office during a medical visit - can join the 

conversation. The system is intended to be used as an 
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application installed on a computer available in the clinic, so the 

recording quality will depend on the available hardware 

(recordings from a considerable distance may be of low quality). 

The study investigated how the content of medical 

terminology (names of drugs, diseases and symptoms) and the 

quality of recordings (acoustic conditions, quality of audio tools 

used) affect the performance of E2E ASR-based Polish speech 

recognition. Four DNN models have been employed for this 

task: XLSR-53 large Polish [8], STT Pl Quartznet15x5 [9], STT 

Pl FastConformer Hybrid Transducer-CTC Large P&C [10] and 

Whisper large [11]. 

The models were tested by comparing the transcription 

obtained from their output (hypothesis) with the actual text 

contained in the recording (reference) on the basis of indicators: 

Word Error Rate, Character Error Rate, Match Error Rate, Word 

Information Preserved, Levenshtein distance, Jaro - Winkler 

similarity and Jaccard index. Chapter II describes the planned 

application of the ASR model in a doctor-patient conversation 

recognition system, Chapter III details the architectures of the 

models tested, the evaluation metrics used and the statistical 

methods. Chapter IV contains a description of the authors' 

dataset used to test the selected models, Chapter V reports the 

experimental process and the results obtained, as well as the 

observed limitations. Chapter VI contains a summary of the 

experiments conducted and conclusions.  

II. POLISH ASR FOR AUTOMATED ANALYSIS OF 

DOCTOR-PATIENT CONVERSATIONS 

The E2E ASR systems used in the presented scenario belong 

to one of two groups: universal models also considering Polish, 

or the specific, language-oriented solutions. In most cases the 

former are used, as in the system constructed for the presented 

project (Fig. 1). 

 

 

Fig. 1. Designed system for automatic supplementing medical records based 

on doctor-patient interview during medical examination. 

Polish language, which is the subject of the analysis in the 

developed system, has specific requirements. It is an 

inflectional, characterized by a rich morphology in which words 

(nouns, pronouns, adjectives and verbs) conjugate according to 

grammatical context (by case, gender, person, or plurality). This 

results in dictionaries containing hundreds of thousands of 

words. It also affects the acoustic model of the language - subtle 

phonetic differences between suffixes lead to similarly-

sounding words [12].  

Sentence construction in Polish is relatively unrestricted and 

does not rely heavily on the Subject-Verb-Object (SVO) 

formation. The meaning is often determined by the complex 

inflection, and the function of a word depends on its form rather 

than the position in the sentence [13], [14], [15], [16]. 

In terms of spelling, Polish contains consonant combinations 

that are pronounced as single sounds, such as “cz,” “sz,” “dz” 

and “dż”, and sounds with multiple spellings, such as “ż/rz,” 

“h/ch” and “u/ó.” Moreover, the pronunciation of “ć/ci” varies 

depending on the spelling [17], [18], [19]. 

III. APPLIED METHODS  

This section includes a description of the E2E DNN ARS 

models used in the study, adapted for Speech-To-Text (STT) 

recognition, and methods for evaluating them in recognizing 

content of the medical interview. 

A. Architectures of used E2E DNN ASR models 

   For the study, Open-Source E2E ASR models were selected 

in the hope of gaining new knowledge from the additional data 

set through the transfer learning. Among the selected structures, 

three run in the Polish language mode (further referred to as 

polish version models) without a language detection stage STT 

Pl Quartznet15x5 (referred as Quartznet) and STT Pl 

FastConformer Hybrid Transducer-CTC Large P&C (referred 

as FastConformer) and multilingual models XLSR-53 large 

Polish (referred as Wav2Vec) and Whisper. All selected models 

represent the Encoder-Decoder (ED) architecture, common in 

Sequence-to-Sequence (Seq2Seq) tasks. The encoder's task is to 

convert the input sequence into vectors of the appropriate size, 

while the decoder is supposed to return the most probable labels 

based on the feature vectors taken from the encoder. 

1)  STT Pl Quartznet15x5 

The NVIDIA Quartznet [20] builds upon the Jasper model 

[21] incorporating CNN layers trained with a CTC 

(Connectionist Temporal Classification) loss function. It 

introduces the BxR architecture, featuring B blocks, each 

containing R convolutional sub-blocks. Quartznet utilizes 

spectrograms as input speech features.  

A key enhancement in this architecture is the substitution of 

1D convolutions, as used in Jasper, with 1D Time-Channel 

Separable Convolutions (1DTCSC), where "time" pertains to 

one-dimensional data. The convolution filter moves along the 

time axis and the operation produces temporal and channel 

components. The former employ distinct convolution filters for 

each time step, facilitating the analysis of temporal data from 

diverse viewpoints, enabling the detection of patterns and 

relationships. Channel operations splice the resultant data, 

extracting features across multiple channels. A variant of 

Quartznet15x5 was used, consisting of 15 blocks, each 

composed of the same base modules repeated 5 times (which 

included four layers: depth convolution, pointwise convolution, 

normalization and ReLU). This architecture is accessible via the 

NVIDIA NeMo toolkit [22].  

In the selected language version of the model, the Encoder is 

adopted from the English version of Quartznet, while the 

decoder is modified to generate characters from the Polish 

alphabet. The adaptation was done using the Polish fragment of 

the Mozilla Common Voice (MCV) dataset [23], [24].  

2)  STT Pl FastConformer Hybrid Transducer-CTC Large 

P&C 

This model (also sourced from the NVIDIA NeMo Toolkit) 

was adapted for Polish using three datasets: MCV, Multilingual 

LibriSpeech (MLS) [25], and VoxPopuli (VP) [26]. The model 

employs a FastConformer architecture [27], [28] with a 

Transducer (extension of CTC with joint modeling of input-

output and output-output relationships) [29] and CTC decoder 

loss. FastConformer employs an encoder modification, in which 
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the sampling rate is increased from 10 ms to 80 ms by using 3 

layers of convolutional depth subsampling. The additional 2x 

reduction in encoder output length provides computational 

memory savings in the decoder. 

The FastConformer version selected for the study uses a 

hybrid decoder, combining a Recurrent Neural Network 

Transducer (RNN-T) and a CTC. It employs the Google 

SentencePiece Unigram tokenizer [30] and transcribes text in 

both uppercase and lowercase letters, including spaces, periods, 

commas, question marks, and several other characters. 

3)  XLSR-53 large Polish 

The model derives from a platform developed by Facebook AI 

(Meta) for self-learning speech representations based on CNNs 

and Transformer networks. The raw speech waveform is fed to 

the input of the CNN encoder, which produces its hidden 

representations at the output. These are processed by the 

Transformer encoder, which output is processed by the 

quantization module to represent targets for self-supervised 

learning. The model builds context representations on 

continuous speech [31]. In [32], the use of the Wav2Vec 2.0 

framework for unsupervised learning of the ASR XLSR-53 

multilingual model is described, covering 53 languages 

(including Polish). Tuning the model to new languages is 

performed by training it on additional data with CTC loss 

function [33]. In the presented case, MCV, MLS and Babel [34] 

were used. 

4)  Whisper 

The Whisper is OpenAI's open-source, multilingual model, 

built on the Transformer Encoder-Decoder (ED) [35] 

architecture with two additional CNN layers at the top of the 

encoder's structure (referred to as Speech-Transformer). It 

supports 57 languages, including Polish [11]. 

The model comes in five versions: tiny, base, small, medium, 

and large. It allows for direct mapping between utterances and 

their transcriptions by predicting the raw text, eliminating the 

need for significant standardization or preprocessing.  

The used model has been trained on a large set of audio data 

and transcriptions from the Internet. It exhibits diversity in 

terms of audio quality, which helps becoming robust to changes 

in speech signals [36]. 

B. Evaluation 

The capability of E2E DNN ASR models is usually assessed 

by two metrics: Word Error Rate (WER) and Character Error 

Rate (CER). This section introduces other metrics that can be 

used to evaluate the system. All of them evaluate the quality of 

the model's output transcription (hypothesis) by comparing it 

to a reference text. 

1) Word Error Rate (WER) 

It is a standard approach to evaluating the performance of an 

ASR model. It evaluates a ratio of the sum of errors in the model 

hypothesis (substitutions (S), insertions (I) and deletions (D)) to 

the overall number of words in the reference N (eq. 1). 

 

𝑊𝐸𝑅 =  (
𝑆 + 𝐼 + 𝐷

𝑁
)  ∙  100%       (1) 

 

The greater WER indicates the presence of increased errors in 

the model's hypothesis. It is desirable to get the smallest possible 

value [37]. The WER is provided in practice as an average across 

the test set. 

2) Character Error Rate (CER) 

It is an error rate similar to WER, but operating at the level of 

individual characters instead of whole words. The CER equation 

is the same as eq. 1, but considers characters. 

3) Match Error Rate (MER) 

MER is the probability that the word match between the 

hypothesis and the reference is incorrect. Like WER, taking into 

account word-level S, D, and I errors [38]: 
 

𝑀𝐸𝑅 =  (
𝑆 + 𝐼 + 𝐷

𝑁 + 𝐼
)  ∙  100%       (2) 
 

4) Word Information Preserved (WIP) 

The measure indicates the percentage of words correctly 

predicted between the reference and the hypothesis. This is an 

accuracy measure, so a higher value indicates better performance 

of the ASR model [38]: 
 

𝑊𝐼𝑃 =   
𝐻

𝑁1
 ∙  

𝐻

𝑁2
       (3) 

 

where H is the number of correctly recognized words, N1- sum 

of words in reference and N2- sum of words in hypothesis. 

5)  Levenshtein distance 

This measure [39] operates on the characters. It represents the 

minimum number of basic operations (I, D or S) required to 

transform one string into another. The distance Lev.distu,v 

between the strings u and v is [40]: 
 

𝐿𝑒𝑣. 𝑑𝑖𝑠𝑡𝑢,𝑣(𝑖, 𝑗)  =

 

{
 

 
𝑚𝑎𝑥(𝑖, 𝑗)                                 𝐼

𝑚𝑖𝑛 {

𝑑(𝑖 − 1, 𝑗) + 1

𝑑(𝑖, 𝑗 − 1) + 1
𝑑(𝑖 − 1, 𝑗 − 1) + 𝟏(𝑢𝑖≠𝑢𝑗)

𝐼𝐼
      (4) 

where: I - if min(i, j) = 0; II - otherwise; Lev.distu,v(i,j) - 

Levenshtein distance between the first i characters of the string 

u and the first j characters of string v; 1(ui≠uj) - function, which 

is 1 if the characters ui and vj are different, and 0 if they are the 

same. 

6) Jaro – Winkler similarity (JW) 

It is a modification of the Jaro similarity [41], [42] considering 

the length of the common prefix. It is used to calculate the 

similarity J(u,v) between two strings u and v of lengths Lenu and 

Lenv: 
 

𝐽(𝑢, 𝑣)  =  {

0                                                          𝐼
1

3
(
𝑚

|𝑢|
 +

𝑚

|𝑣|
 +
𝑚 − 𝑡

𝑚
)                  𝐼𝐼

    (5)   

 

where I - if m = 0; II - for m ≠ 0; m - number of the same 

characters in both strings; t - number of rearranged characters 

(transpositions). 

The Jaro-Winkler similarity introduced a prefix scale factor 

p, which gives more precise results when strings share a 

common prefix up to a specified maximum length L [43]: 

 

𝐽𝑊(𝑢, 𝑣)  =  𝐽(𝑢, 𝑣)  + 𝑝 ∙  𝐿 ∙ (1 −  𝐽(𝑢, 𝑣))     (6) 
  The Jaro-Winkler similarity between two words simply shows 

how close they are. 
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7) Jaccard index 

This emasure assesses the distance between two sets U and V 

[44]: 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑈, 𝑉)  =  
|𝑈 ∩ 𝑉|

|𝑈 ∪ 𝑉|
       (7) 

 

In the context of hypothesis and reference, Jaccard index can 

be used to assess how similar they are to each other based on 

how many shared words exist relative to all words. 

C. Statistics methods 

The mean, standard deviation, box plots and ANOVA test 

were used to analyze the results obtained from the tests.  

Box plots allow for visualization of data distribution, 

concentration, symmetry and detection of outliers. It enables 

visual comparison of the obtained metrics values between 

models. Median and quantiles are used to assess the central 

tendency of the data and its dispersion. 

The ANOVA test (Analysis of Variance) allows for 

comparison of means (of two or more groups), identification of 

factors with significant influence on the dependent variable, 

multivariate analysis (influence of multiple factors 

simultaneously). In this study, the ANOVA test was used to 

compare the mean values of the metrics obtained for the 

different types of microphones used in the dataset recordings. 

IV. DATASET 

The self-developed dataset was used in the test. It consists of 

medical interviews recorded in a laboratory room similar to a 

typical doctor's office, based on a reenactment of a doctor-

patient conversation. The dataset is characterized by realistic 

acoustic conditions of the medical office (presence of ambient 

sounds, noise, reverberation), contains overlapping spontaneous 

speech (with mistakes, repetitions, interruptions, breaths, etc.), 

medical terminology (names of drugs, diseases, symptoms). 

Speakers are both female and male, speaking Polish. 

Conversations are held in a configuration: female doctor - 

female or male patient.  

The dataset contains 82 recordings along with transcriptions 

with time-stamping (start and end) of each speaker's turn. They 

were acquired using microphones of varying quality (each 

interview was recorded with two or three different 

microphones), In total, 5 different microphones were used, 

marked as Z02HV, Z05BO, Z06GR (omnidirectional, USB-

based, cheap), Z10BK (precise free field measurements). 

Length of recordings varies from 1.36 to 6.34 mins, with an 

average of 2.97 mins, 4.05h total. Originally the recordings were 

acquired as two-channel, but due to the requirements of the 

NeMo Toolkit models, they were converted to the mono format 

with sample rate 16 kHz. 

Since the recordings include patient-doctor dialogues and 

transcriptions with speaker turns and time stamps, they can be 

divided into about 2,060 utterances. 

V. EXPERIMENT 

The experiment consisted of testing off-the-shelf models, 

described in Section III, unchanged as they were provided by 

the authors. In the study, we did not perform additional training 

of the models. Our goal is to preliminarily test the performance 

of the selected methods in the task of ASR of Polish speech with 

medical terminology and to identify the most promising solution 

for further adaptation to the planned system (Figure 1). To 

achieve this, all recordings in the dataset were fed to the input 

of each model, without additional preprocessing. The output 

was a hypothesis in the textual form. The reference text and the 

hypothesis were normalized: transforming characters to 

uppercase and removing all special characters. The reference 

texts and hypotheses produced in this manner were used to 

calculate the metrics listed in Section III-B. Average values of 

metrics were calculated along with the standard deviation, box 

plots for each metric were generated, and an ANOVA test of the 

effect of microphone quality on the result of recognition 

(hypothesis) was conducted. 

The average values of the metrics along with the standard 

deviation are in Table I. box plots refer respectively to: WER 

(Fig. 2), CER (Fig 3), MER (Fig. 4), WIP (Fig. 5), Levenshtein 

distance (Fig. 6), Jaro-Winkler similarity (Fig. 7) and Jaccard 

index (Fig. 8) and the average metrics values for each of 

microphone used (Tables II, III, IV, V).  

Error and inaccuracy metrics such as WER, CER, MER, and 

Levenshtein distance should be interpreted as: the smaller the 

value of the metrics, the smaller the number of errors or the 

accuracy of mapping the reference text by the hypothesis. 

Efficiency and correctness metrics such as WIP, JW sim. and 

Jaccard should be interpreted reciprocally - a higher indicator 

value means a better representation of the reference by the 

hypothesis.  

Whisper performed best for all metrics, except JW. sim., for 

which the result is close to the Wav2Vec. Analyzing its box plot, 

it can be seen that Whisper's results are less dispersed, so the 

model makes mistakes, but on a smaller scale. Its counterparts 

are less predictable in this matter. Analyzing the box plot and 

average Jaccard index for Whisper, it can be seen that in most 

cases the reference and hypothesis strings are close to each 

other. The advantage of the Whisper model is also highlighted 

by the Levenshtein distances obtained, which are lower than for 

the other models.  This indicates that fewer edits to the 

hypothesis are required to obtain the same text as in the 

reference. From all box plots it can be seen that for single 

samples (outliers) Whisper made mistakes comparable to the 

other models, but overall it got better results and the values of 

the metrics were less dispersed around the median. The 

minimum WER value for Whisper was 6.97%, which indicates 

that it is able to achieve an efficiency close to that reported by 

its developers.  

Wav2Vec, while scoring higher WER and MER, at the same 

time its CER and Levinstein Distance are smaller compared to 

FastConformer and Quartznet models. This may indicate that 

the model makes typos in a larger number of words, which 

affects the large WER value (if we consider the words as a 

whole they are wrong), but there are more accurate mappings in 

the hypotheses at the level of single characters and close strings. 

The FastConformer and Quartznet models achieved similar 

CER, but in terms of word hits and correct matches (WER and 

MER), the FastConformer model was significantly better. Based 

on all metrics, Quartznet performed the weakest, as highlighted 

by a box plot analysis of MER and WIP, from which it can be 

seen that the model incorrectly predicts at a constant and high 

level.  

From an analysis of the average values of the metrics by the 

microphone used in the recording, it can be seen that the best 
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recognition results were obtained for the recordings made with 

the professional measurement microphone, and the averages 

obtained for this microphone are close to or better than the 

average values of the metrics calculated for all the results 

obtained (Table I). Thus, the effect of microphone quality on 

model performance is noticeable, but using the WER as an 

example, the benefit of using it, ranges from about 1.5-6%. The 

greatest benefit of using this microphone can be seen in the 

WER of the Wav2Vec, and the least impact is observed for 

Whisper (a decrease in WER of less than 1.5%). 

 

 
Fig. 2. WER [%] box plot. 

 

 

 
Fig. 3. CER [%] box plot. 

 

 

 
Fig. 4. MER [%] box plot. 

 
Fig. 5. WIP [%] box plot. 

 

 
Fig. 6. Levenshtein distance box plot. 

 

 
Fig. 7. Jaro-Winkler similarity box plot. 

 
 

 
Fig. 8. Jaccard index box plot. 

 

 

Before performing the ANOVA test, it was verified that 

provided data represent the universe (space containing all 

possible words) with a normal distribution. Also,  standard 

deviations of the groups in the population are equal 

(homoscedasticity). Not all obtained metric values meet these 

assumption. For FastConformer, the assumptions of the 

ANOVA test are met for metrics WER, MER (p≤0.02), WIP,  

(p≤0.01), JW sim. (p≤0.23) and Jaccard (p≤0.20). For 

Quartznet, these assumptions are fulfilled only for the metrics 

WER, MER (p≤0.01). For the Wav2Vec, these assumptions are 

satisfied for all metrics (except Lev. dist., JW sim. and Jaccard) 

and for these metrics p≤0.01. For Whisper, these assumptions 

are met only for the metrics JW sim. (p≤0.76) and Jaccard 

(p≤0.84). 
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TABLE I 

AVERAGE VALUES (WITH A STANDARD DEVIATION) OF METRICS FOR TESTED MODELS  

Metrics  FastConformer Quartznet Wav2Vec Whisper 

WER % 46.30 (±12.33) 76.25 (±6.88) 67.96 (±12.54) 20.84 (±9.53) 
CER % 33.18 (±12.29) 34.89 (±7.47) 29.87 (±9.55) 13.89 (±6.59) 

MER % 45.66 (±12.36) 75.88 (±7.00) 76.08 (±12.91) 9.68 (±8.23) 

WIP % 43.67 (±12.50) 8.77 (±4.03) 15.74 (±9.81) 73.99 (±10.96) 
Lev. Dist. 808.96 (±559.80) 830.10 (±433.27) 730.68 (±463.49) 356.40 (±271.86) 

JW sim. 0.77 (±0.06) 0.82 (±0.04) 0.83 (±0.05) 0.82 (±0.01) 
Jaccard 0.72 (±0.13) 0.83 (±0.04) 0.85 (±0.06) 0.93 (±0.03) 

 
TABLE II 

AVERAGE METRICS VALUES (WITH A STANDARD DEVIATION) FOR FASTCONFORMER MODEL PER MICROPHONE TYPE. TYPE 

Metrics  Z02HV Z03AF Z05BO Z06GR Z10BK 

WER % 53.34 (±12.48) 56.33 (±9.15) 50.12 (±17.20) 45.05 (±11.03) 42.22 (±10.32) 

CER % 41.55 (±12.01) 41.50 (±9.15) 35.30 (±16.80) 32.33 (±11.63) 29.48 (±10.39) 
MER % 52.59 (±12.34) 55.64 (±9.29) 49.75 (±17.43) 44.39 (±10.98) 41.54 (±10.30) 

WIP % 37.33 (±12.27) 31.22 (±9.05) 38.74 (±17.32) 45.39 (±10.40) 48.13 (±10.58) 

Lev. Dist. 891.33 (±642.78) 873.71 (±397.36) 1060.36 (±867.83) 785.31 (±542.88) 704.59 (±442.79) 
JW sim. 0.73 (±0.05) 0.75 (±0.05) 0.78 (±0.08) 0.77 (±0.06) 0.79 (±0.06) 

Jaccard 0.64 (±0.13) 0.66 (±0.11) 0.70 (±0.18) 0.73 (±0.13) 0.76 (±0.11) 

 

TABLE III 

AVERAGE METRICS VALUES (WITH A STANDARD DEVIATION) FOR QUARTZNET MODEL PER MICROPHONE TYPE. TYPE 

Metrics  Z02HV Z03AF Z05BO Z06GR Z10BK 

WER % 81.54 (±4.19) 85.72 (±5.45) 79.25 (±8.30) 74.81 (±5.49) 73.18 (±5.34) 

CER % 42.09 (±3.62) 46.69 (±5.57) 38.08 (±9.81) 32.77 (±5.13) 31.45 (±5.00) 

MER % 80.93 (±4.14) 85.66 (±5.49) 79.04 (±8.45) 74.41 (±5.55) 72.74 (±5.49) 
WIP % 5.59 (±2.51) 3.62 (±2.32) 6.98 (±4.29) 9.45 (±3.35) 10.66 (±3.54) 

Lev. Dist. 843.83 (±461.60) 974.71 (±412.28) 1100.36 (±626.10) 785.31 (±542.88) 745.14 (±368.92) 

JW sim. 0.69 (±0.03) 0.64 (±0.05) 0.71 (±0.08) 0.76 (±0.04) 0.77 (±0.04) 
Jaccard 0.81 (±0.01) 0.77 (±0.06) 0.81 (±0.06) 0.84 (±0.03) 0.84 (±0.03) 

 
TABLE IV 

AVERAGE METRICS VALUES (WITH A STANDARD DEVIATION) FOR WAV2VEC MODEL PER MICROPHONE TYPE. TYPE 

Metrics  Z02HV Z03AF Z05BO Z06GR Z10BK 

WER % 84.07 (±9.91) 79.91 (±7.73) 74.28 (±11.57) 65.41 (±10.57) 61.89 (±10.64) 
CER % 45.43 (±9.39) 40.00 (±7.13) 33.45 (±9.87) 27.60 (±6.80) 25.11 (±6.70) 

MER % 83.40 (±10.43) 79.28 (±8.47) 73.70 (±11.93) 64.45 (±10.57) 60.88 (±10.64) 

WIP % 5.40 (±5.26) 7.20 (±4.87) 10.65 (±7.91) 17.20 (±8.75) 20.39 (±9.66) 
Lev. Dist. 942.67 (±644.01) 846.86 (±397.91) 978.09 (±604.17) 676.69 (±418.47) 618.93 (±393.66) 

JW sim. 0.74 (±0.06) 0.79 (±0.05) 0.83 (±0.05) 0.87 (±0.04) 0.88 (±0.04) 

Jaccard 0.81 (±0.10) 0.77 (±0.07) 0.81 (±0.06) 0.84 (±0.04) 0.84 (±0.04) 

 

TABLE V 

AVERAGE METRICS VALUES (WITH A STANDARD DEVIATION) FOR WHISPER MODEL PER MICROPHONE TYPE. TYPE 

Metrics  Z02HV Z03AF Z05BO Z06GR Z10BK 

WER % 23.87 (±14.60) 26.56 (±8.31) 23.03 (±7.79) 19.40 (±10.13) 19.45 (±8.33) 

CER % 15.57 (±9.68) 17.16 (±6.04) 15.48 (±5.51) 12.97 (±7.16) 13.06 (±5.77) 

MER % 21.65 (±10.90) 25.48 (±8.15) 21.84 (±7.23) 18.23 (±8.36) 18.51 (±7.57) 
WIP % 70.36 (±13.36) 63.88 (±12.31) 71.16 (±10.58) 76.51 (±10.08) 75.74 (±10.00) 

Lev. Dist. 375.00 (±453.58) 364.29 (±205.44) 455.82 (±279.29) 337.55 (±280.61) 331.79 (±237.60) 

JW sim. 0.82 (±0.01) 0.82 (±0.01) 0.82 (±0.01) 0.82 (±0.01) 0.82 (±0.01) 
Jaccard 0.93 (±0.04) 0.93 (±0.04) 0.93 (±0.03) 0.94 (±0.03) 0.94 (±0.03) 

The main limitation of the study is that not all the obtained 

values of metrics, divided according to the microphone used, 

meet the assumptions of the ANOVA test. This might be due to 

too small sample size in the population. Therefore it was 

necessary to exclude ANOVA test results from some tests.  

Selection of open-source E2E DNN ASR models capable of 

recognizing Polish is also limited. To the best of our knowledge, 

in addition to the presented models, there is a multilingual 

model in the ESPnet toolkit that is adapted to the Polish 

language. However, preliminary tests show that it achieves a 

WER of 90%. The tests also show limitations of these models 

in the task of recognizing Polish speech in realistic acoustic 

conditions, a spontaneous conversation with speakers 

overlapping.  

For our dataset, WER of all tested models differs significantly 

from the values provided by the developers. Even for the best 

one (Whisper) in our tests WER is about 15% higher than the 

value provided in the specification (6%). It is therefore not 

possible to use any models for medical applications and requires 

fine-tuning them with new datasets.  

It is then important to consider limitation of the text 

normalization performed, which only included changing all 
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letters to uppercase and removing punctuation marks. The 

process did not consider converting numbers into words, which 

may have negatively affected the obtained WER results. The 

reason for this is that in Polish, numbers are conjugated by 

genders and cases, so one numerical notation has multiple forms 

of word notations. 

CONCLUSION 

The study tested 4 deep neural models with different 

architectures and training set (Quartznet, FastConformer, 

XLSR-53 large, Whisper-larg) capable of recognising speech in 

Polish, in a doctor-patient conversation recognition task, based 

on a self-developed data set. Models were assessed on the basis 

of measures of WER, CER, MER, WIP, Levenshtein distance, 

Jaro - Winkler similarity and Jaccard index. Mean values, 

standard deviations, aggregation around the median and the 

dependence of the metrics on the mycrophone used in the 

recordings were measured. Whisper performed best for all 

metrics, except JW. sim., for which the result is close to the 

Wav2Vec. The values of all Whisper metrics are less dispersed 

around the median, meaning that the model makes errors on a 

narrower scale. It also showed small differences in the 

performance quality of this model, depending on the class of 

microphone used for the recording (a decrease in WER of less 

than 1.5% for a high-quality microphone), indicating the 

resilience of this model to the quality of the recording. However, 

for a data set unknown to the model, its recognition quality 

decreases significantly (compared to the Mozilla Common 

Voice9 database, for which WER=9.0% [32]). It is therefore not 

possible to use any of the models for the proposed system. All 

models require tuning using new datasets. 
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