

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 3, PP. 1-9

Manuscript received May 08, 2025; revised July 2025. doi: 10.24425/ijet.2025.153619

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—AWS Lambda is a widely used serverless computing

service that executes code in response to events and automatically

manages the underlying hardware resources. Lambda integrates

with many AWS services and offers two processor architecture

options for running functions: x86_64 (CISC) and arm64 (RISC).

Determining the optimal settings for the lowest cost or execution

time is not straightforward due to performance variations between

processor architectures, the wide range of configuration options,

and the workload-dependent nature of function execution

efficiency. We developed a tool which we used in experiments

examining different configurations and processors architectures

for several algorithms. In this paper two of such experiments are

presented in detail.

Keywords—serverless computing; Function-as-a-Service;

Amazon Web Services; AWS Lambda

I. INTRODUCTION

N computer science, "the cloud" refers to the on-demand

delivery of computing resources over the internet. These

resources include servers, storage, databases, networking, and

software, which users can access without the need to own or

maintain physical infrastructure. The cloud offers scalability,

flexibility, and cost efficiency, allowing users to adjust

resources as needed and pay only for what they use [1].

Serverless computing [2] eliminates infrastructure management

and allows developers to concentrate on writing and executing

code. Among serverless platforms, AWS Lambda [3] is one of

the most widely used. Optimizing AWS Lambda functions for

cost and performance remains challenging. Users can configure

memory size and processor architecture, but the impact of these

parameters on execution efficiency is not well-documented.

Existing benchmarking tools (listed in Section III) provide

limited configuration choices or lack comprehensive statistical

analysis, making it difficult to compare different configurations

systematically.

At the Institute of Computer Science, Warsaw University of

Technology a tool, called LambdaLab [4], that examines AWS

Lambda performance with a range of configurations, including

x86_64 and arm64 processor architectures was designed and

implemented. This tool was used to conduct a series of

experiments analyzing CPU-intensive workloads on AWS

Lambda. In [5] the superiority of arm64, while executing

cryptographic hashing SHA-256 algorithm, was described. As

the configurations for this experiment were not fully shown we

wanted to use the same algorithm and examine a variety of

settings. The results of these experiments are presented in

Authors are with Institute of Computer Science, Warsaw University of

Technology, Poland (e-mail: Ilona.Bluemke@pw.edu.pl,

arkadiusz.zdanowski.stud@pw.edu.pl).

Section IV. Our experiment provides valuable insights into

performance trade-offs, highlighting the impact of memory size

and processor architecture on execution cost.

Section II contains brief theoretical background on cloud

services and serverless architectures. AWS Lambda is also

presented in more details. Related work i.e. benchmarking tools

and experiments are presented in Section III.

In the last section a summary of key findings and potential

directions for future research is given. By addressing drawbacks

of existing serverless benchmarking tools and experiments this

work contributes to a better understanding of AWS Lambda cost

and performance optimization and provides a practical solution

for developers and researchers.

II. THEORETICAL BACKGROUND

Below, basics information on abstract cloud services and

AWS Lambda are given.

A. Abstraction layers in cloud services

Cloud computing services are served at different levels of

abstraction, offering various models depending on the degree of

control and management required by developers and users.

Depending on the level, the cloud vendor provides only

infrastructure, the platform or the platform along with the

necessary infrastructure, or access to software running on a

platform, supported by infrastructure. In Fig 1. the three primary

cloud service models are shown and the providers and

consumers for every model are presented.

Fig. 1. Cloud services abstraction layers -source: [6].

In this view the cloud vendor provides infrastructure,

platform and software, while developers consume infrastructure

and platform to provide software, and the end users only

consume software.

Ilona Bluemke, and Arkadiusz Zdanowski

Evaluation of configurations of AWS Lambda

functions

I

https://creativecommons.org/licenses/by/4.0/

2 I. BLUEMKE, A. ZDANOWSKI

Infrastructure as a Service (IaaS) is the lowest level of cloud

service, which offers access to infrastructure hosted by the cloud

vendor, including servers, storage, networking [6]. Developers

can configure the infrastructure remotely, according to their

needs. IaaS model provides flexibility and scalability, enabling

to scale resources up or down, as the demand fluctuates. It also

benefits from the pay-as-you-go pricing model, which ensures

that the users pay only for the resources they consume, reducing

upfront capital expenditure and maintaining clear operational

costs. IaaS is designed for users who need the ability to install,

configure and operate arbitrary low-level software or

applications. It is most commonly used for applications running

for an extended period of time (or available on 24/7 basis).

Platform as a Service (PaaS) provides a higher level of

abstraction by offering a managed environment for developing,

testing, and deploying applications. It includes runtime

environments, development tools, and middleware, all hosted

and maintained by the cloud provider. Unlike IaaS, PaaS does

not grant users control over the underlying infrastructure, such

as server configuration or network management. Instead,

applications are developed within a pre-configured platform that

handles infrastructure-related tasks. PaaS allows developers to

deploy applications without directly managing servers or

scaling resources manually, therefore it is particularly useful for

scenarios where fast-paced development and deployment is

required.

Software as a Service (SaaS) is the highest level of

abstraction in cloud computing, providing users with access to

fully managed software applications over the internet. Unlike

IaaS and PaaS, SaaS does not allow developers to control the

underlying platform or infrastructure. Instead, users interact

directly with pre-built applications provided and maintained by

the cloud vendor. SaaS applications are accessed via web

browsers, eliminating the need for installation, maintenance, or

resource management by the user. All aspects of infrastructure,

security, and software updates are managed by the cloud

provider. SaaS model is particularly useful for non-technical

end-users who require ready-to-use applications without

involvement in software development or system administration.

The serverless computing model enables developers to focus on

writing and executing their code without the need to manage

anything else. Although "serverless" might suggest no servers

are involved, the underlying infrastructure is still managed by

the cloud provider, and computational resources are provisioned

dynamically. The significant benefit lies in the abstraction of

infrastructure management. When compared to the classic cloud

service models major differences in serverless approach [7] can

be seen:

• Computing provisions resources only for the duration

needed to execute a single function, unlike IaaS, where

infrastructure is continuously provisioned and requires user

management.

• Computing abstracts away the platform management,

providing a fully managed environment, unlike PaaS, where

developers still need to manage the platform and its

environment.

• Computing gives developers the ability to define and

deploy individual functions for event-driven architectures,

unlike SaaS, where the cloud provider manages the entire

software stack.

According to Berkeley View [8], the serverless model

combines two key components:

1. Function as a Service (FaaS): Provides execution

environments for isolated functions, which are invoked in

response to events.

2. Backend as a Service (BaaS): Complements FaaS by

offering services like databases, authentication, storage and

logging, which are essential for backend operations but

abstracted away from the user.

FaaS functions are designed to operate independently and are

triggered by external events, such as HTTP requests, database

updates, or scheduled tasks. Once the event arrives, it is passed

to a controller for validation. If the event is valid, the controller

initiates a function container. A container in serverless

computing is a lightweight, isolated environment where the

function code is executed. It is designed specifically to start

quickly, ensuring minimal latency when a function is invoked.

While the container provides isolation and efficiency, it runs on

a server managed by the cloud provider, abstracting the

infrastructure. The container includes the runtime environment

(the chosen programming language engine, libraries and

frameworks) and the function’s source code.

B. AWS Lambda

AWS Lambda is a widely used serverless compute service

that executes code in response to events and automatically

manages the underlying resources. As an implementation of the

Function as a Service (FaaS) model, Lambda allows developers

to focus entirely on writing, deploying and executing functions.

Lambda integrates seamlessly with many AWS services, which

provide Backend as a Service (BaaS) capabilities.

To understand AWS Lambda function, a distinction must be

made between a function in the context of FaaS and a function

in traditional programming. In traditional programming, a

function is a reusable block of code that performs a specific task

and can be invoked multiple times within a program. In FaaS, a

function refers to a self-contained, stateless unit of execution,

which may encompass several programming-level functions [9].

A Lambda function is a cloud-managed object that consists

of the executable code and associated configurations. Each

function is deployed within a specific AWS Region, meaning it

runs only within the selected geographical data center. New

AWS Lambda function requires specifying a function name,

selecting a runtime environment, and choosing a processor

architecture. The runtime environment defines the programming

language in which the function will run. AWS Lambda offers

two processor architecture options for running functions:

x86_64 and arm64:

1. The x86 architecture, originally introduced by Intel in 1978

with the famous 8086 microprocessor [10]. Based on

Complex Instruction Set Computing (CISC), x86 processors

offer a wide range of instructions, providing versatility and

ease of use.

2. In contrast, Graviton2 processors are custom-built by AWS

based on the 64-bit arm architecture [11], which uses RISC

(Reduced Instruction Set Computing) to simplify the

instruction set for better energy efficiency. Graviton2

processors are specifically designed for cloud workloads [12],

therefore, according to the AWS Documentation [13], they

should deliver higher performance and improved cost-

efficiency compared to the x86.

 EVALUATION OF CONFIGURATIONS OF AWS LAMBDA FUNCTIONS 3

AWS Lambda operates on a pay-as-you-go pricing model,

where users are charged based on the number of requests and

the duration of function executions. The pricing is provided for

a thousand or million invocations. The total cost of an

invocation depends on several factors [14]:

1) Request cost: Lambda charges $0.20 per 1 million requests

to invoke the function.

2) Computation cost: Lambda charges for a gigabyte-second

of computation. The value is calculated by simply converting

the following configuration factors to seconds and gigabytes,

respectively, and multiplying them.

• Execution Time: Lambda charges for each millisecond of

the time it takes for the function to complete.

• Memory Allocation: Lambda charges for the amount of

memory allocated to the function, in MB.

3) Ephemeral Storage: AWS Lambda provides 512 MB of

default short-term storage for free. If more volume is required,

users can allocate up to 10 GB of temporary storage at a rate

of $0.000000025 per GB-second. The storage is called

ephemeral, because it is automatically deleted after function

execution, and cannot be reused between multiple

invocations.

Finally, the compute cost is multiplied by the ratio which

depends on the chosen processor architecture. The ratio for

x86_64 is around 20% more expensive than that for arm64. The

exact values are also dependent on the region and subject to

change over time.

Optimizing AWS Lambda functions for cost and

performance is challenging. Users can configure memory size

and processor architecture, but the impact of these parameters

on execution efficiency is not easily seen. A benchmarking tool

is necessary to compare different configurations systematically

and choose the optimal option.

III. RELATED WORK

Optimizing serverless workloads for performance and cost is

a very difficult task. The optimal settings for the lowest cost or

execution time depends on many factors -configuration options

so systematic benchmarking is necessary to achieve the best

performance-cost balance. By analyzing execution times,

resource utilization, pricing models in different configurations,

benchmarking helps developers to optimize their serverless

applications. The performance evaluation of FaaS platforms has

been the research goal of many works. Scheuner and Leitner in

their literature review [9] containing 112 studies, found that

AWS Lambda is the most frequently studied platform, followed

by Azure Functions, Google Cloud Functions, and IBM Cloud

Functions. The majority of research concentrated on micro-

benchmarks measuring platform overhead and CPU speed. This

review identified also that academic and industrial

benchmarking approaches were using different configurations.

The majority of the studies focus on simple function

executions. Research on complex workloads and function

triggers, such as message queues, streams, and workflow

integrations are rather limited.

Many benchmarking tools have been developed to optimize

memory allocation and execution time for serverless computing

engines e.g.: AWS Lambda Benchmark Tool [15], AWS

Lambda Benchmark [16], ServerlessBench [17], FaaSdom [18],

ServerlessBenchmark [19], AWS Lambda Power Tuning [20].

Each of these tools has some strengths and limitations but in

most of them the statistical analysis is very limited (or

nonexistent) and comparison of different processors

architectures is not possible. At the Institute of Computer

Science, Warsaw University of Technology a tool, called

LambdaLab [4], was designed and implemented to specifically

target those limitations. LambdaLab enables evaluations of

configurations including all available memory sizes, both

processor architectures, provides statistical analysis, including

confidence intervals to improve result reliability. It also is able

to visualize and show rankings of results, assisting users in

selecting the optimal configuration. By incorporating these

features, LambdaLab is more flexible than the other tools.

A. Benchmarking experiments

AWS Lambda was evaluated in several benchmarking

experiments. In these experiments, the above-mentioned tools

were often used. Scheuner and Leitner in their review [9] noted

some common features of these experiments:

• Lack of source code and configurations.

• Reliance on mean values without confidence intervals or

variance analysis.

• Potential deficiencies of experiments without independent

verification.

Some researchers conducted experiments focusing on the

performance and usability of serverless computing platforms,

AWS Lambda including e.g. Martins, Araujo, and Da Cunha

[21] and Sadaqat, Sánchez-Gordón, and Colomo-Palacios [22].

They evaluated many parameters like execution time, start

latency. memory. These experiments lacked detailed statistical

analyses to measure performance variability and did not include

the experimental configurations, which disables their

reproducibility.

In AWS Lambda Benchmarking Study [23], Xebia was

comparing the performance of Rust, Scala, Python, and

TypeScript in AWS Lambda. The results showed that in terms

of execution time and cost efficiency, Rust was first, Python

second and Scala was the worst. This study also did not provide

detailed statistical analyses, such as confidence intervals or

hypothesis testing.

Wen, Chen, Sarro, and Liu introduced SuperFlow [24], a

performance testing framework for serverless computing. They

evaluated AWS Lambda's performance under various

workloads, they were examining execution time, resource

utilization, and scalability. While the framework aimed to

provide a systematic approach to performance testing, this study

did not discuss the statistical methods used to analyze the

results, leaving questions about the robustness of the findings.

AWS Lambda offers two processor architecture for running

functions: x86_64 and arm64 (see section II), so some

researchers were evaluating the performance and cost efficiency

of these two options. AWS, in collaboration with its partner,

Cascadeo, conducted experiments evaluating the performance

and cost efficiency of AWS Lambda functions running on Arm-

based Graviton2 processors versus traditional x86 processors.

The results are presented in [5] In Fig. 2 the relative differences

between arm64 and x86_64 architectures are shown, expressed

in percentages, where positive values indicate higher values for

arm64. The study evaluated five benchmarking scenarios,

including:

4 I. BLUEMKE, A. ZDANOWSKI

• Processor-intensive: in single-threaded (ST) and multi-

threaded (MT) workloads

• Memory-intensive: workloads in ST and MT setups

• Lightweight micro-benchmark

For each of the workloads, three metrics were measured using

unspecified methodology:

1. Performance (higher is better, the clock symbol in Fig.2).

2. Cost (lower is better, the encircled $ symbol in the Fig. 2)

3. Work done per dollar (higher is better, the gearwheel

symbol in the Fig. 2)

The results suggest that arm64 provides a significant

performance boost—over 60% higher for CPU-heavy tasks—

while memory-heavy and lightweight workloads show a slight

performance reduction of around 6-7%. This led to a claimed

cost reduction of over 50% for CPU-heavy workloads and 13-

19% for other workloads, all favoring arm64.

Fig. 2. Results per workload in AWS Lambda arm vs x86 performance and

cost -source[5].

Chen conducted an independent experiment evaluating the

performance of ARM64 architecture compared to x86 in

serverless functions [25]. The research indicated that ARM64

could offer better cost efficiency for certain workloads because

out of 18 functions tested, x86 was faster for only 7 functions.

In this study mean values were reported and no rigorous

statistical analyses were conducted to determine the significance

of the performance differences.

In [26] an experiment with single-threaded CPU-intensive

iterative workload (Fibonacci computation) was described. The

results clearly demonstrated that x86_64 outperforms arm64 in

both execution time and cost. This distinction is crucial because

it shows that performance advantages are not inherent to an

architecture but are highly dependent on workload

characteristics.

IV. EXPERIMENT

In section II.A some results of experiment conducted by

AWS and Cascadeo [5], showing superiority of arm64, were

described. As a CPU-heavy workload in this experiment

cryptographic hashing SHA-256 algorithm was used. In our

experiment presented in [26], where we used Fibonacci numbers

as the workload the x86 appeared faster and cheaper. Therefore,

we decided to use the SHA-256 algorithm as the workload and

to examine a variety of settings which were not covered in [5].

While the SHA-256 algorithm’s implementation is provided

by hashlib [27], our contribution lies in constructing the

workload structure to systematically stress-test CPU

performance. It is achieved by executing a configurable number

of iterative hash computations on an input of variable size. Each

iteration takes the previous hash as input, creating a chained

hashing process where every computation depends on the result

of the previous one. This ensures a controlled and repeatable

execution pattern, making it an effective benchmark for

evaluating processor efficiency. Similarly to [5] we examined

single threaded (section A) and multi-threaded (section B)

workload. We used our benchmarking tool LambdaLab (section

III, [26],[4]) for run the workload and analyze the results.

A. Experiment 1- single threaded

The experiment consisted of executing the workload code to

compute the SHA-256 hash on a fixed-length input of 1 KB,

repeated for 5,000,000 iterations per invocation. This ensures

that the workload remains CPU-bound. To obtain statistically

meaningful results, the execution was repeated 10 times for each

combination of memory size and processor architecture. The

runtime environment used was Python 3.13. The experiment

tested 23 different memory sizes, ranging from 128 MB to 3008

MB and was performed on both arm64 and x86_64 processor

architectures. Therefore, in total, there were 56 unique

configurations. Each workload invocation was repeated 10

times, resulting in 560 individual executions.

In Fig. 3 the relationship between execution time (in

milliseconds) and memory size (in MB) for both processor

architectures, arm64 and x86_64 is presented. Each data point

represents the results of a single invocation, with green markers

denoting the arm64 architecture, while blue markers represent

x86_64. The results in Fig. 3 show that for smaller memory

sizes, particularly in the range of 128 MB to 576 MB, arm64 has

a slight performance advantage over x86_64, with lower

execution times. For example, at 128 MB, the execution time

for arm64 is approximately 10% lower than that of x86_64. For

memory sizes beyond 576 MB, the performance of both

architectures becomes nearly identical, with only marginal

differences observed in execution times. This similarity

indicates that for higher memory configurations, both

architectures are able to fully utilize the allocated resources and

achieve near-optimal performance.

In Fig. 4 the execution cost associated with the execution time

are presented. Both time and cost dimensions are aggregated

from the repeated runs for every memory configuration. The

data is presented by points connected with solid lines,

representing the average values, with shaded regions around

each line indicating the 95% confidence intervals. Architectures

are color-coded: x86_64 is represented in blue, while arm64 is

depicted in green. Both time and cost dimensions are shown

together, as a dual-axis representation, which allows for a direct

comparison of execution time (on the left y-axis, milliseconds)

and cost (on the right y-axis), across different configurations.

Furthermore, in Fig.4 it can be seen that the execution times

for both architectures are nearly identical for memory sizes

above 1280 MB. For smaller memory sizes below 1280 MB,

x86_64 exhibits slightly higher execution times on average

compared to arm64, with the performance gap diminishing as

the memory size increases. This trend highlights the slight

efficiency advantage of arm64 for smaller memory

configurations, likely due to its optimized instruction set for this

type of workload.

 EVALUATION OF CONFIGURATIONS OF AWS LAMBDA FUNCTIONS 5

Fig. 3. Execution time vs memory size - single threaded.

Fig. 4. Execution time and cost vs memory size - single threaded.

Interestingly, a performance anomaly is observed for x86_64

at 832 MB, where a sudden increase in performance occurs. This

unexpected behavior may indicate runtime or hardware-level

optimizations that are uniquely triggered at this memory size.

Additionally, larger confidence intervals are observed for arm64

at 1536 MB and 1664 MB, and for x86_64 at 1664 MB,

suggesting increased variability in execution times for these

configurations. Outside of these memory sizes, the benchmark

demonstrates exceptional consistency, which underscores its

reliability and thoughtful design.

In terms of execution cost, arm64 consistently achieves lower

costs than x86_64. Because the performance of both

architectures is similar, this cost difference is attributed to the

lower price per GB-second for arm64. This cost efficiency

makes arm64 a more economical choice for this workload. A

more detailed cost comparison is presented in Fig. 5.

Fig. 5 confirms that arm64 is consistently less expensive than

x86_64, with the relative cost difference ranging from 18.7% to

44.4%, with most values around 40%. The largest cost disparity

occurs at the memory size of 512 MB, highlighting that at

smaller memory sizes arm64 achieves significant cost efficiency

over x86_64. Conversely, the smallest cost difference is

observed at 896 MB, indicating that the two architectures have

relatively similar costs in this configuration. For smaller

memory sizes (128 MB to 576 MB), the percentage cost

difference is higher, as reflected by the orange line’s peak at 512

MB. The cost difference stabilizes at higher memory sizes,

maintaining a consistent gap of around 40%. Interestingly,

while the execution time difference is larger at smaller memory

ranges, the relative cost difference remains similar across both

small and large memory sizes. This suggests that the pricing

6 I. BLUEMKE, A. ZDANOWSKI

model, rather than raw performance differences, plays the

dominant role in cost disparity between the two architectures.

This variability underscores the importance of carefully

selecting configurations to maximize cost efficiency. Even

small changes in memory size can have a significant and

sometimes unexpected impact on the relative cost difference.

Understanding these trade-offs is crucial for optimizing

workloads at scale, particularly when deploying cost-sensitive

applications

B. Experiment 2 - multi threaded

The workload choice and explanation of the source code are

described in Section IV.A. The workload code builds upon the

single-threaded SHA-256 hashing experiment, extending it to

utilize multiple threads in such a way that all of the available

CPU resources are fully utilized. The experiment tested 23

different memory sizes, ranging from 128 MB to 3008 MB and

was performed on both arm64 and x86_64 processor

architectures.

In the Fig.6 the relationship between execution time (in

milliseconds) and memory size (in MB) for both processor

arm64 and x86_64 is shown. Each data point represents the

average execution time of a single invocation, with green

markers for arm64 and blue markers for x86_64. The results

highlight a significant performance disparity between the two

architectures, particularly for smaller memory sizes. At 128

MB, x86_64 demonstrates an execution time approximately

270% longer than arm64, underscoring the inefficiency of

x86_64 in handling this workload at minimal memory

configurations. As the memory size increases, the performance

of both architectures improves exponentially, up to 1024 MB,

eventually stabilizing around 1792 MB, reflecting full

utilization of allocated CPU resources provided by AWS

Lambda. At 1792 MB, arm64 achieves an average execution

time of approximately 15.4 seconds compared to x86_64's 54.9

seconds. Despite the performance improvements, the relative

difference, is the same as in the lower memory range, with

x86_64 continuing to stay behind arm64 by approximately

270%, even at the higher memory sizes. These results confirm

that arm64 hardware level optimization allows it to perform the

hashing calculations much more efficiently than x86_64.

Continuing from the analysis of execution times in Fig. 6, in

Fig. 7 the relationship between execution time (in milliseconds)

and execution cost (in USD) as a function of memory size (in

MB) for both arm64 and x86_64 architectures is presented. The

dual-axis graph illustrates execution time on the left y-axis and

execution cost on the right y-axis. Data points are connected by

solid lines, with green representing arm64 and blue representing

x86_64. Shaded regions around the lines indicate 95%

confidence intervals, providing insights into the variability of

the measurements.

The results in Fig. 7 confirm the trends observed in Fig.6,

where arm64 consistently outperforms x86_64 in terms of

execution time for all memory configurations. At smaller

memory sizes, arm64 achieves significantly lower execution

times, for instance the execution time for arm64 at 128 MB is

approximately 204 seconds (3.4 minutes) compared to x86_64's

759 seconds (12.7 minutes), resulting in an approximately 270%

longer time for x86_64, as previously noted. In terms of cost,

arm64 consistently demonstrates superior cost-efficiency for all

memory sizes. At 128 MB, the cost for arm64 is approximately

$0.00034 per invocation, compared to x86_64's $0.00158,

highlighting a cost difference of over 360%. This substantial

disparity persists for all memory sizes, with x86_64's costs

remaining approximately 350–370% higher than arm64's, even

at the larger memory configurations where execution times

stabilize. The cost curve for arm64 appears almost as a flat line,

suggesting a near-linear relationship between memory

allocation and performance improvement. Interestingly, the

larger memory sizes, beyond 1024 MB, show a slight increase

in cost per invocation, than the lower ones. This reflects the

diminishing returns in performance improvement observed in

Fig. 6, as execution time stabilizes while costs rise

incrementally.

In contrast, the x86_64 cost curve is highly irregular,

resembling a spiked line. The worst cost configuration for

x86_64 is at 960 MB, with a cost of approximately $0.00166

per invocation, while the best configuration is at 3008 MB, with

a cost of $0.00161 per invocation. The absolute difference may

seem small, but given enough scaling, translates to a large

money sum. This irregularity indicates a less predictable

relationship between memory size and cost efficiency for

x86_64 in executing this workload. The confidence intervals for

both execution time and cost remain narrow for most

configurations, indicating the reliability of the benchmark.

Minor variability is observed at specific configurations, such as

1536 MB and 1664 MB for arm64, and 1664 MB for x86_64,

which aligns with the variability noted in Fig. 6.

These findings further reinforce arm64's efficiency, not only

in terms of execution time but also in cost, making it the more

economical choice for this multi-threaded SHA-256 hashing

workload. The detailed cost comparison is visualized in Fig. 7,

where the blue bars represent the average cost for x86_64, while

the green bars represent arm64. Above each bar, the orange line

indicates the percentage cost difference between the

architectures for each memory configuration.

The results in Fig. 8 confirm that x86_64 is consistently more

expensive than arm64, with the relative cost difference ranging

from approximately 335% to 380%. The largest cost disparity

occurs at the smallest memory size of 128 MB, where x86_64

incurs costs 363.4% higher than arm64. Conversely, the

smallest cost difference is observed at the largest memory size

of 3008 MB, where the relative gap narrows slightly to 335.2%.

The cost difference remains relatively stable in all memory

configurations, decreasing slightly as memory size increases.

Despite this narrowing, the cost difference remains substantial

for all memory sizes, consistently favoring arm64 in terms of

cost efficiency.

This persistent disparity underscores the critical importance

of selecting arm64 for workloads that are optimized for this

architecture, as even at its worst-performing configurations,

arm64 maintains a significant cost advantage over x86_64. Such

findings emphasize the necessity of optimizing configurations

for specific workloads. Even seemingly small changes in

architecture or memory allocation can lead to disproportionately

large impacts on cost. Identifying optimal configurations

tailored to workload-specific requirements is crucial for

minimizing expenses, particularly in large-scale deployments.

EVALUATION OF CONFIGURATIONS OF AWS LAMBDA FUNCTIONS 7

Fig. 5. Average Cost Comparison - single threaded.

Fig. 6. Execution time vs memory size : multi-threaded.

Fig. 7. Execution time and cost vs memory size : multi-threaded.

8 I. BLUEMKE, A. ZDANOWSKI

Fig. 8. Average Cost Comparison: multi-threaded

CONCLUSION

The goal of our research was to examine how processor

architecture impacts execution time and cost efficiency for

different workloads, using LambdaLab to conduct systematic

experiments. In this paper we presented experiments with

cryptographic hashing SHA-256 algorithm.

For the single-threaded SHA-256 hashing workload, arm64

demonstrated both faster execution times and dramatically

lower costs, being over 300% cheaper than x86_64. This

highlights arm64’s hardware optimizations and its ability to

handle cryptographic workloads more efficiently.

In the multi-threaded SHA-256 hashing workload, arm64

again provided faster execution times, however, the cost

advantage of arm64 in this case was largely due to AWS’s

pricing model rather than a significant performance gap. Here,

arm64 benefited from its lower price per GB-second, even as

the performance of the two architectures converged at higher

memory configurations.

In the experiments described in this paper arm64 appeared to

be more cost effective but in other our experiment, with

Fibonacci numbers workload [26], x86_64 performed better.

These observations illustrate that the cost efficiency is highly

workload-dependent so a tool like LambdaLab is necessary to

benchmark real-world use cases, and identify the most cost-

effective configurations for specific workloads.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Defini

tion of Cloud Computing,” National Institute of Standards and Technology
(NIST), NIST Special Publication 800-145, Sep. 2011.
https://doi.org/10.6028/NIST.SP.800-145

[2] M. Armbrust et al., “A view of cloud computing,” Commun. ACM, vol.
53, no. 4, pp. 50–58, Apr. 2010.

 https://doi.org/10.1145/1721654.1721672.

[3] “What is AWS Lambda? - AWS Lambda.” Accessed: Jan., 2025.
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html

[4] A. Zdanowski, ”LambdaLab: a tool for performance evaluation and
configuration optimization of AWS Lambda functions, Bachelor’s Thesis,
March 2025, Inst. of Computer Science Warsaw Univ. of Technology

[5] “Comparing AWS Lambda Arm vs. x86 Performance, Cost, and Analysis

AWS Partner Network (APN) Blog.” Jan., 2025.

https://aws.amazon.com/blogs/apn/comparing-aws-lambda-arm-vs-x86-
performance-cost-and-analysis-2

[6] A. Marinos and G. Briscoe, “Community Cloud Computing,” vol. 5931,
2009. pp. 472–484. https://doi.org/10.1007/978-3-642-10665-1_43

[7] Z. Li et al., “The Serverless Computing Survey: A Technical Primer for

Design Architecture,” ACM Comput. Surv., vol. 54, no. 10s, pp. 1–34,
Sep. 2022. https://doi.org/10.1145/3508360.

[8] E. Jonas et al., “Cloud Programming Simplified: A Berkeley View on

Serverless Computing,” Feb. 09, 2019, arXiv: arXiv:1902.03383.
https://doi.org/10.48550/arXiv.1902.03383.

[9] J. Scheuner and P. Leitner, “Function-as-a-Service Performance

Evaluation: A Multivocal Literature Review,” J. Syst. Softw., vol. 170, p.
110708, Dec. 2020. https://doi.org/10.1016/j.jss.2020.110708.

[10] “Intel 8086,” Wikipedia. Jan. 27, 2025.

https://en.wikipedia.org/wiki/Intel_8086

[11] “ARM architecture family,” Wikipedia. Feb. 01, 2025.
https://en.wikipedia.org/wiki/ARM_architecture_family

[12] “ARM Processor - AWS Graviton Processor - AWS,” Amazon Web
Services, Inc. Feb. 03, 2025. https://aws.amazon.com/ec2/graviton/

[13] “Selecting and configuring an instruction set architecture for your Lambda
function - AWS Lambda.” Feb. 03, 2025.

https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html

[14] “Serverless Computing – AWS Lambda Pricing – Amazon Web

Services.” Feb. 03, 2025. https://aws.amazon.com/lambda/pricing/.

[15] B. Ayala, Bryan-0/aws-lambda-benchmark-tool. (Jul. 25, 2024). Python.
Accessed: Feb. 04, 2025. https://github.com/Bryan-0/aws-lambda-
benchmark-tool

[16] theam/aws-lambda-benchmark. (Dec. 27, 2024). The Agile Monkeys.

Accessed: Feb. 04, 2025. https://github.com/theam/aws-lambda-
benchmark

[17] T. Yu et al., “Characterizing serverless platforms with serverless bench,”

in Proceedings of the 11th ACM Symposium on Cloud Computing, Virtual
Event USA: ACM, Oct. 2020, pp. 30–44.
https://doi.org/10.1145/3419111.3421280 .

[18] P. Maissen, P. Felber, P. Kropf, and V. Schiavoni, “FaaSdom: a

benchmark suite for serverless computing,” in Proc. of the 14th ACM Int.

Conf. on Distributed and Event-based Systems, Montreal Quebec Canada:
ACM, Jul. 2020, pp. 73–84. https://doi.org/10.1145/3401025.3401738

[19] hjmart93, hjmart93/ServerlessBenchmark. (Nov. 20, 2023). Python. Feb.

04, 2025. https://github.com/hjmart93/ServerlessBenchmark

[20] A. Casalboni, alexcasalboni/aws-lambda-power-tuning. Feb. 04, 2025.
JavaScript. https://github.com/alexcasalboni/aws-lambda-power-tuning.

[21] H. Martins, F. Araujo, and P. R. Da Cunha, “Benchmarking Serverless
Computing Platforms,” J. Grid Computing, vol. 18, no. 4, pp. 691–709,
Dec. 2020. https://doi.org/10.1007/s10723-020-09523-1

https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.1145/1721654.1721672
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://aws.amazon.com/blogs/apn/comparing-aws-lambda-arm-vs-x86-performance-cost-and-analysis-2
https://aws.amazon.com/blogs/apn/comparing-aws-lambda-arm-vs-x86-performance-cost-and-analysis-2
https://doi.org/10.1007/978-3-642-10665-1_43
https://doi.org/10.1145/3508360
https://doi.org/10.48550/arXiv.1902.03383
https://doi.org/10.1016/j.jss.2020.110708
https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/ARM_architecture_family
https://aws.amazon.com/ec2/graviton/
https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html
https://aws.amazon.com/lambda/pricing/
https://github.com/Bryan-0/aws-lambda-benchmark-tool
https://github.com/Bryan-0/aws-lambda-benchmark-tool
https://github.com/theam/aws-lambda-benchmark
https://github.com/theam/aws-lambda-benchmark
https://doi.org/10.1145/3419111.3421280
https://doi.org/10.1145/3401025.3401738
https://github.com/hjmart93/ServerlessBenchmark
https://github.com/alexcasalboni/aws-lambda-power-tuning
https://doi.org/10.1007/s10723-020-09523-1

EVALUATION OF CONFIGURATIONS OF AWS LAMBDA FUNCTIONS 9

[22] M. Sadaqat, M. Sánchez-Gordón, and R. Colomo-Palacios,

“Benchmarking Serverless Computing: Performance and Usability,” J.

Inf. Technol. Res. JITR, vol. 15, no. 1, pp. 1–17, 2022. .
https://doi.org/10.4018/JITR.299374

[23] “AWS Lambda Benchmarking: Rust, Scala, Python, TypeScript - Xebia.”
Feb., 2025. https://xebia.com/blog/aws-lambda-benchmarking/

[24] J. Wen, Z. Chen, F. Sarro, and X. Liu, “SuperFlow: Performance Testing

for Serverless Computing,” Jun. 2023, arXiv:2306.01620. Oct. 2024.
http://arxiv.org/abs/2306.01620

[25] X. Chen, L.-H. Hung, R. Cordingly, and W. Lloyd, “X86 vs. ARM64: An

Investigation of Factors Influencing Serverless Performance,” in Proc. of

the 9th Int. Workshop on Serverless Computing, Bologna Italy: ACM,
Dec. 2023, pp. 7–12. https://doi.org/10.1145/3631295.3631394

[26] I. Bluemke, A. Zdanowski “Experiment evaluating configurations of AWS

Lambda functions” submitted to “Practical Aspects of Software
Engineering”, 51st Euromicro Conf. Series on Soft. Eng. and Advanced
Applications, September 2025

[27] “hashlib — Secure hashes and message digests,” Python documentation.
Feb. 08, 2025. https://docs.python.org/3/library/hashlib.html

https://doi.org/10.4018/JITR.299374
https://xebia.com/blog/aws-lambda-benchmarking/
http://arxiv.org/abs/2306.01620
https://doi.org/10.1145/3631295.3631394
https://docs.python.org/3/library/hashlib.html

