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Abstract—AWS Lambda is a widely used serverless computing 

service that executes code in response to events and automatically 

manages the underlying hardware resources. Lambda integrates 

with many AWS services and offers two processor architecture 

options for running functions: x86_64 (CISC) and arm64 (RISC). 

Determining the optimal settings for the lowest cost or execution 

time is not straightforward due to performance variations between 

processor architectures, the wide range of configuration options, 

and the workload-dependent nature of function execution 

efficiency. We developed a tool which we used in experiments 

examining different configurations and processors architectures 

for several algorithms. In this paper two of such experiments are 

presented in detail. 

 

Keywords—serverless computing; Function-as-a-Service; 

Amazon Web Services; AWS Lambda 

I. INTRODUCTION 

N computer science, "the cloud" refers to the on-demand 

delivery of computing resources over the internet. These 

resources include servers, storage, databases, networking, and 

software, which users can access without the need to own or 

maintain physical infrastructure. The cloud offers scalability, 

flexibility, and cost efficiency, allowing users to adjust 

resources as needed and pay only for what they use [1]. 

Serverless computing [2] eliminates infrastructure management 

and allows developers to concentrate on writing and executing 

code. Among serverless platforms, AWS Lambda [3] is one of 

the most widely used. Optimizing AWS Lambda functions for 

cost and performance remains challenging. Users can configure 

memory size and processor architecture, but the impact of these 

parameters on execution efficiency is not well-documented. 

Existing benchmarking tools (listed in Section III) provide 

limited configuration choices or lack comprehensive statistical 

analysis, making it difficult to compare different configurations 

systematically. 

At the Institute of Computer Science, Warsaw University of 

Technology a tool, called LambdaLab [4], that examines AWS 

Lambda performance with a range of configurations, including 

x86_64 and arm64 processor architectures was designed and 

implemented. This tool was used to conduct a series of 

experiments analyzing CPU-intensive workloads on AWS 

Lambda. In [5] the superiority of arm64, while executing 

cryptographic hashing SHA-256 algorithm, was described. As 

the configurations for this experiment were not fully shown we 

wanted to use the same algorithm and examine a variety of 

settings. The results of these experiments are presented in 
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Section IV. Our experiment provides valuable insights into 

performance trade-offs, highlighting the impact of memory size 

and processor architecture on execution cost.  

Section II contains brief theoretical background on cloud 

services and serverless architectures. AWS Lambda is also 

presented in more details. Related work i.e. benchmarking tools 

and experiments are presented in Section III.  

In the last section a summary of key findings and potential 

directions for future research is given. By addressing drawbacks 

of existing serverless benchmarking tools and experiments this 

work contributes to a better understanding of AWS Lambda cost 

and performance optimization and provides a practical solution 

for developers and researchers. 

II. THEORETICAL BACKGROUND  

Below, basics information on abstract cloud services and 

AWS Lambda are given. 

A. Abstraction layers in cloud services 

Cloud computing services are served at different levels of 

abstraction, offering various models depending on the degree of 

control and management required by developers and users. 

Depending on the level, the cloud vendor provides only 

infrastructure, the platform or the platform along with the 

necessary infrastructure, or access to software running on a 

platform, supported by infrastructure. In Fig 1. the three primary 

cloud service models are shown and the providers and 

consumers for every model are presented.  

 
 

Fig. 1. Cloud services abstraction layers -source: [6]. 

 

In this view the cloud vendor provides infrastructure, 

platform and software, while developers consume infrastructure 

and platform to provide software, and the end users only 

consume software. 
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Infrastructure as a Service (IaaS) is the lowest level of cloud 

service, which offers access to infrastructure hosted by the cloud 

vendor, including servers, storage, networking [6]. Developers 

can configure the infrastructure remotely, according to their 

needs. IaaS model provides flexibility and scalability, enabling 

to scale resources up or down, as the demand fluctuates. It also 

benefits from the pay-as-you-go pricing model, which ensures 

that the users pay only for the resources they consume, reducing 

upfront capital expenditure and maintaining clear operational 

costs. IaaS is designed for users who need the ability to install, 

configure and operate arbitrary low-level software or 

applications. It is most commonly used for applications running 

for an extended period of time (or available on 24/7 basis). 

Platform as a Service (PaaS) provides a higher level of 

abstraction by offering a managed environment for developing, 

testing, and deploying applications. It includes runtime 

environments, development tools, and middleware, all hosted 

and maintained by the cloud provider. Unlike IaaS, PaaS does 

not grant users control over the underlying infrastructure, such 

as server configuration or network management. Instead, 

applications are developed within a pre-configured platform that 

handles infrastructure-related tasks. PaaS allows developers to 

deploy applications without directly managing servers or 

scaling resources manually, therefore it is particularly useful for 

scenarios where fast-paced development and deployment is 

required.  

Software as a Service (SaaS) is the highest level of 

abstraction in cloud computing, providing users with access to 

fully managed software applications over the internet. Unlike 

IaaS and PaaS, SaaS does not allow developers to control the 

underlying platform or infrastructure. Instead, users interact 

directly with pre-built applications provided and maintained by 

the cloud vendor. SaaS applications are accessed via web 

browsers, eliminating the need for installation, maintenance, or 

resource management by the user. All aspects of infrastructure, 

security, and software updates are managed by the cloud 

provider. SaaS model is particularly useful for non-technical 

end-users who require ready-to-use applications without 

involvement in software development or system administration. 

The serverless computing model enables developers to focus on 

writing and executing their code without the need to manage 

anything else. Although "serverless" might suggest no servers 

are involved, the underlying infrastructure is still managed by 

the cloud provider, and computational resources are provisioned 

dynamically. The significant benefit lies in the abstraction of 

infrastructure management. When compared to the classic cloud 

service models major differences in serverless approach [7] can 

be seen: 

• Computing provisions resources only for the duration 

needed to execute a single function, unlike IaaS, where 

infrastructure is continuously provisioned and requires user 

management. 

• Computing abstracts away the platform management, 

providing a fully managed environment, unlike PaaS, where 

developers still need to manage the platform and its 

environment.  

• Computing gives developers the ability to define and 

deploy individual functions for event-driven architectures, 

unlike SaaS, where the cloud provider manages the entire 

software stack. 

According to Berkeley View [8], the serverless model 

combines two key components: 

1. Function as a Service (FaaS): Provides execution 

environments for isolated functions, which are invoked in 

response to events.  

2. Backend as a Service (BaaS): Complements FaaS by 

offering services like databases, authentication, storage and 

logging, which are essential for backend operations but 

abstracted away from the user. 

FaaS functions are designed to operate independently and are 

triggered by external events, such as HTTP requests, database 

updates, or scheduled tasks. Once the event arrives, it is passed 

to a controller for validation. If the event is valid, the controller 

initiates a function container. A container in serverless 

computing is a lightweight, isolated environment where the 

function code is executed. It is designed specifically to start 

quickly, ensuring minimal latency when a function is invoked. 

While the container provides isolation and efficiency, it runs on 

a server managed by the cloud provider, abstracting the 

infrastructure. The container includes the runtime environment 

(the chosen programming language engine, libraries and 

frameworks) and the function’s source code.  

B. AWS Lambda 

AWS Lambda is a widely used serverless compute service 

that executes code in response to events and automatically 

manages the underlying resources. As an implementation of the 

Function as a Service (FaaS) model, Lambda allows developers 

to focus entirely on writing, deploying and executing functions. 

Lambda integrates seamlessly with many AWS services, which 

provide Backend as a Service (BaaS) capabilities. 

To understand AWS Lambda function, a distinction must be 

made between a function in the context of FaaS and a function 

in traditional programming. In traditional programming, a 

function is a reusable block of code that performs a specific task 

and can be invoked multiple times within a program. In FaaS, a 

function refers to a self-contained, stateless unit of execution, 

which may encompass several programming-level functions [9]. 

A Lambda function is a cloud-managed object that consists 

of the executable code and associated configurations. Each 

function is deployed within a specific AWS Region, meaning it 

runs only within the selected geographical data center. New 

AWS Lambda function requires specifying a function name, 

selecting a runtime environment, and choosing a processor 

architecture. The runtime environment defines the programming 

language in which the function will run. AWS Lambda offers 

two processor architecture options for running functions: 

x86_64 and arm64: 

1. The x86 architecture, originally introduced by Intel in 1978 

with the famous 8086 microprocessor [10]. Based on 

Complex Instruction Set Computing (CISC), x86 processors 

offer a wide range of instructions, providing versatility and 

ease of use.  

2. In contrast, Graviton2 processors are custom-built by AWS 

based on the 64-bit arm architecture [11], which uses RISC 

(Reduced Instruction Set Computing) to simplify the 

instruction set for better energy efficiency. Graviton2 

processors are specifically designed for cloud workloads [12], 

therefore, according to the AWS Documentation [13], they 

should deliver higher performance and improved cost-

efficiency compared to the x86. 
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AWS Lambda operates on a pay-as-you-go pricing model, 

where users are charged based on the number of requests and 

the duration of function executions. The pricing is provided for 

a thousand or million invocations. The total cost of an 

invocation depends on several factors [14]: 

1) Request cost: Lambda charges $0.20 per 1 million requests 

to invoke the function.  

2) Computation cost: Lambda charges for a gigabyte-second 

of computation. The value is calculated by simply converting 

the following configuration factors to seconds and gigabytes, 

respectively, and multiplying them. 

• Execution Time: Lambda charges for each millisecond of 

the time it takes for the function to complete. 

• Memory Allocation: Lambda charges for the amount of 

memory allocated to the function, in MB. 

3) Ephemeral Storage: AWS Lambda provides 512 MB of 

default short-term storage for free. If more volume is required, 

users can allocate up to 10 GB of temporary storage at a rate 

of $0.000000025 per GB-second. The storage is called 

ephemeral, because it is automatically deleted after function 

execution, and cannot be reused between multiple 

invocations. 

Finally, the compute cost is multiplied by the ratio which 

depends on the chosen processor architecture. The ratio for 

x86_64 is around 20% more expensive than that for arm64. The 

exact values are also dependent on the region and subject to 

change over time.  

Optimizing AWS Lambda functions for cost and 

performance is challenging. Users can configure memory size 

and processor architecture, but the impact of these parameters 

on execution efficiency is not easily seen. A benchmarking tool 

is necessary to compare different configurations systematically 

and choose the optimal option.  

III. RELATED WORK  

Optimizing serverless workloads for performance and cost is 

a very difficult task. The optimal settings for the lowest cost or 

execution time depends on many factors -configuration options  

so systematic benchmarking is necessary to achieve the best 

performance-cost balance. By analyzing execution times, 

resource utilization, pricing models in different configurations, 

benchmarking helps developers to optimize their serverless 

applications. The performance evaluation of FaaS platforms has 

been the research goal of many works. Scheuner and Leitner in 

their literature review [9] containing 112 studies, found that 

AWS Lambda is the most frequently studied platform, followed 

by Azure Functions, Google Cloud Functions, and IBM Cloud 

Functions. The majority of research concentrated on micro-

benchmarks measuring platform overhead and CPU speed. This 

review identified also that academic and industrial 

benchmarking approaches were using different configurations. 

The majority of the studies focus on simple function 

executions. Research on complex workloads and function 

triggers, such as message queues, streams, and workflow 

integrations are rather limited. 

Many benchmarking tools have been developed to optimize 

memory allocation and execution time for serverless computing 

engines e.g.: AWS Lambda Benchmark Tool [15], AWS 

Lambda Benchmark [16], ServerlessBench [17], FaaSdom [18], 

ServerlessBenchmark [19], AWS Lambda Power Tuning [20]. 

Each of these tools has some strengths and limitations but in 

most of them the statistical analysis is very limited (or 

nonexistent) and comparison of different processors 

architectures is not possible. At the Institute of Computer 

Science, Warsaw University of Technology a tool, called 

LambdaLab [4], was designed and implemented to specifically 

target those limitations. LambdaLab enables evaluations of 

configurations including all available memory sizes, both 

processor architectures, provides statistical analysis, including 

confidence intervals to improve result reliability. It also is able 

to visualize and show rankings of results, assisting users in 

selecting the optimal configuration. By incorporating these 

features, LambdaLab is more flexible than the other tools. 

A. Benchmarking experiments  

AWS Lambda was evaluated in several benchmarking 

experiments. In these experiments, the above-mentioned tools 

were often used. Scheuner and Leitner in their review [9] noted 

some common features of these experiments: 

• Lack of source code and configurations. 

• Reliance on mean values without confidence intervals or 

variance analysis. 

• Potential deficiencies of experiments without independent 

verification. 

Some researchers conducted experiments focusing on the 

performance and usability of serverless computing platforms, 

AWS Lambda including e.g. Martins, Araujo, and Da Cunha 

[21] and  Sadaqat, Sánchez-Gordón, and Colomo-Palacios [22].  

They evaluated many parameters like execution time, start 

latency. memory. These experiments lacked detailed statistical 

analyses to measure performance variability and did not include 

the experimental configurations, which disables their 

reproducibility.  

In AWS Lambda Benchmarking Study [23], Xebia was 

comparing the performance of Rust, Scala, Python, and 

TypeScript in AWS Lambda. The results showed that in terms 

of execution time and cost efficiency, Rust was first, Python 

second  and Scala was the worst. This study also did not provide 

detailed statistical analyses, such as confidence intervals or 

hypothesis testing.  

Wen, Chen, Sarro, and Liu introduced SuperFlow [24], a 

performance testing framework for serverless computing. They 

evaluated AWS Lambda's performance under various 

workloads, they were examining execution time, resource 

utilization, and scalability. While the framework aimed to 

provide a systematic approach to performance testing, this study 

did not discuss the statistical methods used to analyze the 

results, leaving questions about the robustness of the findings. 

AWS Lambda offers two processor architecture for running 

functions: x86_64 and arm64 (see section II), so some 

researchers were evaluating the performance and cost efficiency 

of these two options. AWS, in collaboration with its partner, 

Cascadeo, conducted experiments evaluating the performance 

and cost efficiency of AWS Lambda functions running on Arm-

based Graviton2 processors versus traditional x86 processors. 

The results are presented in [5] In Fig. 2 the relative differences 

between arm64 and x86_64 architectures are shown, expressed 

in percentages, where positive values indicate higher values for 

arm64. The study evaluated five benchmarking scenarios, 

including: 
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• Processor-intensive: in single-threaded (ST) and multi-

threaded (MT) workloads 

• Memory-intensive: workloads in ST and MT setups 

• Lightweight micro-benchmark 

For each of the workloads, three metrics were measured using 

unspecified methodology: 

1. Performance (higher is better, the clock symbol in Fig.2). 

2. Cost (lower is better, the encircled $ symbol in the Fig. 2) 

3. Work done per dollar (higher is better, the gearwheel 

symbol in the Fig. 2) 

The results suggest that arm64 provides a significant 

performance boost—over 60% higher for CPU-heavy tasks—

while memory-heavy and lightweight workloads show a slight 

performance reduction of around 6-7%. This led to a claimed 

cost reduction of over 50% for CPU-heavy workloads and 13-

19% for other workloads, all favoring arm64. 

 

 

Fig. 2. Results per workload in AWS Lambda arm vs x86 performance and 

cost -source[5].  

Chen conducted an independent experiment evaluating the 

performance of ARM64 architecture compared to x86 in 

serverless functions [25]. The research indicated that ARM64 

could offer better cost efficiency for certain workloads because 

out of 18 functions tested, x86 was faster for only 7 functions. 

In this study mean values were reported and no rigorous 

statistical analyses were conducted to determine the significance 

of the performance differences. 

In [26] an experiment with single-threaded CPU-intensive 

iterative workload (Fibonacci computation) was described. The 

results clearly demonstrated that x86_64 outperforms arm64 in 

both execution time and cost. This distinction is crucial because 

it shows that performance advantages are not inherent to an 

architecture but are highly dependent on workload 

characteristics. 

IV. EXPERIMENT  

In section II.A some results of experiment conducted by 

AWS and Cascadeo [5], showing superiority of arm64, were 

described. As a CPU-heavy workload in this experiment 

cryptographic hashing SHA-256 algorithm was used. In our 

experiment presented in [26], where we used Fibonacci numbers 

as the workload the x86 appeared faster and cheaper. Therefore, 

we decided to use the SHA-256 algorithm as the workload and 

to examine a variety of settings which were not covered in [5].  

While the SHA-256 algorithm’s implementation is provided 

by hashlib [27], our contribution lies in constructing the 

workload structure to systematically stress-test CPU 

 

performance. It is achieved by executing a configurable number 

of iterative hash computations on an input of variable size. Each 

iteration takes the previous hash as input, creating a chained 

hashing process where every computation depends on the result 

of the previous one. This ensures a controlled and repeatable 

execution pattern, making it an effective benchmark for 

evaluating processor efficiency. Similarly to [5] we examined 

single threaded (section A) and multi-threaded (section B) 

workload. We used our benchmarking tool LambdaLab (section 

III, [26],[4]) for run the workload and analyze the results.  

A. Experiment 1- single threaded  

The experiment consisted of executing the workload code to 

compute the SHA-256 hash on a fixed-length input of 1 KB, 

repeated for 5,000,000 iterations per invocation. This ensures 

that the workload remains CPU-bound. To obtain statistically 

meaningful results, the execution was repeated 10 times for each 

combination of memory size and processor architecture. The 

runtime environment used was Python 3.13. The experiment 

tested 23 different memory sizes, ranging from 128 MB to 3008 

MB and was performed on both arm64 and x86_64 processor 

architectures. Therefore, in total, there were 56 unique 

configurations. Each workload invocation was repeated 10 

times, resulting in 560 individual executions. 

In Fig. 3 the relationship between execution time (in 

milliseconds) and memory size (in MB) for both processor 

architectures, arm64 and x86_64 is presented. Each data point 

represents the results of a single invocation, with green markers 

denoting the arm64 architecture, while blue markers represent 

x86_64. The results in Fig. 3 show that for smaller memory 

sizes, particularly in the range of 128 MB to 576 MB, arm64 has 

a slight performance advantage over x86_64, with lower 

execution times. For example, at 128 MB, the execution time 

for arm64 is approximately 10% lower than that of x86_64. For 

memory sizes beyond 576 MB, the performance of both 

architectures becomes nearly identical, with only marginal 

differences observed in execution times. This similarity 

indicates that for higher memory configurations, both 

architectures are able to fully utilize the allocated resources and 

achieve near-optimal performance. 

In Fig. 4 the execution cost associated with the execution time 

are presented. Both time and cost dimensions are aggregated 

from the repeated runs for every memory configuration. The 

data is presented by points connected with solid lines, 

representing the average values, with shaded regions around 

each line indicating the 95% confidence intervals. Architectures 

are color-coded: x86_64 is represented in blue, while arm64 is 

depicted in green. Both time and cost dimensions are shown 

together, as a dual-axis representation, which allows for a direct 

comparison of execution time (on the left y-axis, milliseconds) 

and cost (on the right y-axis), across different configurations. 

Furthermore, in Fig.4 it can be seen that the execution times 

for both architectures are nearly identical for memory sizes 

above 1280 MB. For smaller memory sizes below 1280 MB, 

x86_64 exhibits slightly higher execution times on average 

compared to arm64, with the performance gap diminishing as 

the memory size increases. This trend highlights the slight 

efficiency advantage of arm64 for smaller memory 

configurations, likely due to its optimized instruction set for this 

type of workload. 
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Fig. 3. Execution time vs memory size - single threaded.   

 
 

 

Fig. 4. Execution time and cost vs memory size -  single threaded.  

 

 

 

Interestingly, a performance anomaly is observed for x86_64 

at 832 MB, where a sudden increase in performance occurs. This 

unexpected behavior may indicate runtime or hardware-level 

optimizations that are uniquely triggered at this memory size. 

Additionally, larger confidence intervals are observed for arm64 

at 1536 MB and 1664 MB, and for x86_64 at 1664 MB, 

suggesting increased variability in execution times for these 

configurations. Outside of these memory sizes, the benchmark 

demonstrates exceptional consistency, which underscores its 

reliability and thoughtful design. 

In terms of execution cost, arm64 consistently achieves lower 

costs than x86_64. Because the performance of both 

architectures is similar, this cost difference is attributed to the 

lower price per GB-second for arm64. This cost efficiency 

makes arm64 a more economical choice for this workload. A 

more detailed cost comparison is presented in Fig. 5. 

Fig. 5 confirms that arm64 is consistently less expensive than 

x86_64, with the relative cost difference ranging from 18.7% to 

44.4%, with most values around 40%. The largest cost disparity 

occurs at the memory size of 512 MB, highlighting that at 

smaller memory sizes arm64 achieves significant cost efficiency 

over x86_64. Conversely, the smallest cost difference is 

observed at 896 MB, indicating that the two architectures have 

relatively similar costs in this configuration. For smaller 

memory sizes (128 MB to 576 MB), the percentage cost 

difference is higher, as reflected by the orange line’s peak at 512 

MB. The cost difference stabilizes at higher memory sizes, 

maintaining a consistent gap of around 40%. Interestingly, 

while the execution time difference is larger at smaller memory 

ranges, the relative cost difference remains similar across both 

small and large memory sizes. This suggests that the pricing 
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model, rather than raw performance differences, plays the 

dominant role in cost disparity between the two architectures. 

This variability underscores the importance of carefully 

selecting configurations to maximize cost efficiency. Even 

small changes in memory size can have a significant and 

sometimes unexpected impact on the relative cost difference. 

Understanding these trade-offs is crucial for optimizing 

workloads at scale, particularly when deploying cost-sensitive 

applications 

B. Experiment 2 - multi threaded  

The workload choice and explanation of the source code are 

described in Section IV.A. The workload code builds upon the 

single-threaded SHA-256 hashing experiment, extending it to 

utilize multiple threads in such a way that all of the available 

CPU resources are fully utilized. The experiment tested 23 

different memory sizes, ranging from 128 MB to 3008 MB and 

was performed on both arm64 and x86_64 processor 

architectures.  

In the Fig.6 the relationship between execution time (in 

milliseconds) and memory size (in MB) for both processor 

arm64 and x86_64 is shown. Each data point represents the 

average execution time of a single invocation, with green 

markers for arm64 and blue markers for x86_64. The results 

highlight a significant performance disparity between the two 

architectures, particularly for smaller memory sizes. At 128 

MB, x86_64 demonstrates an execution time approximately 

270% longer than arm64, underscoring the inefficiency of 

x86_64 in handling this workload at minimal memory 

configurations. As the memory size increases, the performance 

of both architectures improves exponentially, up to 1024 MB, 

eventually stabilizing around 1792 MB, reflecting full 

utilization of allocated CPU resources provided by AWS 

Lambda. At 1792 MB, arm64 achieves an average execution 

time of approximately 15.4 seconds compared to x86_64's 54.9 

seconds. Despite the performance improvements, the relative 

difference, is the same as in the lower memory range, with 

x86_64 continuing to stay behind arm64 by approximately 

270%, even at the higher memory sizes. These results confirm 

that arm64 hardware level optimization allows it to perform the 

hashing calculations much more efficiently than x86_64. 

Continuing from the analysis of execution times in Fig. 6, in  

Fig. 7 the relationship between execution time (in milliseconds) 

and execution cost (in USD) as a function of memory size (in 

MB) for both arm64 and x86_64 architectures is presented. The 

dual-axis graph illustrates execution time on the left y-axis and 

execution cost on the right y-axis. Data points are connected by 

solid lines, with green representing arm64 and blue representing 

x86_64. Shaded regions around the lines indicate 95% 

confidence intervals, providing insights into the variability of 

the measurements. 

The results in Fig. 7 confirm the trends observed in Fig.6, 

where arm64 consistently outperforms x86_64 in terms of 

execution time for all memory configurations. At smaller 

memory sizes, arm64 achieves significantly lower execution 

times, for instance the execution time for arm64 at 128 MB is 

approximately 204 seconds (3.4 minutes) compared to x86_64's 

759 seconds (12.7 minutes), resulting in an approximately 270% 

longer time for x86_64, as previously noted. In terms of cost, 

 

arm64 consistently demonstrates superior cost-efficiency for all 

memory sizes. At 128 MB, the cost for arm64 is approximately 

$0.00034 per invocation, compared to x86_64's $0.00158, 

highlighting a cost difference of over 360%. This substantial 

disparity persists for all memory sizes, with x86_64's costs 

remaining approximately 350–370% higher than arm64's, even 

at the larger memory configurations where execution times 

stabilize. The cost curve for arm64 appears almost as a flat line, 

suggesting a near-linear relationship between memory 

allocation and performance improvement. Interestingly, the 

larger memory sizes, beyond 1024 MB, show a slight increase 

in cost per invocation, than the lower ones. This reflects the 

diminishing returns in performance improvement observed in 

Fig. 6, as execution time stabilizes while costs rise 

incrementally. 

In contrast, the x86_64 cost curve is highly irregular, 

resembling a spiked line. The worst cost configuration for 

x86_64 is at 960 MB, with a cost of approximately $0.00166 

per invocation, while the best configuration is at 3008 MB, with 

a cost of $0.00161 per invocation. The absolute difference may 

seem small, but given enough scaling, translates to a large 

money sum. This irregularity indicates a less predictable 

relationship between memory size and cost efficiency for 

x86_64 in executing this workload. The confidence intervals for 

both execution time and cost remain narrow for most 

configurations, indicating the reliability of the benchmark. 

Minor variability is observed at specific configurations, such as 

1536 MB and 1664 MB for arm64, and 1664 MB for x86_64, 

which aligns with the variability noted in Fig. 6. 

These findings further reinforce arm64's efficiency, not only 

in terms of execution time but also in cost, making it the more 

economical choice for this multi-threaded SHA-256 hashing 

workload. The detailed cost comparison is visualized in Fig. 7, 

where the blue bars represent the average cost for x86_64, while 

the green bars represent arm64. Above each bar, the orange line 

indicates the percentage cost difference between the 

architectures for each memory configuration. 

The results in Fig. 8 confirm that x86_64 is consistently more 

expensive than arm64, with the relative cost difference ranging 

from approximately 335% to 380%. The largest cost disparity 

occurs at the smallest memory size of 128 MB, where x86_64 

incurs costs 363.4% higher than arm64. Conversely, the 

smallest cost difference is observed at the largest memory size 

of 3008 MB, where the relative gap narrows slightly to 335.2%. 

The cost difference remains relatively stable in all memory 

configurations, decreasing slightly as memory size increases. 

Despite this narrowing, the cost difference remains substantial 

for all memory sizes, consistently favoring arm64 in terms of 

cost efficiency. 

This persistent disparity underscores the critical importance 

of selecting arm64 for workloads that are optimized for this 

architecture, as even at its worst-performing configurations, 

arm64 maintains a significant cost advantage over x86_64. Such 

findings emphasize the necessity of optimizing configurations 

for specific workloads. Even seemingly small changes in 

architecture or memory allocation can lead to disproportionately 

large impacts on cost. Identifying optimal configurations 

tailored to workload-specific requirements is crucial for 

minimizing expenses, particularly in large-scale deployments. 
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Fig. 5. Average Cost Comparison - single threaded.  

 

 

Fig. 6. Execution time vs memory size :  multi-threaded.  

 

 

Fig. 7.  Execution time and cost vs memory size : multi-threaded.  
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Fig. 8. Average Cost Comparison: multi-threaded

 

 

CONCLUSION 

The goal of our research was to examine how processor 

architecture impacts execution time and cost efficiency for 

different workloads, using LambdaLab to conduct systematic 

experiments. In this paper we presented experiments with 

cryptographic hashing SHA-256 algorithm. 

For the single-threaded SHA-256 hashing workload, arm64 

demonstrated both faster execution times and dramatically 

lower costs, being over 300% cheaper than x86_64. This 

highlights arm64’s hardware optimizations and its ability to 

handle cryptographic workloads more efficiently. 

In the multi-threaded SHA-256 hashing workload, arm64 

again provided faster execution times, however, the cost 

advantage of arm64 in this case was largely due to AWS’s 

pricing model rather than a significant performance gap. Here, 

arm64 benefited from its lower price per GB-second, even as 

the performance of the two architectures converged at higher 

memory configurations. 

In the experiments described in this paper arm64 appeared to 

be more cost effective but in other our experiment, with 

Fibonacci numbers workload [26], x86_64 performed better. 

These observations illustrate that the cost efficiency is highly 

workload-dependent so a tool like LambdaLab is necessary to 

benchmark real-world use cases, and identify the most cost-

effective configurations for specific workloads. 
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