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3D ultrasound reconstruction based on free hand
acquisitions with motion estimation

Pawel Zogat, Krzysztof J. Opielinski, and Andrzej Wiktorowicz

Abstract—We present a method for motion artifacts reduction
during 3D volume reconstruction of free hand 2D ultrasound
sequences. Motion estimation and additional filtering improves
quality of free hand 3D ultrasound data resulting in improved
imaging. Reconstructed 3D data was visualized using the OpenGL
ES framework and GLSL shader language allowing real-time
rendering on an embedded class GPU device.
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I. INTRODUCTION

LTRASOUND imaging is a safe and relatively cheap

diagnostic modality. 3D reconstruction and visualization
may constitute an additional value to a regular examination
workflow. The most common application is OB/GYN for fetal
diagnostics [1]. Other use cases are also cardiology [1], surgical
navigation [2] or vascular imaging. This modality requires that
a system is able to collect 3D volumetric data. It can be realized
using either: a 2D array probe, a 1D mechanical swing array
probe, a 1D array probe with a tracking device or a regular 1D
array probe with assumed movement trajectory [3]. Each
technique is a trade-off between data quality and system
complexity and price. The latter method called also the “free-
hand 3D ultrasound” technique requires least technical
resources but is also definitely more prone to reconstruction
errors.

II. OBIJECTIVES

The presented work has been conducted within a NCBiR
research project no. POIR.01.01.01-00-1462/19 with the goal of
development a high channel ultraportable ultrasound scanner for
veterinary and human medicine applications. One of the system
components was 3D imaging mode and given the project
requirements and assumptions the free-hand approach was the
only option, thus we were not able to use any kind of probe
tracking technology, like optical, inertial or optical tracking.
Within our work we developed 3D volume reconstruction based
on following predefined ultrasound probe movement
trajectories: linear, swing and rotational [3]. The objective was
to deliver image quality comparable with high class standalone
devices. To improve the reconstruction quality we developed an
algorithm for image stabilization and motion estimation. Next
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steps were data filtering and visualization. Embedded system
performance had to be considered, still allowing for real-time
data rendering.

III. METHODS

A. Motion model

In this work we assumed a linear probe motion model. The
imaging plane is denoted by X and Y axes and the principal
movement is along the perpendicular Z axis. There can be slight
shifts and rotations in the XY plane and the movement along the
Z axis covers a certain distance with inconsistent speed. The
recorded frame sequence is denoted as:

I={0L, b ..I ... Iy} (1)
where k£ = 1... Nis the frame index. The transformation between
two consecutive frames can be expressed by a affine
transformation matrix consisting of three transforms: rotation
along Z axis, shift in the XY plane and another shift along the Z
axis:

M(k,k +1) =T(0,0,dz) * T(dx,dy,0) * Rz(a) =

cos(a) —sin(a) 0 dx

sin(a) cos(a) 0 dy @)
0 0 1 dz
0 0 0 1

Our model constrains the movement from 6 degrees of freedom
to 4: one rotation and 3 shifts.

B. Motion Estimation

Motion estimation algorithm aims at calculating [, dx, dy, dz]
estimates. Having a series of affine transforms between the
recorded frames one can create a volumetric dataset and map
each voxel to a specific pixel. In our case we split the process
into 2D motion estimation where parameters [, dx, dy] are
calculated and linear movement speed approximation where
[dz] is determined.

2D transformation calculation is based on patch matching. A
patch set is defined as:

P={P.Py ...P .. Pu} 3)

where j = 1.. M is the patch index. Each patch is a rectangular
region centered around a certain pixel in the source image. For
each two consecutive frames the algorithm tries to find optimal
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2D transforms between all patches. The transform is defined as
a combination of rotation around the middle point of the patch
and some shift by a 2D vector: 7(¢, dx, dy). The optimization
algorithm searches for the highest similarity measure between
the transformed patch P/*! in the image /**! and the original
patch P/ given parameters: [af*!, dx/*!, dy/™!]. Similarity
measure used is Pearson correlation coefficient given by
following equation:

SN (LX) -0 (L (Y)-T)

(1) = L — @)
Jzﬁl(ll(xi)—ll)zjziil(lz(Yi)—lz)z
where:
e [, I, are two image fragments, each consisting of N
pixels

e [;(X) is the pixel value at the position X;=[x;,,0]"
e Y, is the position X; transformed by 7{(¢, dx, dy)

In this work we used Nelder-Mead optimization algorithm [4]
to find transformation parameters for each patch pair. The
Pearson correlation coefficient is also called normalized cross
correlation (NCC), where value 1 means total correlation, 0 —
no correlation and -1 negative correlation. We assumed that if
NCC is below certain threshold the patches don’t match. Below,
there is an example of two frames with patch designation and
matching result:

Fig. 1. 2D patch matching, left: base image with rectangular patches, right:
following image with transformed patches.

Patches that have good match (high NCC value) are marked as
green. Yellow denotes middle NCC range and red marks cases
where no good match could be found. The latter could happen,
for example, in cases where there is not enough value variation
in the patch region. Total image transformation is then
calculated as an average of the single patches transformations.
After this step values for [, dx, dy] in (2) are fixed and the next
stage determines the last parameter: dz.

Perpendicular ultrasound probe image based shift estimation
was explored in several work groups, starting around 1996
[51,[61,[71,[8],[9],[10],[11]. All mentioned contributions are
based on one phenomenon [5]: movement along the Z axis
decreases the NCC in the regions where uncompressed
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amplitude follows the Rayleigh distribution. This can be
expressed by following equation:
dz?

r(l, L) =A% =e ¥ Q)

where dz is the shift value and k& is some constant coefficient
dependent on the probe and the distance from the probe surface.
One could of course try to calibrate the value for different
probes and depths, but it was beyond the scope of our project.
Another uncertainty is the direction of the movement, equation
(5) gives only the absolute value of dz. We assumed that the
probe moves only in one direction and the total distance
travelled within the recorded sequence is set as a parameter AZ:

AZ =¥, dz; (6)

where:
e AZis the total distance travelled by the probe (for
example: 5, 10 or 15cm)
e dz;is the shift along the Z axis between the i-th frame
and the previous frame

Given (5) we can write:

dz; = k * /log(r(li, Ii—1)) (7

Combining (6) and (7) we can get following equation:

AZ [log(r(I31i—1))
le = —lll, (8)
Z?LZ lo«g(r(lirli—l))

C. Volume Reconstruction

Having determined 3D affine transforms between all
consecutive 2D ultrasound frames one could reconstruct a three
dimensional grid of a volumetric dataset. For each voxel
coordinates P=[x,y,z]" one can find two closest 2D frames based
on Z coordinates. Next, XY projections are calculated and the
final voxel value is interpolated between the two pixel values.

D. Data Filtering

Next stage in our processing pipeline is data filtering. Source
images visible in Fig.1 are noisy and wouldn’t produce smooth
surfaces in 3D visualization. We aimed at choosing a 3D filter
producing smooth surfaces while preserving structure details.
Within our work we tested 5 filters: gaussian low-pass filter,
median filter, Kuwahara filter [ 12] with its adaptive version [13]
and finally lowest variance filter [14].

The simplest filter is gaussian blur. It is realized by convolving
volumetric dataset expressed as a 3D array by respective
gaussian kernel. The advantages are: good noise suppression
and easy implementation. On the other hand one looses small
details and the edges get blurred, too.

Another classical algorithm implemented in our project was
median filter. The principle is that for each voxel V; there is a
defined neighborhood (2; (for example 3x3x3 or 5x5x5) and the
filter output is the median value of all values in €. A typical
feature of median filters is the ability to reduce noise while
preserving the edges.

Next the Kuwahara [12] filter was analyzed. It divides the
voxel neighborhood into 8 overlapping sub-cubes. Given the
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neighborhood size (2*N-1)* each sub-cube has size equal to N°.
Central voxel is the only voxel present in all sub-cubes. The sub-
cube with the least variance is chosen and its average value
replaces the central voxel value. In principle, the filter is
designed to preserve structure details and reduce noise. We also
tested the adaptive version of the Kuwahara filter [13]. In this
case the sub-cubes with sizes from 2x2x2 to MxMxM are tested
and the one with the least variance is chosen for mean value
calculation like in the original algorithm.

Finally, the lowest variance path filter [14] was implemented.
In the first stage for each voxel a vector of lowest variance is
determined. It’s done by sampling unitary sphere and for each
vector 3D data is traversed from the given voxel in particular
direction and its reverse. N samples are collected and their
variance is calculated. The vector that produces the lowest
variance is stored in an auxiliary 3D dataset. Unitary sphere
sampling vectors are given by equation (9):

cos(6;) 0 —sin(6;)
V@, j) = ( 0 1 0 ) *

sin(8;) 0 cos(6))
cos((pj) —sin(qoj) 0 1
sin(p;) cos(p;) 0 ]* (0), ©)
0 0 1 0
where: 6; = izn—*i, Q= ]n—”

The second stage is traversing the volume for each voxel and
going along consecutive lowest-variance vectors in both
positive and negative directions. Number of steps is fixed and
the final output value is the average of collected samples. The
principle of the algorithm is to average voxel values along a path
that has similar values. The method produces very appealing
results, but requires much more computing resources than other
techniques tested within our work.

Fig. 2. Left: no filtering, right: gaussian blur

Fig. 3. Left: median filter, right: Kuwahara filter

Fig. 4. Left: adaptive Kuwahara filter, right: lowest variance path filter

E. 3D Visualization

Finally the data was visualized by an algorithm of choice.
Within the project we implemented three volume rendering
methods: maximum intensity projection (MIP), semi-
transparent rendering and surface rendering. The algorithms
were implemented using OpenGL shader language and adjusted
to available GPU to reach real-time objective. If needed, the
pixel values were inverted which in particular case helped
visualizing follicles that appear as black holes on ultrasound
images whereas we wanted to see them as solid structures to
asses visually their morphology and determine the total follicle
count in the acquired sequence.

For all rendering modes ray-casting [15],[16] method was
used. The volume is defined as a cuboid consisting of 8 vertices
having appropriate texture coordinates that refer to the voxel
coordinates of the volumetric 3D array. In the OpenGL
rendering pipeline vertex shaders are used for geometric
transformation and fragment shaders are responsible for
calculating the final color of a pixel. Fragment shaders contain
a loop where a ray through the volume is traversed and the
coordinates are taken from the interpolated texture coordinates.

In the MIP mode, at each traverse step, the volume voxel
coordinates are calculated and the voxel value is mapped to
intensity function. The final output value is the maximum
calculated along the particular ray.

usg_3dapp
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Mark ends: Off
Render: MIP

Wireframe: Off

Reset transforms

Clear Volume Saveto DB Filter Volume Material Clipping Undo eraser

back (preview) Load.. Save.

Fig. 5. 3D volume model of a human fetus: maximum intensity projection.

In the semi-transparent mode, the voxel intensity is mapped
to a transparency function and at each step initial light value is
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reduced by the mapped amount. The loop finishes when the ray -
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Fig. 6. 3D volume model of a human fetus: semi-transparent rendering.
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Finally, during surface rendering, the voxel value is also m—
mapped to a transparency value, but the mapping function is raadas
very steep in some range. This leads to a fast stopping — el
determining when a surface point has been hit. Next, a surface s
normal vector is approximated by a 3D gradient vector and the
final color is calculated using the Blinn-Phong model [17].
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Fig. 9. 2D cross-sections of the 3D volume, motion estimation in imaging
plane only.
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IV. RESULTS

The test data used were 2D sequences of bovine ovary
recordings. 3D surface rendering was used to visualize ovarian Reset transtorms
follicles. 3D imaging allows for fast follicle count and |
morphology assessment. Below some sample cross-sectional
and 3D images are shown. Fig. 10. 2D cross-sections of the 3D volume, motion estimation in 3 axes.
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Fig. 11. 3D surface rendering of the follicles, no motion correction.
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Fig. 12. 3D surface rendering of the follicles, only motion correction, no
filtering.
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Fig. 13. 3D surface rendering of the follicles, motion correction with lowest-
variance filtering.

V. DISCUSSION

We could show that even with limited technical resources one
can improve the quality of 3D volume reconstruction. The word
quality here is a descriptive term, we cannot measure it with
numbers, but it can be more or less appealing to the user. Using
freehand technique there are several limitations in term of
reconstruction accuracy. We can only estimate movement speed
with an unknown scaling factor. In the end it’s up to the user to
decide how much one needs to stretch the volumetric dataset in
the 3™ dimension. The same algorithm can be however
combined also with more advanced tracking techniques like
inertial, optical or electromagnetic tracking. This could be a
potential path for the continuation of the presented work.
Another possible direction to extend this research would be
finding ways how to utilize deep learning techniques to perform
motion estimation or correction given aforementioned sources
of probe localization. Regarding 3D data visualization
techniques, the constant progress in GPU technologies will
definitely allow using more elaborate algorithms with even
more appealing results and less energy consumption.
Additionally, offloading heavy calculations to the GPU could
noticeably improve algorithm performance, leading to a quasi-
real time reconstruction.

VI. CONCLUSION

Motion estimation algorithm improves imaging quality by
reducing out of trajectory movement artifacts. OpenGL GPU
optimized programming allows real-time imaging and thus
leading to quicker and more accurate assessments of the
ultrasound exams. Our work shows that there’s potential to
improve 3D reconstruction and 3D imaging on portable
ultrasound devices. The constraints are clear, on one hand one
demands as much computing power as possible on another hand
the portability requires low energy designs and also the costs
have to be feasible for the final customers. We hope that
constantly improving GPU technology will allow implementing
more and more demanding algorithms on low-powered
embedded devices while keeping the prices affordable. Recent
advances in edge Al computing also look very promising. And
it’s another area to explore in terms of motion estimation and
data filtering.
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