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Unified approach to acoustic and electromagnetic
field theories based on control engineering methods

Tomasz P. Stefański, Tomasz Białaszewski, Marek Grzegorek, and Jakub Wszołek

Abstract—In this paper, we propose a unified approach to
acoustic and electromagnetic field theories which employs control
engineering methods for their analysis and modelling. Both the-
ories can be derived from the wave equation using factorisation
and subsequently represented as a system with a feedback loop in
control engineering. This allows for the formulation of properties
and solutions useful for further analysis. Moreover, it provides a
justification and explanation of similarities between acoustics and
electromagnetism. Hopefully, our unified approach to acoustic
and electromagnetic field theories carries implications for the
foundational understanding of both theories as well as their
practical applications.
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I. INTRODUCTION

ACOUSTIC waves are similar to electromagnetic waves
in the sense that both are described by the wave equa-

tion. However, they also possess opposite properties because
acoustic waves are a type of mechanical waves which require
a medium for propagation, whereas electromagnetic waves can
propagate in vacuum.

In [1], arguments are provided for treating the dynamic
phenomena of acoustics and electromagnetism in the same
way. That is, causality and locality are considered as the
core of dynamic linear phenomena in the physical continua
of acoustics and electromagnetism. Then, the author discusses
similarities between both fields in terms of energy and mo-
mentum conservation. In [2], an approach to the fundamental
problems of classical linear acoustics and electromagnetism
is developed, based on similarities between both fields. The
author notes the importance of causality as a consequence
of feedback loops existing between complementary quantities
occurring in both fields. Then, several types of excitations
are introduced, for which analytical solutions are calculated.
A new notation of space physical features and the related
local dynamical states is proposed and applied in the four
cases of time-domain fundamental solutions related to the
given sources, stressing the mutual circular coupling of these
states and exposing in each case their duality, hierarchy, and
source-dependence. In [3], an integrated view on acoustics
and electromagnetism is developed. It introduces the notion
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of wave bifields and develops the concept of kinedynamics.
Then, the dynamics of the fundamental solutions is studied.
As demonstrated, the disturbances induced by physical sources
in fluids or dielectrics maintain their primary character while
propagating throughout these media.

In [4], novel representations of Lagrangian acoustic field
theory are developed based on an analogy between acoustics
and electromagnetism. In contrast to classical spinless ap-
proaches in acoustics employing a single scalar velocity poten-
tial, the proposed representations employ vector potentials as
in electromagnetism. Then, in order to take into account both
the scalar and vector quantities of the acoustic field theory,
a joint spinor-potential representation, which includes both
the scalar and vector potentials, is developed. The proposed
theory reveals and leverages a profound set of symmetries
hidden in the structure of the acoustic field theory, allowing
for the foundational understanding of acoustics. Based on these
results, the important role played by dynamical potentials in
both acoustics and electromagnetism is explored in [5]. It
occurs that expressing both theories in the geometric language
of a Clifford bundle over spacetime significantly clarifies
the structure of each theory while illuminating their many
similarities as well as their key geometric differences.

Based on the references presented above, it can easily be
seen that the problem of similarities and differences between
acoustics and electromagnetism still remains an active research
topic among the scientific community. Therefore, we have
decided to take part in this discussion and point out that
the similarities between both theories result from a common
source, which is the wave equation. In contrast to the usual
methodology, which relies on demonstrating that the mathe-
matical equations of acoustics and electromagnetism result in
the wave equation, we have decided to show that it is possible
to derive the equations of acoustics and electromagnetism
from the wave equation, after setting the dimension of the
solution space and assuming the existence of field helicity.
Then, the control engineering processes (i.e., acoustics and
electromagnetism) resulting from the wave equation can be
thoroughly described and investigated, which we have done in
this work. This is particularly important considering that such
a unified approach can be used in the analysis of scattering
from rough surfaces [6], [7]. Hopefully, the obtained results
will be useful for engineers and scientists interested in both
the acoustic and the electromagnetic field theory.
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II. PRELIMINARIES

In this section, we introduce the basic notation and termi-
nology, which is used throughout the paper. We define the
Fourier transformation for the absolutely integrable function
of space f : R3 → C (i.e., f(r) where r = [x y z ])

F(f)(k) =

∫
R3

e−ik·rf(r) d3r (1)

where k = [ kx ky kz ] denotes the wavevector and i =√
−1. The same symbol, but with the wavevector argument

k, is employed to denote the Fourier transform. In our
derivations, we consider acoustic and electromagnetic fields
which vary in time. That is, we do not consider static fields.
Then, we assume that the considered solutions to wave-
propagation problems are smooth functions for which the order
of partial derivatives can be changed, i.e., the second-order
partial derivatives exist for the considered functions which are
continuous.

Now, let us introduce the Pauli matrices [8]

σx =

[
0 1
1 0

]
σy =

[
0 −i
i 0

]
σz =

[
1 0
0 −1

]
and denote zero and identity matrices as 0 and I, respectively.
The Pauli matrices satisfy the property

σ2
x = σ2

y = σ2
z = −iσxσyσz = I

thus providing the algebra isomorphic to quaternions [9].
The wave equation for the scalar wavefunction ϕ describing

propagation with the velocity c is given by

□ϕ = 0 (2)

where □ = ∇2 − c−2∂2
tt = ∇2 − ∂2

ττ denotes the d’Alembert
operator (i.e., the wave operator) and τ = ct. Let us consider
the generalization of (2) called the Klein-Gordon equation

(□+ µ2)ϕ = 0 (3)

where µ ∈ R is a constant parameter. The Klein-Gordon
equation [10] stems from the quantisation of the energy-
momentum relation in the special relativity theory. Nowadays,
(3) is regarded as a relativistic field equation for spin-0
particles. For a free spin-1/2 particles described by the Dirac
equation, any component of any solution to the free Dirac
equation also satisfies the free Klein–Gordon equation. More-
over, every component of every quantum field also satisfies
the free Klein–Gordon equation in the quantum field theory,
which means that this equation is a generic expression of
the field theory. Therefore, one can consider this partial-
differential equation (i.e., operator) as applicable to all free
matter as well as to massless fields described by the wave
equation (2) (i.e., when µ = 0 in (3)). For instance, classical
acoustic and electromagnetic processes can be represented by
the wave equation (2) which can be considered the massless
Klein-Gordon equation (3). Therefore, as it is demonstrated
later, we can derive the acoustic and electromagnetic field
theories from the description of the massless field based on the
wave equation (2). That is, acoustics and electromagnetism,
described by the Euler [11] and Maxwell’s equations [12],

respectively, can be derived from the wave equation (2), taking
into account the dimension of the solution vector and the
existence of helicity. For this purpose, we employ factorisation
of the wave equation based on the properties of the Pauli
matrices. Hence, we are able to demonstrate that similar
properties of acoustic and electromagnetic fields result from
the common roots of both theories. In the next step, we are
able to derive a common representation of the system with
a feedback loop for acoustics and electromagnetism, known
from control engineering, which is useful for analysing the
properties of both fields.

III. FIELD THEORY

In this section, we review the general theory of linear
acoustic and electromagnetic fields in order to highlight their
similarities and build a unified approach. We recall the well-
known conclusion that both theories imply satisfaction of
the wave equation with the respective fields. The obtained
formulations enable contrasting derivations of both theories,
given in the next section, from the wave equation and the
general field theory.

A. Acoustic Field

The acoustic field theory, derived from fluid dynamics,
provides methods and tools for modelling and simulating
sound waves. In the absence of external forces and sources,
the Euler equations are sufficient to describe sound waves in
our considerations

ρ∂tv = −∇p (4)

κ∂tp = −∇ · v (5)

where v and p are the acoustic velocity and pressure per-
turbations, respectively, whereas ρ is the equilibrium mass
density, and κ is the compressibility. Equation (4) represents
dynamical properties of the acoustic system, while (5) stems
from the equation of continuity derived from the principle of
mass conservation. In addition to (4)–(5), the constraint

∇× v = 0 (6)

which expresses the longitudinal (i.e., curl-free) character of
acoustic waves is assumed. Using the time derivative of (6),
one obtains the condition

∂t(∇× v) = 0 (7)

which can also be achieved by taking the curl of (4).
We can rewrite the system of equations (4)–(6) as

∂tṽ = −c∇p̃ (8)

∂tp̃ = −c∇ · ṽ (9)

∇× ṽ = 0 (10)

where p̃ =
√
κp, ṽ =

√
ρv, and c = 1/

√
κρ denotes the speed

of sound in this case [4]. The Euler equations (8)–(9) can be
written in Cartesian coordinates in the matrix form

∂ταV + (∇ · β)V = 0 (11)
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where
V =

[
p̃
ṽ

]
(12)

α =

[
−σz 0
0 I

]
and β = [βx,βy,βz] denotes

βx =

[
−iσy 0
0 0

]
βy =

[
0 − 1

2 (σz + I)
1
2 (σz + I) 0

]
βz =

[
0 − 1

2 (σx + iσy)
1
2 (σx − iσy) 0

]
.

Taking the divergence of (8) and the gradient of (9), one
can prove that the solution to (11) must also satisfy the wave
equation

(I□)V = 0. (13)

The property
∇×∇× = ∇(∇·)−∇2 (14)

is useful in these derivations.
Let us write (11) directly in the matrix form

−∂τ −∂x −∂y −∂z
∂x ∂τ 0 0
∂y 0 ∂τ 0
∂z 0 0 ∂τ

V = 0. (15)

As one can note, the first row of (15) is equivalent to (9),
whereas other rows are equivalent to (8). Due to (7), one can
write (15) in the form

EV = 0 (16)

where

E =


−∂τ −∂x −∂y −∂z
∂x ∂τ −2∂2

τz 2∂2
τy

∂y 2∂2
τz ∂τ −2∂2

τx

∂z −2∂2
τy 2∂2

τx ∂τ

 . (17)

B. Electromagnetic Field

Let us consider Maxwell’s equations in free space without
sources

∇ ·D = 0 (18)

∇×E = −∂tB (19)

∇ ·B = 0 (20)

∇×H = ∂tD (21)

where E and H denote the electric- and magnetic-field
strength, respectively, whilst D and B denote the electric- and
magnetic-flux density, respectively. For our considerations, we
assume the constitutive relations

D = ϵE (22)

B = µH (23)

where ϵ and µ denote the permittivity and permeability of the
electromagnetic medium, respectively.

We can rewrite the system of equations (18)–(21) as follows:

c∇× F = i∂tF (24)

∇ · F = 0. (25)

In (24)–(25), c = 1/
√
µϵ denotes the speed of light in the

considered medium, and F denotes the Riemann–Silberstein
vector [13]

F =
1√
2

(
D√
ϵ
+ i

B
√
µ

)
. (26)

Based on (1), one can write (25) as

k · F = 0. (27)

This means that for the time-varying electromagnetic field,
the vector F is orthogonal to the direction of propagation
represented by the wavevector k. Hence Gauss law (25) is
a constraint to the solution of (24) which represents the
dynamical properties of electromagnetic system.

Taking again into account property (14), one can prove that
the solution to (24)–(25) satisfies the wave equation

(I□)F = 0. (28)

The first half of Maxwell’s equations (24) can be written in
Cartesian coordinates as

∂τF+ (∇ ·Σ)F = 0 (29)

where Σ = [Σx,Σy,Σz] denotes the 3×3 spin-1 counterparts
of the Pauli matrices

Σx =

0 0 0
0 0 −i
0 i 0

Σy =

 0 0 i
0 0 0
−i 0 0

Σz =

0 −i 0
i 0 0
0 0 0

 .

If the vector F+ satisfies (29), i.e.,

∂τF+ + (∇ ·Σ)F+ = 0 (30)

then its complex conjugate vector F∗
+, denoted afterwards as

F−, satisfies
∂τF− − (∇ ·Σ)F− = 0. (31)

The solutions F+ and F− correspond to the left- and right-
handed circularly polarized waves (i.e., waves of opposite
helicities) which satisfy (30) and (31), respectively.

Then, let us construct 4 × 4 matrices which include, as
submatrices, the elements of the vector Σ in the bottom-
right corner and which can be represented by block matrices
consisting of the Pauli matrices and zeros. Additionally, we
require that the obtained matrices should be asymmetrical.
Then, one obtains

γx =


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0



γy =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0


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γz =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 .

These matrices can be written as

γx =

[
σy 0
0 σy

]
γy =

[
0 −iσz

iσz 0

]
γz =

[
0 −iσx

iσx 0

]
.

Let us compose the vector γ = [γx,γy,γz] and write the
equation

∂τΦ+ (∇ · γ)Φ = 0 (32)

where
Φ =

[
0
F

]
. (33)

Equations (32)–(33) are equivalent to Maxwell’s equations
without sources (24)–(25). Let us write (32) directly in the
matrix form

∂τ −i∂x −i∂y −i∂z
i∂x ∂τ −i∂z i∂y
i∂y i∂z ∂τ −i∂x
i∂z −i∂y i∂x ∂τ

[
0
F

]
= 0. (34)

One can note that the equation in the first row of (34) is
the implementation of Gauss law (25), whereas the remaining
equations describe the system dynamics (24). Thus we are able
to combine the dynamics of the electromagnetic system with
the constraint in a single matrix equation (34).

Using (32), (30)–(31) can respectively be written as

MΦ+ = 0 (35)

M∗Φ− = 0 (36)

where M = I∂τ + ∇ · γ is the matrix representation of
Maxwell’s equations, and

Φ+ =

[
0
F+

]
Φ− =

[
0
F−

]
correspond to the left- and right-handed circularly polarized
waves. Such a representation stems from the property γ∗ =
−γ.

IV. FACTORISATION OF WAVE EQUATION

In this section, we demonstrate that the theories of acoustic
and electromagnetic fields can be derived from the wave
equation with constraints, correctly assuming the dimensions
of the solution space as well as taking helicity into account.

A. Acoustic Field
Let us construct the wave equation for the real 4-

dimensional vector V

(I□)V = 0. (37)

One can decompose, i.e., factorize, it as follows:

(I□)V = EEV = E2V = 0. (38)

This means that the Euler equations stem from the wave
equation for the 4-dimensional acoustic vector field (without
field helicity) with real components.

B. Electromagnetic Field

Let us construct the wave equation for the complex 4-
dimensional vector Φ

(I□)Φ = 0. (39)

One can decompose, i.e., factorize, it as follows:

(I□)Φ = MM∗Φ = M∗MΦ = 0. (40)

This means that Maxwell’s equations stem from the wave
equation for the 4-dimensional vector field with complex com-
ponents assuming the existence of field helicity. The vectors
Φ+ and Φ−, corresponding to the left- and right-handed
circularly polarized waves, respectively, are the solutions to
the wave equation (39) and then to Maxwell’s equations (35)–
(36).

There are various similar results, especially those aimed at
writing Maxwell’s equations in the form similar to the Dirac
equation. However, they differ from the presented factoriza-
tion (40). Moses [14] obtained the factorization of the wave
equation but without the property indicated in (40). In [15], a
factorisation analogous to (40) is presented. However, the set
of basis matrices γ includes the identity matrix, hence it does
not actually resemble the Dirac equation.

V. SYSTEMS WITH FEEDBACK LOOP

In this section, we demonstrate that acoustics and electro-
magnetism can be considered continuous-time systems with
feedback loops described by state–space equations of control
engineering. The aim of control engineering is to control pro-
cesses (i.e., dynamical systems described by partial-differential
equations) in order to drive them to a desired state, often in the
optimal way. This always requires understanding the nature
of partial differential equations that govern the process. As
demonstrated in the previous sections, acoustics and electro-
magnetism stem from the same hyperbolic partial differential
equation, i.e., the wave equation (2). Now, we can proceed
further in order to develop a unified approach representing
specific cases of acoustics and electromagnetism. This allows
for finding analytical solutions with using control engineering
methods and for understanding causality, control and stability
of acoustic and electromagnetic systems (i.e., fields).

In our approach, we are concerned with a natural response
of either the acoustic or the electromagnetic system which
results solely from the initial conditions with no other inputs.

A. Acoustic Field

One can write (4)–(5) in the compact form

∂

∂t

[
p
v

]
=

[
0 −κ−1[∇·]

−ρ−1[∇] 0

] [
p
v

]
. (41)

The above form of equations resembles state-space equations
in control engineering. Usually, the acoustic field is considered
in a discrete set of spatial points. Therefore, let us discretize
(41) spatially with the use of Yee’s grid for acoustics [16],
[17], see Fig. 1a. We assume that the pressure locations are
at the nodes in the three-dimensional (3-D) space and the
velocities are located between the nodes. Hence the 3-D cuboid
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Fig. 1. Yee’s grid for (a) acoustic and (b) electromagnetic fields.

V in the Cartesian space is decomposed into smaller cuboid
cells, i.e.,

V = {Vi,j,k ∈ R3 : [xi, xi+1]× [yj , yj+1]× [zk, zk+1]}. (42)

In (42), i = 0, ..., Nx − 1, j = 0, ..., Ny − 1, k = 0, ..., Nz −
1, hence the total number of cells in the considered domain
is equal to NxNyNz , and the volume of cell Vi,j,k is equal
to ∆xi∆yj∆zk (where ∆xi = xi+1 − xi, ∆yj = yj+1 −
yj , ∆zk = zk+1 − zk). Because some field components may
take fixed values due to the boundary conditions, we finally
assume that the components p, vx, vy , vz are sampled in Np,
Nvx, Nvy , Nvz points, respectively. In this way the state-space

matrix equation is obtained for acoustics

ẋac = Aacxac (43)

where

xac = [(p)1, ..., (p)Np
, (vx)1, ..., (vx)Nvx

,

(vy)1, ..., (vy)Nvy
, (vz)1, ..., (vz)Nvz

]T

Aac =

[
0 −κ−1[∇·]vD

−ρ−1[∇]pD 0

]
Nv = Nvx +Nvy +Nvz.

and [∇]pD, [∇·]vD are discrete equivalents of the gradient
and divergence operators for the pressure and velocity fields,
respectively. In other words, the matrix operators [∇]pD and
[∇·]vD of the sizes Nv × Np and Np × Nv , respectively,
approximate the gradient and divergence operators with the
difference quotients of the field values in the considered cell
Vi,j,k and the neighbouring cells [16], [17]. Obviously, the
spatial discretization has to be sufficiently small in order to
approximate (41) based on (43) well, and to assure the stability
of the calculations.

B. Electromagnetic Field

One can write (18)–(21) in the compact form

∂

∂t

[
E
H

]
=

[
0 ϵ−1[∇×]

−µ−1[∇×] 0

] [
E
H

]
. (44)

Again, the above form of equations resembles state-space
equations in control engineering. Because the electromagnetic
field is considered in a discrete set of spatial points, as
previously, we discretize (44) spatially with the use of Yee’s
grid for electromagnetism [16], [17], see Fig. 1b. Hence the 3-
D cuboid V in the Cartesian space is decomposed into smaller
cuboid cells, based on (42). Because some field components
may take fixed values due to the boundary conditions, we
finally assume that the components Ex, Ey , Ez , Hx, Hy ,
Hz are sampled in Nex, Ney , Nez , Nhx, Nhy , Nhz points,
respectively. Hence the following state-space matrix equation
is obtained for electromagnetism

ẋem = Aemxem (45)

where

xem = [(Ex)1, ..., (Ex)Nex
, (Ey)1, ..., (Ey)Ney

,

(Ez)1, ..., (Ez)Nez
, (Hx)1, ..., (Hx)Nhx

,

(Hy)1, ..., (Hy)Nhy
, (Hz)1, ..., (Hz)Nhz

]T

Aem =

[
0 ϵ−1[∇×]HD

−µ−1[∇×]ED 0

]
Ne = Nex +Ney +Nez

Nh = Nhx +Nhy +Nhz

and [∇×]ED, [∇×]HD are discrete equivalents of the curl oper-
ator for the electric and magnetic fields, respectively. In other
words, the matrix operators [∇×]ED and [∇×]HD of the sizes
Nh × Ne and Ne × Nh, respectively, approximate the curl
operator with the difference quotients of the field values in
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x1=B1u1

x2=B2u2

u1=y2

u2=y1

y1=C1x1

y2=C2x2

Fig. 2. System with feedback loop representing acoustics and electromag-
netism.

the considered cell Vi,j,k and the neighbouring cells [16], [17].
Again, the spatial discretization has to be sufficiently small in
order to approximate (44) based on (45) well, and to assure
the stability of the calculations.

C. Unified Approach to Acoustic and Electromagnetic Fields

In terms of control engineering, (43) and (45) are state-
space differential equations which can be decomposed further
into the system with a feedback loop, see Fig. 2.

In acoustics, the matrix and vector symbols on the scheme
of the system with a feedback loop denote

x1 = p

x2 = v

B1 = −κ−1I

B2 = −ρ−1I

C1 = [∇]pD

C2 = [∇·]vD.

In electromagnetism, the matrix and vector symbols on the
scheme of the system with a feedback loop denote

x1 = E

x2 = H

B1 = −ϵ−1I

B2 = −µ−1I

C1 = [∇×]ED

C2 = [∇×]HD .

The proposed representation of acoustic and electromagnetic
systems can be further discretized in the time domain for the
purpose of numerical simulations. This approach is positively
verified in the case of electromagnetic simulations and pre-
sented in [18].

VI. PROPERTIES

As demonstrated, both acoustics and electromagnetism stem
from the wave equation (2) which describes the causal process
in terms of control engineering being the wave propagating
with a constant speed. Hence the acoustic and electromagnetic
fields share the same properties and solutions:

• The wave equation ensures the conservation of energy.
• The wave equation ensures the causality of solutions.
• The wavefront propagates with a constant speed.
• Analytical solutions to the state-space equations (43) and

(45) can be unified and formulated as

x = x(t) = eA(t−t0)x0 (46)

where A, x are either Aac, xac or Aem, xem for
acoustics or electromagnetism, respectively, x0 = x(t0)
is the initial condition for the state vector, and eAt is the
matrix exponential [19], [20].

• The solutions to the wave-propagation problems in acous-
tics and electromagnetism are unique due to (46).

VII. CONCLUSION

Similarities and differences between acoustic and electro-
magnetic field theories remain an open research problem.
Therefore, we develop a unified approach to acoustics and
electromagnetism which employs control engineering methods
for their analysis and modelling. Both theories are derived
from the wave equation representing massless fields, and then
represented as a system with a feedback loop in control en-
gineering. This approach enables further investigations of the
properties for acoustics and electromagnetism simultaneously.
Our results indicate several intriguing directions for future
research that may shed light on the issues related to each
theory. For instance, the existence of spin in acoustics has
recently been discovered and our unified approach does not
consider this phenomena. The conservation of momentum is
not discussed because, in electromagnetism, there exist two
momentum definitions of Minkowski and Abraham which
reduce to the same definition only for a vacuum. Furthermore,
depending upon the performed experiment, one of the two
definitions of the electromagnetic wave momentum agrees
with the experimental results.
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