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disappearing polymer layer RR-P3HT for

the detection of DMMP based on
diffusion equations
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Abstract—This document describes numerical analyses
performed on a SAW gas sensor in a non-steady state. Qur work
involved predicting SAW velocity changes in relation to the
surface electrical conductivity of the sensing layer. We found that
the conductivity of the rough sensing layer (above a piezoelectric
waveguide or quartz) is determined by the diffused gas molecule
concentration profile inside it. Specifically, we present numerical
results for the DMMP gas concentration profile (CAS Number
756-79-6) within an (RR)-P3HT layer during the non-steady state
recovery step. The core of these investigations was to understand
thin film interaction with target gases in a SAW sensor
configuration, using the diffusion equation for polymers. The
outcomes of these numerical analyses provide valuable insights
for selecting sensor design conditions, including the sensor layer's
morphology, thickness, operating temperature, and type. The
numerical results, generated using Python code, are then
elaborated upon and examined.
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1. INTRODUCTION

HE main goal of this research was to understand how thin

films interact with target gases in a SAW sensor setup.
We based our work on a simple reaction-diffusion equation
[1], which is key to understanding things like heat or mass
movement in porous materials. This paper brings together
acoustoelectric theory (specifically Ingebrigtsen's formula) and
looks at how gas diffusion concentration profiles change over
time. It also predicts how a thin RR-P3HT layer [2] affects
SAW wave velocity during recovery in an acoustic waveguide.
When gas molecules diffuse into the sensor layer, their
physical properties, especially electrical conductivity, change.
This change then impacts the boundary conditions for wave
propagation, leading to shifts in both wave attenuation and
propagation velocity. SAW sensors can show two effects:
electrical (acoustoelectric) and mass. Our paper focuses only
on the electrical effect, as it's vital for sensors with a
conductive layer. We showed how the DMMP gas
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concentration  profile behaves wunder non-steady-state
conditions during recovery (see Fig. 1), presenting just the
final equation that describes these time-dependent DMMP
profiles.
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Fig. 1. Focusing on DMMP detection, this covers the gas diffusion dynamics
occurring within a thin RR-P3HT layer gas sensor during its response and
subsequent recovery steps

The primary goal of this investigation was to study the
interaction of thin films with target gases in a SAW sensor
configuration, based on a simple reaction-diffusion equation
[1]. Diffusion equations offer the theoretical framework for
analyzing physical phenomena such as heat or mass transport
within porous or rough substrates. This paper summarizes the
acoustoelectric theory, specifically Ingebrigtsen's formula, the
dynamics of gas diffusion concentration profiles, and predicts
the influence of a thin polymer sensor layer [27], [30] on SAW
wave velocity in an acoustic waveguide (in this case, quartz
[2]) during recovery steps [3]-[6].

Target gas molecules, like DMMP, diffuse from the outer
surface into the porous or rough sensing layers. The diffusion
of these gas molecules into the sensor layer alters its physical
properties, particularly its electrical conductivity. This change
in conductivity modifies the boundary conditions for wave
propagation. Consequently, the attenuation of the SAW also
changes its propagation velocity. In SAW sensors, both
electrical (acoustoelectric) and mass effects can occur. This
paper focuses exclusively on the electrical effect, which is
significant in SAW sensors equipped with a conducting sensor
layer. We analyzed the behavior of the DMMP gas
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concentration profile [21] under non-steady-state conditions
during recovery steps. The paper presents the final equation
describing time-dependent concentration profiles using the
recovery step method.

Changes in the electrical properties of sensor layers are
dependent on the concentration of gas molecules in the
volume, as well as the thickness, temperature, size of the gas
molecules, layer morphology, and porosity of the sensing
layer. We conducted a numerical analysis using a custom-
developed Python program to evaluate the impact of these
parameters on the sensor response during the recovery stage.
The results obtained are crucial for the proper construction of a
SAW sensor. This analysis is achievable by building upon a
developed analytical model of a SAW sensor, supported by gas
diffusion dynamics equations for thin film polymers [7].

SAW gas sensor model and the impact of gas diffusion on the
acoustoelectric effect.
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Fig. 2. Measuring system (incandescent lighting) - LED lighting [2], [8],
[22]

The entry of gas particles into the sensor layer via diffusion
leads to the formation of a distinct concentration distribution
profile of these particles within the layer's depth. This gas
diffusion phenomenon is fundamentally important for porous
or rough layers that possess an extensive surface area. Such
layers are deliberately created through specialized
technological processes. It's noteworthy that high porosity or
roughness directly contributes to a high sensitivity to gas
exposure [4]-[6].

For optimal sensor design [20], developing an analytical
model of the SAW sensor is essential. While initial models
were stationary (steady-state), the inclusion of time
dependencies has enabled dynamic characteristic studies of the
SAW gas sensor [9]-[11].

In a SAW (Surface Acoustic Wave) sensor, the active
polymer sensor layer is integrated onto a piezoelectric
waveguide, which serves as the core measuring system (Fig.
2). In these sensors, the surrounding gas significantly affects
the electrical conductivity (known as the acoustoelectric
phenomenon) of the sensor layer. This effect becomes
particularly pronounced when the layer exhibits porosity or
roughness. Knudsen diffusion [3]-[6], [9]-[11] can play a vital
role, especially since pore diameters typically range from 1-2
nm to 100 nm in radius [19], [24]. This type of diffusion is
particularly crucial for sensor applications. The profiles of
concentration are influenced by the gas molecules present in
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the sensor layer, as well as the ratio between the constant
reaction rate (kp) and the diffusion coefficient (Dk). As a
kinetic ~ phenomenon,  diffusion is  time-dependent.
Consequently, the distribution profile of gas molecules within
the layer changes with the passage of time, both during the
initial response and the subsequent recovery steps. Analyzing
this time-dependent phenomenon enables the evaluation of the
sensor's regeneration capability over time.

The concentration of gas molecules within the layer is
mathematically expressed as a function of time (t) and depth
(y) within this resistive layer. The methodology employing
Fourier transforms, as presented by N. Matsunagi, G. Sakai, K.
Shimanoe, and N. Yamazone [1], has been utilized.
Specifically, the concentration C(y,f) during the recovery step
can be described by equations 1, 2, 3, and 4 [1], [12], [16].
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where o = nANE Vl)K, these terms refer to: the
" 2L
concentration S at the top surface of the sensor layer; n,

which denotes the number of iterations; and L, representing
the thickness of the semiconducting sensor layer.

To resolve formula eq. 1 we must have solution of the
homogeneous differential equation (5)—1 step.

ov(x,t) D *v(x,1)

ot ox*

%)
vir. ) = 3 Tu(0)sin %x.

(©)

Where
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and first, second term vanishes, third term

where ™ =2m-1
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Fig. 4. We present the actual (a) and equivalent (b) models that are relevant
during the recovery step [1],[12].

In the event that the target gas is suddenly switched off (Fig.
1), the system's initial state is defined by a concentration
Ca(x,0), along with the boundary conditions Ca(0,t)=Ca s and
Ca(2L,H)=0 [1],[12]. The aforementioned formula provides the
means to analyze the evolving concentration-time profile of
gas molecule distribution.

A steady-state numerical analysis (NNA) of the
acoustoelectric interaction in the sensing layer

Acousto-electric effect [23], [29] depends from the profile
distribution in the layer, ie. from the distance particles of
gas from surface acoustic waveguide.

To determine response sensor common impedance was
designated. By incorporating impedance, which holds data on
the gas molecule concentration profile in the layer, into the
Ingebrigtsen formula [14, 15], we can effectively describe the
relative change in surface acoustic wave (SAW) velocity in
both steady-state and transient modes. The analytical
expressions lucidly define the SAW sensor model (Fig. 5).
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This model then formed the foundation for numerical analyses
of the sensor's response. The findings from these numerical
analyses are presented in the following section.
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Fig. 5. Schematic diagram of the SAW sensor model

To conduct a numerical analysis of the SAW gas sensor,
we utilized its established analytical model [25, 26]. For the
sensor's layer, we made two key assumptions: first, that it
consists of a uniform stack of infinitesimally thin sheets with a
variable concentration of gas molecules (Fig. 5); and second,
that this variable concentration impacts the electric
conductance [10].
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kg — Boltzman constant, E, — band gap energy, & and &, are
respectively, denoted are the dielectric permittivity of the
vacuum and the piezoelectric substrate, respectively; the
superscript 7 signifies a constant stress condition. Functions
f(21) and g(22) in expression (20) are obtained by
transforming the individual sublayers on the surface of the
sensor waveguide (Fig. 15), and their form is given by:
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Utilizing this solution within the analytical model of the
SAW sensor [4]-[7], [9]-[11], [17] enables the analysis of its
dynamic recovery response. The temporal and spatial
distribution of gas molecules in the sensor layer is governed by
parameters including the reaction rate (here, photodegradation,
kp), the diffusion constant (Dxk), time, and temperature. The
precision of numerical calculations directly correlates with the
number of iterations (n), highlighting the clear dependence of
concentration profiles on diffusion parameters. Our results,
derived using various diffusion constants (Dk), demonstrate
convergence when compared with studies by Matsunaga and
Sakai and others [1], [12]. Figure 4 illustrates the gas profile
under specific conditions: n=10 iterations, t=10 ms,1 s,10s,
reaction rates kp=10%s"! and B=10%"'!, and a Knudsen’s
diffusion constant Dxk=10'> nm?s™!. We found that increasing
iterations enhances method accuracy. Our analysis, consistent
with [1], [12], further indicates that non-stationary state
analysis during recovery time is critically important for the
time range of t=1072 to 10 seconds (Fig. 6).
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Fig. 6. Gas concentration profiles as a function of terations n=10, at Cs=1000
ppm, =10 ms, 1s, 10s, kp=10%s"!, Bs=v=10°ms™ [13], Dx=10">nm’s™!

Analyzing the acoustoelectric interaction in the sensing
layer numerically during the recovery phase

This problem was numerically analyzed by assuming a
constant concentration of gas molecules at the sensor layer's
surface and in its surroundings. Relative wave velocity
changes were determined numerically, taking into account the
gas molecule concentration on the surface (Cas), mean
roughness, layer thickness (L), and temperature (T) [28]. We
performed a non-steady state analysis, varying time from
107 sec to 107'? sec. This was predicated on the assumption
that the gas molecule concentration profile in the sensor layer
reaches steady state after 10—6 sec. The recovery state
analysis, presented in Figures 7-10, allows for observation of

temporal changes in the sensor's response. The response of the
polymer (RR)-P3HT to DMMP during recovery was examined
based on gas concentration (Fig. 7), roughness (Fig. 8), layer
thickness (Fig. 9), and temperature [18] (Fig. 10).
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Results from Experiments

The sensor's response fundamentally depends on adsorption,
diffusion, and desorption processes. These processes are
significantly impacted by temperature, gas molecule
concentration, and the inherent properties of the sensor layer,
including its thickness and roughness. In practical applications,
measurements are normalized to facilitate comparison between
different sensors. The time-dependent response characteristics
provide crucial information about the sensor layer's properties,
allowing for validation of its assumed parameters.
Experimental response characteristics are detailed in Figures
11-12. Our analysis indicates that processes within the sensor
layer are remarkably swift, occurring within microseconds.
Consequently, findings from theoretical analysis are vital for
examining and validating the sensor's dynamic response.
Figure 1 presents the time characteristics, incorporating the
inertia of the measuring chamber. For the given DMMP
concentration, the estimated response time is 10—20 seconds,
and the regeneration time is 7 minutes.
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Fig. 11 For this experiment, we utilized a (RR)-P3HT sensor
layer (500 nm thick) and exposed it to DMMP gas at
concentrations of 1.5, 2, and 3 ppm. Illumination was provided
by a 200 mA diode operating at selected wavelengths. The
output recorded was the relative change in velocity plotted
against time (and concentration) [2, 7]
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Fig. 12 Our experiment utilized a (RR)-P3HT sensor layer (500 nm thick) and
exposed it to DMMP gas at 1.5, 2, and 3 ppm. A 200 mA diode (selected
wavelengths) provided illumination. The resulting data includes a histography
and measurements of the relative change of velocity against time
(concentration)

CONCLUSION

The recovery state is clearly visible within the time range of
107'2 to 107 seconds. Our analyses indicated that the steady
state of the sensor's responses is achieved after a few
microseconds. This time depends on sensor layer parameters
such as: photodegradation parameter (k), B, special polymer
parameter (s) [13], diffusion constant (Dx), temperature (T),
thickness (L), gas concentration (Ca s), and the type of gas.

Both theoretical and experimental studies have confirmed the
usefulness of the analytical model for designing SAW sensor
parameters. The theoretical results for a selected layered
sensing structure were experimentally verified and confirmed.
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