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Assessing models for estimation ensemble width 1n
binaural music recordings:
robustness to reverberation and noise

Pawetl Antoniuk, and Stawomir Krzysztof Zieliriski

Abstract—Binaural technology has been known for decades.
However, advancements in software and consumer electronics
have facilitated its widespread adoption, primarily in the post-
millennium era. As binaural sound becomes more popular,
the demand for spatial analysis tools is expected to grow. This
paper evaluates three methods for assessing ensemble width in
binaural music recordings: (1) an auditory model with decision
trees, (2) a neural network model, and (3) a spatial spectrogram
approach. Under ideal, anechoic conditions, the auditory model
performed best with a mean absolute error (MAE) of 6.59°
(£0.11°), followed by the neural network (8.57° +0.19°) and the
technique based on spatial spectrograms (13.54° +0.92°). Extend-
ing previous work, this study analyzes the methods’ robustness to
reverberation and noise. Noise resilience tests indicate moderate
resistance, with the auditory model yielding an MAE of 12.34° at
a 10 dB signal-to-noise ratio. However, reverberation tests show
a significant drop in accuracy even at an RT60 reverberation time
of 0.1 seconds. The findings may contribute to the improvement
of models for estimating ensemble width in binaural recordings of
music, which could influence the development of binaural sound
analysis tools, with potential applications in audio production.

Keywords—binaural audio; ensemble width; audio perception;
localization; reverberation; machine learning

I. INTRODUCTION

INAURAL audio has been a cornerstone of immersive

headphone listening for decades [1]. Recently, with its
integration into virtual and augmented reality, its popularity
has surged significantly [2]. By exploiting the human auditory
system’s perception of sound in natural environments, binaural
audio plays a crucial role in creating immersive audio-visual
experiences for entertainment applications. Owing to its ability
to allow listeners to naturally localize audio sources in direct-
to-ear playback, binaural audio has also found successful
applications in fields such as avionics [3] and hearing aid de-
vices [4]. The utility of binaural hearing for these applications
is illustrated by the ‘cocktail party effect, which highlights
the human auditory system’s ability to focus on foreground
sounds while suppressing background noise [5].
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The increasing availability of binaural audio applications
highlights the need for advanced spatial analysis methods.
These methods could facilitate automated, objective assess-
ments of binaural recordings by analyzing spatial character-
istics, such as the position and size of sound sources. Such
analysis could support the development of tools to classify
recordings based on these features and help assess the fidelity
of binaural audio systems through spatial characteristics.

The aim of this study is to compare methods for estimating
one of the most prominent spatial features: ensemble width.
This feature is based on the observation that humans tend
to localize groups of sound sources (ensembles) rather than
individual sources [6], [7]. The approach draws from Rumsey’s
scene-based paradigm [7], which describes ensemble width
as the ‘overall width of a defined group of sources.” In
immersive audio, this feature is particularly important, as
wider ensembles enhance the perception of immersion by
broadening the spatial distribution of sound sources, creating
a more enveloping experience [8]. Notably, while one of
the presented methods also estimates ensemble location (see
Section VI), this parameter will be omitted from the study
because ensemble width is the only parameter comparable
across all three methods.

This paper provides a comparative summary of three en-
semble width estimation methods. The first two methods were
introduced by Antoniuk et al., where the first one was based
auditory model and gradient-boosted decision trees [9] and
the second one was based on convolutional neural network
with very limited feature engineering [10]. The third method
employed spatial spectrograms. It was introduced by Arthi and
Sreenivas [!1] and later refined by Antoniuk and Zieliniski
[12]. The primary contribution of this study is an evaluation
of these methods’ robustness under more ecologically valid
conditions, focusing on their resilience to noise and reverber-
ation. This evaluation offers insights into their applicability in
real-world scenarios.

Deep learning paradigm has become the dominant technique
in modern machine learning research and applications. It often
shows superiority over traditional feature-engineering-based
techniques thanks to its ability to extract unknown features
(and thus knowledge) from large sets of data. However, deep
learning methods typically require datasets with larger sample
sizes and greater variability. This is necessary to effectively
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‘discover’ features needed for accurate prediction [13]. As
a result, these models face an increased risk of overfitting when
such data requirements are not met. In contrast, traditional
machine learning techniques generally possess lower ‘capac-
ity’ and rely more heavily on feature engineering, making
them more robust against overfitting. This robustness stems
from the feature engineering process, which transforms data
into more informative representations by incorporating domain
knowledge already discovered by researchers.

Feature engineering also mitigates the risk of spurious
correlations—instances where models learn patterns from in-
cidental correlations in training data that fail to generalize
to real-world scenarios [14]. A compelling example of this
phenomenon emerges from computer vision research, where
Ribeiro et al. demonstrated a neural network that misclas-
sified ‘husky’ dogs as wolves based primarily on the pres-
ence of snow in the background, rather than the distinctive
morphological features of the animals themselves [15]. This
type of failure, where the model attends to contextual rather
than intrinsic features, can be substantially reduced through
thoughtful feature engineering that explicitly encodes domain-
relevant characteristics.

Given that none of the models in this study were trained on
data containing noise and reverberation, we hypothesize that
the first model—based on an auditory model combined with
gradient-boosted decision trees—will demonstrate the best
overall performance and the greatest robustness to noise and
reverberation. Conversely, we expect the second model, which
utilizes a convolutional neural network architecture, to exhibit
greater sensitivity to these adverse conditions. The third model,
although leveraging an innovative and promising algorithmic
spatial-spectrogram technique, will likely yield the least favor-
able results, consistent with its relatively low accuracy reported
in previous research [12].

II. RELATED STUDIES

Estimating ensemble width represents a unique approach
within binaural audio literature, which more commonly fo-
cuses on identifying the locations of individual sound sources
[16]-[20]. While analyzing individual sound sources might
seem more useful because it yields more precise informa-
tion, such methods have limitations that hinder their prac-
tical application. These include a limited or predetermined
number of sound sources and a predetermined type of audio
signal—typically speech [16], [17], [19]-[21]. The ensemble
approach serves as a workaround for these limitations by
providing useful spatial information without such constraints.

Traditional audio localization methods often rely on arrays
with more than two microphones to improve precision through
additional channel information [22]-[24]. While adding mi-
crophones can enhance precision through additional channel
information, they do not utilize binaural hearing principles,
rendering them ineffective for binaural recording assessment.
By contrast, as Yang et al. demonstrate, systems using only
two microphones can achieve superior localization accuracy
by integrating binaural cues [21].

The majority of studies on sound source localization in
binaural recordings concentrate on the localization of indi-
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vidual sources in isolation, typically referred to as Direction
of Arrival (DoA) [16]-[20]. Although this granular approach
provides detailed information, the existing methods require
a priori knowledge of the number of sources, usually limiting
analysis to between one and six sources. These constraints
present significant challenges in real-life scenarios, where such
advance knowledge is unavailable. Moreover, these methods
have been developed primarily for homogeneous signals, espe-
cially speech, making them impractical for real-world binaural
recordings where signals are often heterogeneous.

In a series of recent studies, Arthi and Sreenivas [11],
Antoniuk at al. [9], [10], [12], introduced an alternative
approach, treating sound sources as ensembles that can be
characterized by their location and width, as illustrated in
Figure 1. This method overcomes the limitations of traditional
DoA approaches by focusing on ensemble characteristics
rather than precise individual source locations. The approach
eliminates the need for a prior knowledge of the number of
sources and has been validated across diverse musical content,
including both instrumental and vocal recordings [9], [10],

[12].

Fig. 1. An ensemble example comprising nine point-like sound sources
shown as dots. The ensemble’s width is denoted by w, while ¢ indicates
the counterclockwise position of the ensemble’s center.

This approach aligns with the second level of Rumsey’s
spatial audio scene-based framework [7], which defines three
distinct levels: (1) single source, (2) scene, and (3) environ-
ment. Scene-level analysis, as described by Rumsey, better
matches the human auditory system’s natural source-grouping
mechanisms. The approach mirrors real-world musical perfor-
mance configurations where instruments and vocals occupy
adjacent spatial positions. Notably, the methods incorporated
in this study specifically measure physical ensemble width
rather than apparent ensemble width—two related but distinct
parameters whose relationship warrants further investigation.

III. METHODOLOGY

This study compares three recent methods for ensemble
width estimation:

1) a method based on an auditory model and decision trees
(Section V),

2) a method using deep neural network (Section VI),

3) a method leveraging spatial spectrograms (Section VII).
Initially, these methods were evaluated using anechoic record-
ings without noise. To test their performance in more ecolog-
ical conditions, the methods were also tested using signals
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with predefined signal-to-noise ratios and simulated rooms
with different reverberation characteristics (see Section VIII).

The objective of the methods incorporated in this study is
to estimate the ensemble width (w) as illustrated in Figure 1.
An ensemble is defined as a group of audio point sources
positioned equidistantly around the listener on a circular
virtual acoustic scene. The location of source 7 is denoted
by 6;. The ensemble width (w) represents the angular dis-
tance between the two extreme point sources (max;(6;) —
min,(#;)), while the ensemble location, represented by ¢,
indicates the midpoint angle between these extreme sources
((max;(6;) + min;(#;))/2). In this study, source locations
are restricted to the frontal hemisphere, specifically 6 &
[—45°,45°] and w € [0°,90°]. It should be noted that although
humans have some limited abilities to localize sound sources
in the vertical plane, all sources in this study are positioned
on the horizontal plane at ear level. These constraints reflect
most real-world recording scenarios.

IV. DATASET PREPARATION

The experimental evaluation was conducted using a corpus
of 23,040 synthesized binaural music recordings. The source
material comprised 192 publicly-available multi-track record-
ings spanning diverse musical genres including rock, jazz, pop,
and classical music. The number of tracks ranged from 5 to
62, with a median of 9.

To ensure robust evaluation across diverse Head-Related
Transfer Function (HRTF) characteristics, the synthesis pro-
cess incorporated 30 HRTF databases (see Table ?? in Ap-
pendix for a detailed list). These databases were evenly divided
into measurements from human subjects (15 databases) and
measurements from artificial heads (15 databases), including
industry-standard devices such as the Neumann KU 100 and
KEMAR DB-4004. Distances between the head and loud-
speaker during HRTF measurements ranged from 0.9 to 1.95
meters, with a median of 1.2 meters.

For each combination of multi-track recording and HRTF
database, four unique binaural versions were synthesized by
randomly varying two ensemble parameters: location (¢) and
width (w). Within these spatial constraints, individual tracks
in each recording were randomly assigned to specific source
positions (#;). Prior to synthesis, all tracks were loudness-
normalized to -23 LKFS in accordance with ITU-R BS.1770-
5 recommendations [25], ensuring consistent relative levels
across the corpus.

Multiple HRTFs and multi-track recordings were selected
to create diverse binaural recordings, enhancing the model’s
generalisability. This diversity is crucial for HRTFs since
the specific HRTF used in real-world binaural synthesis is
often unknown, making a single-HRTF model impractical for
general use. Additionally, the large dataset provides essential
training material for all machine learning models used in this
study, with particular importance for the deep neural networks,
as their performance benefits significantly from extensive data.

The binaural recordings were obtained using a binauraliza-
tion procedure, implemented by convolving multi-track signals
with head-related impulse responses from a specified HRTF

database. The resulting binaural output signal, y.[n], for each
stereo channel c (left or right) at sample n is given by
the following equation:

N K-1
yeln) = 37 37 wilk] x hog,[n — H, (1)

i=1 k=0
where x; denotes the signal of an individual sound source %
from the input music recording, and h. g, represents the head-
related impulse response for channel ¢ at location 6; of source
track 7. Additionally, IV denotes the number of track sources in
the input multi-track recording, and K represents the number

of samples in the recording.

The synthesized recordings were truncated to 7 seconds
following binauralization, with sine-squared fade-in and fade-
out effects of 0.01 seconds applied. Subsequently, the signals
were RMS-normalized, scaled by a factor of 0.9, DC-offset
corrected, and stored as uncompressed files with a sample rate
of 48 kHz and 32-bit resolution.

The binaural recordings were randomly split into training
and test sets with a 2:1 ratio. To prevent information ‘leak-
age’, this split was made in such a way that no multi-track
recordings used for training were used for testing. To reduce
the complexity of the experiment, the HRTFs were shared
between both sets, which could be seen as a limitation of this
study. However, it is known that the human auditory system
operates with HRTFs that undergo only minimal changes
throughout life, mainly during infancy [26]. Therefore, this
limitation could be considered consistent with how the human
auditory system behaves in real life.

The binauralization and split procedures implemented in
this study are consistent with those originally described in the
reference models [9], [10], [12], with minor modifications.
The primary modification pertains to the spatial-spectrogram-
based model, which utilized a single HRTF database and em-
ployed a reduced parameter set. This modification had minimal
impact on the results, as the method employs a deterministic
approach rather than machine learning techniques, requiring
the training set only for the optimization of two parameters.

V. AUDITORY-MODEL-BASED METHOD

As shown in Figure 2, the auditory-model-based method for
ensemble width estimation consists of two main components:
a binaural auditory model that extracts features from the input
signals, followed by a gradient-boosted decision tree regressor
that predicts the ensemble width [9]. The auditory model
processes the binaural signals through a gammatone filterbank
and extracts standard binaural cues, including interaural time
differences (ITD), interaural level differences (ILD), and in-
teraural cross-correlation (IACC).

The auditory model is based on the work of Sgndergaard
and Majdak [27], enhanced by May et al. [19], and fur-
ther refined by Decorsiere and May [28] within Two!Ears
Project [29]. The model consists of a gammatone filterbank
with 64 frequency channels spanning from 100 Hz to 16 kHz.
For each frequency channel, the inner hair-cell envelopes are
extracted through half-wave rectification followed by low-
pass filtering using a second-order Butterworth filter with
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Fig. 2. A flowchart of the auditory-model-based method [9]

a 1 kHz cutoff frequency. This simulates the loss of phase-
locking in the auditory nerve at higher frequencies. Rate maps,
representing auditory nerve firing rates, are then calculated by
smoothing the inner hair-cell signal with a leaky integrator
(time constant of 8§ ms) and averaging within 20 ms Hann-
windowed frames with 10 ms step size. Finally, the rate maps
were used to estimate the binaural cues.

The features extracted in the previous component are aggre-
gated across time-frames by computing their mean values and
standard deviations, resulting in a total of 384 feature vectors
(64 frequency channels x 3 types of cues X 2 statistics).
These aggregated features are then used as input to the re-
gressor, whose objective is to estimate the ensemble width
of the binaural audio signal. The regressor employs gradient-
boosted decision trees implemented with LightGBM, known
for its computational efficiency and accuracy [30]. The model’s
hyperparameters—including the number of leaves, tree depth,
and learning rate—were optimized using grid search proce-
dure. The final training was conducted using validation set
and early-stopping technique based on mean absolute error.
For further details, see [9].

VI. NEURAL-NETWORK-BASED METHOD

While the auditory-model-based method attempts to mimic
human hearing mechanisms, the neural network approach
takes advantage of Convolutional Neural Networks (CNNs)
and their ability to automatically learn relevant features
from spectral representations of audio signals. In contrast
to the auditory-model-based approach, the neural network
method uses a basic feature extraction technique based on
magnitude spectrograms [10].

A Hamming window of 40 ms with an overlap of 20 ms
is applied, resulting in 349 time frames extracted for each
binaural input signal. For each time frame, the Fast Fourier
Transform (FFT) is applied. The magnitudes of its output are
aggregated into 64 linearly spaced frequency bands ranging
from 100 Hz to 16 kHz, effectively creating a spectrogram
with dimensions 349 x 64. This process is performed sep-
arately for the left and right channels, producing a pair of
spectrograms that are then used in the neural network to
simultaneously estimate two ensemble parameters: width and
location. However, only ensemble width is considered in this
study.

In the next step, the spectrograms are input into a two-
dimensional CNN model to estimate the ensemble width,
effectively treating the spectrograms as visual data. The net-
work’s topology is based on the AlexNet model introduced
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by Krizhevsky et al. [31]. The input layer is followed by five
convolutional units, each consisting of a ReLU-activated 2D
convolution layer with a 2 x 2 filter size, followed by a max
pooling layer of size 2 x 3 or 2 x 2. The number of convolu-
tional filters in each layer is 32, 64, 128, and 256, respectively.
Following these layers, a global average pooling layer is
applied to reduce overfitting [32]. The next stage consists of
four fully connected layers with ReLU activation, reducing
the activation map’s dimensions from 256 to 6. Finally, two
parallel fully connected layers with linear activation are used
to predict the ensemble parameters; one outputs the ensemble
width, and the other outputs the ensemble location.

In total, this topology resulted in a model with 216,562
learning parameters. The model was trained using a Monte
Carlo cross-validation procedure with 10 repetitions and
an early-stopping validation subset. For further details,
see [10].

VII. SPATIAL-SPECTROGRAM-BASED METHOD

The spatial-spectrogram-based method, originally intro-
duced by Arthi and Sreenivas [!1], employs a phase-only
spatial correlation (POSC) function to estimate ensemble
width, treating the binaural signals primarily in the frequency
domain. The method consists of three main steps: calculation
of generalized cross-correlation functions, generation of spatial
spectrograms, and ensemble width estimation.

First, two generalized cross-correlation functions with phase
transform (GCC-PHAT) are calculated:

7, Xr(w) x X[ (w)

A0 X @) < X @) @
) T ) <) )

[HY (w) x H*(w)|’

where p(k) denotes the GCC-PHAT function for the k-th
sample of the binaural signal; py (k) represents the GCC-PHAT
function for the k-th sample of the HRIR; X;(w) and X, (w)
are Fourier transforms of the left and right channel signals,
respectively; H, f and H? are Fourier transforms of the left
and right channels, respectively, for the HRIR at azimuth
#; and * denotes complex conjugate. The phase-only spatial
correlation (POSC) function C,(#) is then calculated as:

Cp(0) 2> p(k) x pa(k) 4)

To account for the observation that sources closer to 0°
have a greater impact on C,(f) than more distant sources,
a correction is applied:

—_~—

Cp(0) = Cp(0) x (1 + bu), )

where « is a correction weight determined through optimiza-
tion.

The ensemble width is estimated using a three-step algo-
rithm:

—~—

1) Find max C,(6) considering all frames in the binaural
excerpt.
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2) Find the minimal (f,) and maximal (6,) roots of:

P —_~—

Cy(8) =t x max C,(6), (6)

where ), € [0,1] is a threshold coefficient.
3) Calculate ensemble width as w = 8, — 6, averaged over
all frames.

The method requires optimization of only two parameters:
the correction weight u and threshold coefficient ¢;. These
parameters are determined using a grid search procedure
with v € [0,2] and t;, € [0,1]. Unlike the previous two
methods, this approach is deterministic and does not require
extensive training data, making it computationally efficient but
potentially less accurate. For further details, see [12].

VIII. ENVIRONMENTAL SIMULATION

To enhance ecological validity, the original recording syn-
thesis procedure was modified to enable evaluation under
two additional scenarios: recordings with additive noise and
recordings in reverberant conditions. In the first scenario, nine
test sets were prepared with different Signal-to-Noise Ratios
(SNR) ranging from -10 to 60 dB, specifically at -10, -3, 0,
10, 20, 30, 40, 50, and 60 dB. This was achieved by adding
decorrelated white noise signals to the binaural recordings
originally used in the testing procedure. While the upper range
of these SNR values (40-60 dB) approaches imperceptible
noise levels for human listeners, this extended testing range
was included to test whether models not trained on noisy
data would show degraded performance with even minimal
signal interference. This wide testing range proved necessary
only for the spatial-spectrogram-based model, which showed
significant sensitivity to noise levels that would be barely
perceptible to human listeners.

In the reverberation scenario, six different rooms were sim-
ulated with reverberation times ranging from 0.1 to 3 s, mea-
sured using the RT60 metric. The simulations were performed
with MCRoomSim—a multichannel ‘shoebox’ room acoustic
simulator based on image source and diffuse rain algorithms
implemented as a MATLAB package [33]. This simulator
enabled the creation of reverberation simulations used to
generate Binaural Room Impulse Responses (BRIRs) based on
provided HRTFs, with the number of virtual speakers match-
ing the spatial density of measurement points in the HRTF
database. The virtual listener, modeled as a head with two
receivers representing ears, was positioned in the center of
the room. The receivers were configured to filter the input
signal directionally using head-related impulse responses from
the given HRTF database. The distance between each virtual
impulse source and the head center matched the measurement
radius of the given HRTF database, ranging from 0.9 to
1.95 m. The room reverberation characteristics were controlled
by configuring the following parameters: room width and
depth (2-5 m), height (2.5-5 m), wall absorption coefficients
(0.05-0.95), and wall scattering coefficients (0.01-0.8).

IX. RESULTS

Under baseline anechoic, noise-free conditions, the method
based on an auditory model (1) achieved the highest accuracy,

with a Mean Absolute Error (MAE) of 6.59° (£0.11°). This
was followed by the neural network-based method (2) at
8.57° (£0.19°) and the spatial-spectrogram-based method (3)
at 13.54° (£0.92°). All differences between the methods
were statistically significant (p < 0.01). Auditory-model-based
(1) and neural-network-based methods (2) exhibited varying
degrees of noise resilience (Figure 3). The neural-network-
based method (2) maintained reasonable performance down to
SNR = —3dB, while the method incorporating an auditory
model and decision trees (1) required SNR > 10 dB for com-
parable results. The spatial-spectrogram-based method (3) was
the most sensitive to noise, requiring SNR > 60 dB to operate
reliably. These differences were statistically significant, with
p < 0.01.

80°
5 —=&— (1) Auditory Model
L or —&— (2) Neural Network
g 60° L (3) Spatial Spectrogram
L Baseline MAE
a) o
5 50°
2
Q 40° |
<
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9]
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SNR in Test Data [dB]
Fig. 3. Robustness to noise of the tested methods illustrating the mean

absolute error (MAE) at varying signal-to-noise ratios (SNR). Error bars
denote standard deviations. The baseline constant predictor (MAE = 22.5°) is
included for comparison.

Under reverberant conditions, all of the tested methods
revealed significant limitations in performance (Figure 4).
In particular, the auditory-model-based method demonstrated
notable difficulties even at minimal investigated reverberation
times (RT60 = 0.1s). While all the methods outperformed
the random baseline MAE at RT60 = 0.1s (p < 0.01), they
demonstrated notable limitations. The primary cause seems to
stem from their exclusive training on anechoic signals, leaving
them ill-suited for the added temporal and spectral complexity
of room reflections.

X. CONCLUSION

This study summarizes and compares three approaches to
ensemble width estimation in binaural recordings of music.
The auditory-system-based method demonstrated superior per-
formance in the baseline test, with an MAE of 6.59° £ 0.11°.
This suggests that combining auditory modeling expertise with
a traditional feature-based machine learning algorithm can be
more effective than relying solely on deep learning techniques
in this context.

Auditory-model-based (1) and neural-network-based (2)
methods demonstrated a moderate robustness to noise, down
to SNR = 10dB and SNR = —3dB, respectively. However
the performance of all the tested techniques exposed signif-
icant limitations under reverberant conditions, showing that
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Fig. 4. Robustness to reverberation across tested models, shown as mean
absolute error (MAE) for simulated rooms with varying RT60 values. Error
bars denote standard deviations. The baseline constant predictor (MAE =
22.5°) is included for comparison.

these methods are not yet ready for real-world applications.
This limitation is likely caused by the fact that these models
were trained exclusively on anechoic signals, suggesting a di-
rection for future research: developing models that incorporate
realistic room acoustics into the training process.

The findings only partially confirm the hypothesis that
the auditory model-based approach outperforms the deep
learning neural-network method. This holds true only for
baseline results without interference. Surprisingly, the neural-
network-based model outperformed the auditory model at
SNR levels below 20 dB, demonstrating unexpected resilience
to noise. This suggests that the neural network successfully
extracted robust features from the data, effectively mitigating
spurious correlations despite the absence of explicit human-
controlled feature engineering. The spatial-spectrogram-based
method performed as hypothesized, showing the least robust-
ness to both noise and reverberation.

Addressing the limitations above could lead to more robust
binaural audio quality-assessment tools suitable for practical
applications in audio production. Additionally, the varying
performance characteristics observed across different acoustic
conditions suggest potential benefits in hybrid approaches
combining strengths of multiple models.
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