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Abstract—We present a  method for motion artifacts reduction 

during 3D volume reconstruction of free hand 2D ultrasound 

sequences. Motion estimation and additional filtering improves 

quality of free hand 3D ultrasound data resulting in improved 

imaging. Reconstructed 3D data was visualized using the OpenGL 

ES framework and GLSL shader language allowing real-time 

rendering on an embedded class GPU device.  

 

Keywords—3D ultrasound; image stabilization; motion 

estimation; volume rendering 

I. INTRODUCTION 

LTRASOUND imaging is a safe and relatively cheap 

diagnostic modality. 3D reconstruction and visualization 

may constitute an additional value to a regular examination 

workflow. The most common application is OB/GYN for fetal 

diagnostics [1]. Other use cases are also cardiology [1], surgical 

navigation [2] or vascular imaging. This modality requires that 

a system is able to collect 3D volumetric data. It can be realized 

using either: a 2D array probe, a 1D mechanical swing array 

probe, a 1D array probe with a tracking device or a regular 1D 

array probe with assumed movement trajectory [3]. Each 

technique is a trade-off between data quality and system 

complexity and price. The latter method called also the “free-

hand 3D ultrasound” technique requires least technical 

resources but is also definitely more prone to reconstruction 

errors. 

II. OBJECTIVES 

The presented work has been conducted within a NCBiR 

research project no. POIR.01.01.01-00-1462/19 with the goal of 

development a high channel ultraportable ultrasound scanner for 

veterinary and human medicine applications. One of the system 

components was 3D imaging mode and given the project 

requirements and assumptions the free-hand approach was the 

only option, thus we were not able to use any kind of probe 

tracking technology, like optical, inertial or optical tracking. 

Within our work we developed 3D volume reconstruction based 

on following predefined ultrasound probe movement 

trajectories: linear, swing and rotational [3]. The objective was 

to deliver image quality comparable with high class standalone 

devices. To improve the reconstruction quality we developed an 

algorithm for image stabilization and motion estimation. Next 
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steps were data filtering and visualization. Embedded system 

performance had to be considered, still allowing for real-time 

data rendering.  

III. METHODS 

A. Motion model 

In this work we assumed a linear probe motion model. The 

imaging plane is denoted by X and Y axes and the principal 

movement is along the perpendicular Z axis. There can be slight 

shifts and rotations in the XY plane and the movement along the 

Z axis covers a certain distance with inconsistent speed. The 

recorded frame sequence is denoted as: 

 I = { I1, I2, …, Ik, …, IN }   (1) 

where k = 1… N is the frame index. The transformation between 

two consecutive frames can be expressed by a affine 

transformation matrix consisting of three transforms: rotation 

along Z axis, shift in the XY plane and another shift along the Z 

axis: 

𝑀(𝑘, 𝑘 + 1) = 𝑇(0,0, 𝑑𝑧) ∗ 𝑇(𝑑𝑥, 𝑑𝑦, 0) ∗ 𝑅𝑧(𝛼) = 
 

                         [

cos (𝛼) −sin (𝛼) 0 𝑑𝑥

sin (𝛼) cos (𝛼) 0 𝑑𝑦
0 0 1 𝑑𝑧
0 0 0 1

]  (2) 

Our model constrains the movement from 6 degrees of freedom 

to 4: one rotation and 3 shifts. 

B. Motion Estimation 

Motion estimation algorithm aims at calculating [, dx, dy, dz] 

estimates. Having a series of affine transforms between the 

recorded frames one can create a volumetric dataset and map 

each voxel to a specific pixel. In our case we split the process 

into 2D motion estimation where parameters [, dx, dy] are 

calculated and linear movement speed approximation where 

[dz] is determined. 

2D transformation calculation is based on patch matching. A 

patch set is defined as: 

 P = { P1, P2, …, Pj, …, PM } (3) 

where j = 1.. M is the patch index. Each patch is a rectangular 

region centered around a certain pixel in the source image. For 

each two consecutive frames the algorithm tries to find optimal 
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2D transforms between all patches. The transform is defined as 

a combination of rotation around the middle point of the patch 

and some shift by a 2D vector: T(, dx, dy). The optimization 

algorithm searches for the highest similarity measure between 

the transformed patch Pj
k+1 in the image Ik+1 and the original 

patch Pj
k given parameters: [j

k+1, dxj
k+1, dyj

k+1]. Similarity 

measure used is Pearson correlation coefficient given by 

following equation: 

 𝑟(𝐼1, 𝐼2) =
∑ (𝐼1(𝑋𝑖)−𝐼1̅)(𝐼2(𝑌𝑖)−𝐼2̅)𝑁

𝑖=1

√∑ (𝐼1(𝑋𝑖)−𝐼1̅)2𝑁
𝑖=1 √∑ (𝐼2(𝑌𝑖)−𝐼2̅)2𝑁

𝑖=1

 (4) 

where: 

• I1, I2 are two image fragments, each consisting of N 

pixels 

• I1(Xi) is the pixel value at the position Xi=[xi,yi,0]T 

• Yi is the position Xi transformed by T(, dx, dy) 

 

In this work we used Nelder-Mead optimization algorithm [4] 

to find transformation parameters for each patch pair. The 

Pearson correlation coefficient is also called normalized cross 

correlation (NCC), where value 1 means total correlation, 0 – 

no correlation and -1 negative correlation. We assumed that if 

NCC is below certain threshold the patches don’t match. Below, 

there is an example of two frames with patch designation and 

matching result: 

 

  
Fig. 1. 2D patch matching, left: base image with rectangular patches, right: 

following image with transformed patches. 

Patches that have good match (high NCC value) are marked as 

green. Yellow denotes middle NCC range and red marks cases 

where no good match could be found. The latter could happen, 

for example, in cases where there is not enough value variation 

in the patch region. Total image transformation is then 

calculated as an average of the single patches transformations. 

After this step values for [, dx, dy] in (2) are fixed and the next 

stage determines the last parameter: dz. 

Perpendicular ultrasound probe image based shift estimation 

was explored in several work groups, starting around 1996 

[5],[6],[7],[8],[9],[10],[11]. All mentioned contributions are 

based on one phenomenon [5]: movement along the Z axis 

decreases the NCC in the regions where uncompressed 

amplitude follows the Rayleigh distribution. This can be 

expressed by following equation: 

 𝑟(𝐼1, 𝐼2) = 𝜆2 = 𝑒
−

𝑑𝑧2

𝑘2  (5) 

 

where dz is the shift value and k is some constant coefficient 

dependent on the probe and the distance from the probe surface. 

One could of course try to calibrate the value for different 

probes and depths, but it was beyond the scope of our project. 

Another uncertainty is the direction of the movement, equation 

(5) gives only the absolute value of dz. We assumed that the 

probe moves only in one direction and the total distance 

travelled within the recorded sequence is set as a parameter Z: 

 Δ𝑍 = ∑ 𝑑𝑧𝑖
𝑁
𝑖=2   (6) 

where: 

• Z is the total distance travelled by the probe (for 

example: 5, 10 or 15cm) 

• dzi is the shift along the Z axis between the i-th frame 

and the previous frame 

 

Given (5) we can write: 

 𝑑𝑧𝑖 = 𝑘 ∗ √log(𝑟(𝐼𝑖 , 𝐼𝑖−1)) (7) 

Combining (6) and (7) we can get following equation: 

 𝑑𝑧𝑖 =
∆𝑍√log(𝑟(𝐼𝑖,𝐼𝑖−1))

∑ √𝑙𝑜𝑔(𝑟(𝐼𝑖,𝐼𝑖−1))𝑁
𝑖=2

,  (8) 

C. Volume Reconstruction 

Having determined 3D affine transforms between all 

consecutive 2D ultrasound frames one could reconstruct a three 

dimensional grid of a volumetric dataset. For each voxel 

coordinates P=[x,y,z]T one can find two closest 2D frames based 

on Z coordinates. Next, XY projections are calculated and the 

final voxel value is interpolated between the two pixel values.  

D. Data Filtering 

Next stage in our processing pipeline is data filtering. Source 

images visible in Fig.1 are noisy and wouldn’t produce smooth 

surfaces in 3D visualization. We aimed at choosing a 3D filter 

producing smooth surfaces while preserving structure details. 

Within our work we tested 5 filters: gaussian low-pass filter, 

median filter, Kuwahara filter [12] with its adaptive version [13] 

and finally lowest variance filter [14].  

The simplest filter is gaussian blur. It is realized by convolving 

volumetric dataset expressed as a 3D array by respective 

gaussian kernel. The advantages are: good noise suppression 

and easy implementation. On the other hand one looses small 

details and the edges get blurred, too.  

Another classical algorithm implemented in our project was 

median filter. The principle is that for each voxel Vi there is a 

defined neighborhood i (for example 3x3x3 or 5x5x5) and the 

filter output is the median value of all values in i. A typical 

feature of median filters is the ability to reduce noise while 

preserving the edges. 

Next the Kuwahara [12] filter was analyzed. It divides the 

voxel neighborhood into 8 overlapping sub-cubes. Given the 
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neighborhood size (2*N-1)3 each sub-cube has size equal to N3. 

Central voxel is the only voxel present in all sub-cubes. The sub-

cube with the least variance is chosen and its average value 

replaces the central voxel value. In principle, the filter is 

designed to preserve structure details and reduce noise. We also 

tested the adaptive version of the Kuwahara filter [13]. In this 

case the sub-cubes with sizes from 2x2x2 to MxMxM are tested 

and the one with the least variance is chosen for mean value 

calculation like in the original algorithm. 

Finally, the lowest variance path filter [14] was implemented. 

In the first stage for each voxel a vector of lowest variance is 

determined. It’s done by sampling unitary sphere and for each 

vector 3D data is traversed from the given voxel in particular 

direction and its reverse. N samples are collected and their 

variance is calculated. The vector that produces the lowest 

variance is stored in an auxiliary 3D dataset. Unitary sphere 

sampling vectors are given by equation (9): 

 

𝑉(𝑖, 𝑗) = (
cos (𝜃𝑖) 0 −𝑠𝑖𝑛(𝜃𝑖)

0 1 0
𝑠𝑖𝑛(𝜃𝑖) 0 𝑐𝑜𝑠(𝜃𝑖)

) ∗

(

𝑐𝑜𝑠(𝜑𝑗) −𝑠𝑖𝑛(𝜑𝑗) 0

𝑠𝑖𝑛(𝜑𝑗) 𝑐𝑜𝑠(𝜑𝑗) 0

0 0 1

) ∗ (
1
0
0

),      (9) 

 

where: 𝜃𝑖 =
2𝜋∗𝑖

𝑖𝑚𝑎𝑥
, 𝜑𝑗 =

𝜋∗𝑗

𝑗𝑚𝑎𝑥
 

 

The second stage is traversing the volume for each voxel and 

going along consecutive lowest-variance vectors in both 

positive and negative directions. Number of steps is fixed and 

the final output value is the average of collected samples. The 

principle of the algorithm is to average voxel values along a path 

that has similar values. The method produces very appealing 

results, but requires much more computing resources than other 

techniques tested within our work. 

 

   
Fig. 2. Left: no filtering, right: gaussian blur 

   
Fig. 3. Left: median filter, right: Kuwahara filter 

 

   
Fig. 4. Left: adaptive Kuwahara filter, right: lowest variance path filter 

E. 3D Visualization 

Finally the data was visualized by an algorithm of choice. 

Within the project we implemented three volume rendering 

methods: maximum intensity projection (MIP), semi-

transparent rendering and surface rendering. The algorithms 

were implemented using OpenGL shader language and adjusted 

to available GPU to reach real-time objective. If needed, the 

pixel values were inverted which in particular case helped 

visualizing follicles that appear as black holes on ultrasound 

images whereas we wanted to see them as solid structures to 

asses visually their morphology and determine the total follicle 

count in the acquired sequence.  

For all rendering modes ray-casting [15],[16] method was 

used. The volume is defined as a cuboid consisting of 8 vertices 

having appropriate texture coordinates that refer to the voxel 

coordinates of the volumetric 3D array. In the OpenGL 

rendering pipeline vertex shaders are used for geometric 

transformation and fragment shaders are responsible for 

calculating the final color of a pixel. Fragment shaders contain 

a loop where a ray through the volume is traversed and the 

coordinates are taken from the interpolated texture coordinates. 

In the MIP mode, at each traverse step, the volume voxel 

coordinates are calculated and the voxel value is mapped to 

intensity function. The final output value is the maximum 

calculated along the particular ray.  

 
Fig. 5. 3D volume model of a human fetus: maximum intensity projection. 

In the semi-transparent mode, the voxel intensity is mapped 

to a transparency function and at each step initial light value is 
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reduced by the mapped amount. The loop finishes when the ray 

point is either out of volume or the intensity goes below certain 

threshold. 

 
Fig. 6. 3D volume model of a human fetus: semi-transparent rendering. 

Finally, during surface rendering, the voxel value is also 

mapped to a transparency value, but the mapping function is 

very steep in some range. This leads to a fast stopping – 

determining when a surface point has been hit. Next, a surface 

normal vector is approximated by a 3D gradient vector and the 

final color is calculated using the Blinn-Phong model [17]. 

 
Fig. 7. 3D volume model of a human fetus: surface rendering. 

IV. RESULTS 

The test data used were 2D sequences of bovine ovary 

recordings. 3D surface rendering was used to visualize ovarian 

follicles. 3D imaging allows for fast follicle count and 

morphology assessment. Below some sample cross-sectional 

and 3D images are shown. 

 

 
Fig. 8. 2D cross-sections of the 3D volume, no motion correction. 

 
Fig. 9. 2D cross-sections of the 3D volume, motion estimation in imaging 

plane only. 

 
Fig. 10. 2D cross-sections of the 3D volume, motion estimation in 3 axes. 
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Fig. 11. 3D surface rendering of the follicles, no motion correction. 

 
Fig. 12. 3D surface rendering of the follicles, only motion correction, no 

filtering. 

 
Fig. 13. 3D surface rendering of the follicles, motion correction with lowest-

variance filtering. 

V. DISCUSSION 

We could show that even with limited technical resources one 

can improve the quality of 3D volume reconstruction. The word 

quality here is a descriptive term, we cannot measure it with 

numbers, but it can be more or less appealing to the user. Using 

freehand technique there are several limitations in term of 

reconstruction accuracy. We can only estimate movement speed 

with an unknown scaling factor. In the end it’s up to the user to 

decide how much one needs to stretch the volumetric dataset in 

the 3rd dimension. The same algorithm can be however 

combined also with more advanced tracking techniques like 

inertial, optical or electromagnetic tracking. This could be a 

potential path for the continuation of the presented work. 

Another possible direction to extend this research would be 

finding ways how to utilize deep learning techniques to perform 

motion estimation or correction given aforementioned sources 

of probe localization. Regarding 3D data visualization 

techniques, the constant progress in GPU technologies will 

definitely allow using more elaborate algorithms with even 

more appealing results and less energy consumption. 

Additionally, offloading heavy calculations to the GPU could 

noticeably improve algorithm performance, leading to a quasi-

real time reconstruction. 

VI. CONCLUSION 

Motion estimation algorithm improves imaging quality by 

reducing out of trajectory movement artifacts. OpenGL GPU 

optimized programming allows real-time imaging and thus 

leading to quicker and more accurate assessments of the 

ultrasound exams. Our work shows that there’s potential to 

improve 3D reconstruction and 3D imaging on portable 

ultrasound devices. The constraints are clear, on one hand one 

demands as much computing power as possible on another hand 

the portability requires low energy designs and also the costs 

have to be feasible for the final customers. We hope that 

constantly improving GPU technology will allow implementing 

more and more demanding algorithms on low-powered 

embedded devices while keeping the prices affordable. Recent 

advances in edge AI computing also look very promising. And 

it’s another area to explore in terms of motion estimation and 

data filtering. 
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