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Abstract—In this article spatial audio recording techniques are 

compared: scene-based audio and object-based audio. The study 

involved mixing recordings from a higher-order ambisonic 

microphone and support microphones, ambisonically encoded on 

a virtual sphere. The recordings were combined in different spatial 

resolution variations by manipulating the ambisonic order. A 

MUSHRA-like test was conducted, taking into consideration the 

room divergence effect. The experiment used binaural rendering 

with headtracking. The results were analyzed using linear mixed 

models, providing insights into spatial audio recording techniques. 

 

Keywords—higher-order ambisonics; object-based sound; 

immersive recording techniques; linear mixed models; 

psychoacoustics 

I. INTRODUCTION 

A. Motivation of the experiment 

The practice of recording using support microphones, main 

pair microphones, and ambient microphones involves a nuanced 

understanding of sound capture techniques and microphone 

placement to achieve a balanced audio experience. Main pair 

microphones are typically used to capture the primary sound 

source, often employing stereophonic techniques to create a 

realistic sound image [1]. Support microphones, on the other 

hand, are strategically placed to enhance specific sound 

elements that may not be adequately captured by the main pair, 

such as solo instruments or vocalists, ensuring clarity and 

presence in the mix [2]. Ambient microphones are used to 

capture the natural reverberation and environmental sounds of 

the recording space, adding depth and atmosphere to the 

recording [2],[3]. Together, these practices form a cohesive 

strategy for capturing high-quality audio that is both technically 

sound and artistically expressive. This study extends these 

considerations to 3-dimensional ambisonic recording 

techniques. 

B. Ambisonics, scene-based audio, and object-based audio 

Ambisonics and scene-based sound differ fundamentally 

from object-based sound in their approach to spatial audio 

representation and processing. Ambisonics, a scene-based 

format, captures the entire sound field, allowing for efficient 

scene rotation and versatility, but lacks direct access to 

individual sound sources, necessitating source separation 

techniques such as spherical harmonics beamforming or deep 

learning methods to isolate specific sounds [4]. This format is 
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particularly useful for immersive experiences, as it can render 

a 3D audio scene with high spatial resolution, especially when 

enhanced with additional arrays like smartphone-microphone 

setups [5]. In contrast, object-based audio, exemplified by 

formats like Dolby Atmos, treats each sound source as an 

independent object, allowing for precise control over its spatial 

attributes, such as localization or motion, which can enhance the 

listener’s immersion and personalization of the audio 

experience [6], [7], [8]. The integration of object-based and 

scene-based audio can further enhance spatial audio experiences 

by combining the strengths of both approaches, though 

challenges remain in effectively separating and managing these 

components within a unified framework [6].  

C. Object-based sound in ambisonics 

The core idea of object-based audio is to represent sound as 

individual objects. Through proper processing, such as 

ambisonics panning, the object can be placed anywhere on a 

“virtual sphere,” which mirrors the real space around the 

listener. This creates a sense of localizability, allowing the 

listener to perceive where the sound is coming from. Ambisonic 

panning is a sophisticated method for spatial audio reproduction 

that involves encoding and decoding sound fields to create 

immersive auditory experiences for both stereo and 

multichannel setups [9], [10]. Higher-order ambisonics is 

particularly useful for enhancing directional resolution and 

enabling ideal loudspeaker layouts for consistent loudness and 

localization, which can be adapted for various audio 

environments, including headphones [11], [12]. This 

adaptability is crucial for a more nuanced perception of sound 

localizability, ultimately leading to greater immersion in 

interactive media. Moreover, such ambisonically encoded 

objects could be mixed with ambisonically captured scene, 

analogously to how objects and channel beds are mixed in 

Dolby Atmos. However, mixing different ambisonic orders can 

lead to various effects, such as incoherent auditory images or 

spatial mismatches [13], but it can also enhance the sense of 

externalization and increase immersion [14], [15], [16], [17]. 

D. Linear mixed models for psychoacoustic experiments 

Linear mixed models (LMMs) are versatile statistical tools 

used to analyze data with hierarchical or grouped structures, 

incorporating both fixed and random effects to account for 

nonindependence among observations [18], [19]. Fixed effects 

pertain to factors with a finite number of levels, while random 

(e-mail: bartlomiej.mroz@pg.edu.pl, s180417@student.pg.edu.pl). 

Comparison of spatial sound recording 

techniques with usage of ambisonics  

and object-based audio 
Bartłomiej Mróz, and Patryk Kosior 

https://creativecommons.org/licenses/by/4.0/


2 B. MRÓZ, P. KOSIOR 

 

effects involve factors with potentially infinite levels, like 

individual subjects or clusters, where the interest lies in the 

variance between these levels rather than specific 

differences [20]. LMMs extend classical linear regression 

models by including random effects, making them particularly 

useful for analyzing longitudinal and cluster-correlated data, 

such as repeated measures on the same individual 

[21], [22], [23]. This capability of LMMs is particularly 

relevant for psychoacoustic experiments, providing a robust 

framework for analyzing intricate data structures and enhancing 

the accuracy of the results. 

II. STIMULI PREPARATION FOR THE EXPERIMENT 

The aim of the experiment was to combine object-based audio 

with scene-based audio so that the object signals provided 

precise localization of sound sources and a more direct 

perception, while the recorded sound scene more faithfully 

reflected the realism and fidelity of the actual scene. To achieve 

this material, a live recording was made. The music ensemble 

consisted of a piano, violin, electric bass guitar, and voice 

(female, alto). The recorded music was an acoustic cover of a 

popular song (“Turning Tables” by Adele). This setup allowed 

for the use of the 360° space, leveraging the immersive nature 

of the recording. The signals were captured using a higher-order 

ambisonic microphone array (namely, Zylia ZM-1) and spot 

microphones. Fig. 1 presents the schematical arrangement of the 

live recording. 

 

 
Fig. 1. A diagram of the arrangement of instruments and individual 

microphones. The red dot indicates the front orientation of the ambisonic 
microphone. All the spot microphones were cardioids. The models of the 

microphones were the following: 1-3: AKG C4000B; 4: AKG C414 XLS; 

5: Behringer B5 

After recording the signals, certain preparatory steps have 

been undertaken. One of the key aspects was normalizing the 

individual recordings collected by the support microphones in 

relation to the ambisonic recording. To achieve this, the 

beamforming function of the microphone array, provided by the 

microphone’s manufacturer, was used – namely, the Zylia 

Studio PRO plugin. A set of narrow beams was created, directed 

at the positions of the musicians, and compared with the signals 

from the spot microphones. After this procedure, the volume of 

the tracks of the spot microphones was adjusted so that the 

differences in LUFS-S and LUFS-I were minimal (± 2 LUFS). 

Furthermore, the phase of the signals was also adjusted using 

delay adjustments on the tracks. 

After normalization, the object tracks were encoded into 

ambisonics using the IEM MultiEncoder plug-in, mimicking the 

angular positions of musicians from the recording session. Such 

obtained object-based signals were encoded into 1st, 3rd, and 

5th-order ambisonics. As for the scene-based ambisonic 

recording, it was originally captured in 3rd-order ambisonics, so 

downmixing to 1st-order was straightforward. Additionally, 

upscaling to 5th order was achieved using the commercially 

available plug-in – namely, Audio Brewers AB Imager. This 

process prepared both the scene-based and object-based signals 

in 1st, 3rd, and 5th ambisonic orders, resulting in 12 listening 

samples: 9 combinations of each scene-based and object-based 

signal, and three non-mixed versions: 3rd-order scene-based 

ambisonics, upscaled 5th-order scene-based ambisonics, and 

5th-order ambisonic-encoded objects. The scene-based 

ambisonic stimuli were denoted with S1, S3, S5 abbreviations, 

indicating the ambisonics order; the object-based ambisonic 

stimuli were denoted similarly with O1, O3, and O5 acronyms.  

III. AUDITORY EXPERIMENT 

The experiment took form of a MUSHRA-like procedure 

with 15 participants, whose average age was 31. 

Each participant had significant experience in working with 

professional audio but in different fields: live sound 

engineering, studio recordings, audio processing algorithms, 

and spatial sound. Participants were asked to evaluate 12 

samples in two trials: in the first, they assessed the degree of 

immersion, and in the second, they rated the localization 

accuracy, i.e., the ability to identify where the sound was 

coming from. Participants could listen to the samples in any 

order and as many times as they wanted during each trial. The 

sample order was randomized each time (including between 

trials). The test was conducted using the SAPETool software 

[24]. Fig. 2 presents the interface of the MUSHRA procedure in 

the SAPETool. 

 

 
Fig. 2. The interface of the MUSHRA procedure in SAPETool [24]. 

The listening test was conducted twice: first, in a room with 

controlled acoustic adaptation and a short reverberation time 

(T30 = 0.19 s), and second, in a lecture room also with acoustic 

adaptation, but longer reverberation time (T30 = 0.42 s). This 

was necessary to scrutinize whether the acoustic impression of 

the listening room diverging from the presented sound scene 
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affected the participants’ ratings; or, if the room divergence 

effect [25] occurred. All the participants took part in both tests, 

which were separated by a few weeks break. 

The experiment used reference-grade open-back electrostatic 

headphones (Stax SR-007 mkII) paired with a dedicated 

headphone amplifier (Stax SRM-727 II). A wired head-tracking 

device (Headtracker 1 by Supperware) was also used, providing 

dynamic, low-latency head tracking over OSC protocol, which 

was then enabled by the IEM SceneRotator plugin. The binaural 

rendering was provided by IEM BinauralRenderer, which uses 

a well-established binauralisation method via the magnitude 

least squares algorithm [12] and utilizes HRTFs from the 

Neumann KU100 dummy head [25]. No far-field headphone 

correction was applied. 

IV. RESULTS 

The statistical analysis was performed with the linear mixed 

models (LMMs). This method considers both fixed effects and 

random effects. In this case, the fixed effect was the variance 

between individual sound samples, while the random effect was 

the variance between the individual participants. It is also worth 

noting that the fixed effect associated with the sound samples 

can be considered the intersection of two fixed effects: the 

spatial resolution of the scene-based ambisonic signal and the 

ambisonically encoded sound objects. The dependent variable 

was the rating of each sample on a scale from 0 to 100. Fig. 

3 and Fig. 4 present the 95% confidence intervals for the mean 

ratings of the immersion and localizability tasks, respectively. 

The violin plots in the background show the distribution of the 

raw data. 

A. Immersion Ratings 

The LMM analysis of the obtained ratings indicated 

a statistically significant effect on sample ratings 

(F(11, 220) = 4.55, p = .003). Therefore, a post-hoc analysis 

was conducted. Pairwise comparisons were made using 

Student’s t-test. The Holm-Bonferroni correction for multiple 

comparisons was also applied. 

 

 
Fig. 3. The results of the immersion ratings for different scene-based (S) and 

object-based (O) ambisonic stimuli. 95% confidence intervals for the mean are 

presented. The shaded grey violin plots indicate the distribution of data. 

The comparison between S1+O1 and S1+O5 stimuli revealed 

a significant difference (t(220) = -4.12, p = .01). Furthermore, 

there was a notable difference between S1+O1 and S5+O5 cases 

(t(220) = -3.72, p = .02). A significant difference was also found 

when comparing S1+O1 to O5 instances (t(220) = -4.55, 

p < .001). Moreover, the analysis showed a significant 

difference between S1+O5 and S3+O1 (t(220) = -3.45, p = .04). 

The comparison of S1+O5 and S5+O1 stimuli also resulted 

in a significant finding (t(220) = 3.6, p = .02). Subsequently, 

there was a significant difference between S3+O1 and O5 

(t(220) = -4.02, p = .01). In addition, the comparison between 

S5+O1 and O5 showed a significant difference as well 

(t(220) = -3.29, p = .01). 

Analyzing the plot of immersion ratings, it can be observed 

that as the spatial resolution of the objects increased, the ratings 

rose more rapidly compared to the increase in ambisonic order 

of the signal from the microphone array. The largest differences 

were observed between the samples: S1+O1 vs. O5. Individual 

ambisonic cases S3 and S5 received higher ratings than S1+O1, 

even despite the lack of an object component. The overall 

highest-rated sample was O5. The second highest-rated sample 

was S1+O5, which also stands out with an unusual shape 

compared to the other plots (the violin plot is not as slim as the 

others). 

B. Localizability Ratings 

In the case of localizability, the LMM analysis of the 

participants’ answers indicated a statistically significant effect 

on sample ratings (F(11, 220) = 11.22, p = .001). Therefore, a 

post-hoc analysis was also conducted here. Similarly, pairwise 

comparisons were made using Student's t-test. 

The Holm-Bonferroni correction for multiple comparisons 

was also applied. 
 

 
Fig. 4. The results of the localizability ratings for different scene-based (S) 

and object-based (O) ambisonic stimuli. 95% confidence intervals for the 

mean are presented. The shaded grey violin plots show the distribution of data. 

In a series of comparisons, several significant differences 

were observed. Firstly, the combination of S1+O1 was 

significantly different from S1+O3 (t(220) = -3.61, p = .02), and 

from S1+O5 (t(220) = -5.54, p < .001). Additionally, S1+O1 

stimuli showed notable differences when compared to S3+O3 

(t(220) = -3.86, p = .01), and S3+O5 (t(220) = -6.63, p < .001). 

Conversely, S1+O1 case was significantly different from 

S5+O3 (t(220) = 3.60, p = .02), and S5+O5 (t(220) = -5.49, 

p < .001). Furthermore, S1+O1 demonstrated a significant 

difference from O5 (t(220) = -6.73, p < .001). In a different 

comparison, S1+O5 was significantly different from S3+O1 

(t(220) = 4.48, p < .001), S5+O1 (t(220) = 3.95, p = .01), and 
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S3 (t(220) = 4.82, p < .001). It also differed from S5 (t(220) = 

3.99, p = .01). The comparison between S3+O1 and S3+O5 

yielded a significant difference (t(220) = -5.57, p < .001), 

as well as between S3+O1 and S5+O1 (t(220) = -4.43, 

p < .001), and S3+O1 and O5 (t(220) = -5.67, p < .001). 

The S3+O5 group was significantly different from S5+O1 

(t(220) = 5.05, p < .001), S3 (t(220) = 5.92, p < .001), and S5 

(t(220) = 5.08, p < .001). Furthermore, S5+O1 was significantly 

different from S5+O5 (t(220) = -3.91, p = .01), and from 

O5 (t(220) = -5.15, p < .001). Lastly, S5+O5 showed significant 

differences when compared to S3 (t(220) = 4.78, p < .001), 

and S5 (t(220) = 3.94, p = .01). Notably, S3 was significantly 

different from O5 (t(220) = -6.02, p < .001), and the comparison 

between S5 and O5 yielded a t-value of -5.18, p < .001. 

Analyzing the plot of localizability ratings, an even greater 

tendency can be observed (compared to the immersion ratings 

plot) for the ratings to increase with the rise in object-based 

ambisonic order, relative to the increase in scene-based 

ambisonic order (ratings increase more rapidly with objects). 

The described pattern is consistently visible in all triple groups 

(separately for S1, S3, and S5). The number of statistically 

significant differences was notably higher than in the case of 

immersion. Among others, the largest differences were 

observed between the samples: S1+O1 vs. S3+O5, S1+O1 

vs. O5, S3+O5 vs. S3, and S3 vs. O5. In this case, the samples 

O5 and S3+O5 performed similarly in terms of ratings, 

achieving the highest scores. The worst performers were the 

samples S1+O1 and S3. The plots with unique shapes come 

from the samples S1+O5, S3+O3, and S3+O5, with S3+O5 

having the most distinctive shape. 

V. DETAILED ANALYSIS OF SEPARATE FIXED EFFECTS 

As outlined in IV, the merged sound samples can be 

examined as two distinct fixed effects: the spatial resolution of 

the scene-based ambisonic signal and the ambisonically 

encoded sound objects. Consequently, a more thorough analysis 

was conducted. 

A. The impact of scene-based and object-based ambisonic 

order on immersion ratings 

The LMM analysis of the fixed effect associated with scene-

based ambisonic order indicated no statistically significant 

differences in the immersion ratings. The statistically significant 

differences were observed only for the fixed effect associated 

with object-based ambisonic order: between the 1st-order 

ambisonics (1OA) and 3OA (t(241) = -4.70, p < .001), as well 

as 1OA and 5OA (t(241) = 5.14, p < .001). This indicates that 

the impact on immersion was only dependent on the ambisonic 

order of the encoded objects. Also, these results suggest that the 

3rd-order of ambisonics could be sufficient for achieving a 

satisfactory level of immersion, which aligns with earlier studies 

conducted by other researchers on this topic [27],[28],[29],[30].  

Figure 5 shows the plots showing the 95% confidence 

intervals for the immersion ratings grouped by scene-based and 

object-based ambisonic orders. 

B. The impact of scene-based and object-based ambisonic 

order on localizability ratings 

The LMM analysis of the fixed effect associated with scene-

based ambisonic order indicated no statistically significant 

differences for the localizability ratings, similar to immersion 

ratings. The statistically significant differences were observed 

for all the levels of the fixed effect associated with object-based 

ambisonic order: 1OA and 3OA (t(241) = -4.30, p < .001), as 

well as 1OA and 5OA (t(241) = -7.12, p < .001), but also 3OA 

and 5OA (t(241) = -2.82, p = .005). Similarly to the immersion 

ratings, the results for localizability perception indicate even 

higher dependence on the order of the encoded objects. The 

participants were able to rate the localizability significantly 

higher also when the order was changed from 3rd to 5th. This 

corresponds with several research findings that indicate the 

resolution of the 5th-order ambisonics matches the resolution of 

human hearing [31]. 

The plots showing the 95% confidence intervals for the 

localizability ratings grouped by scene-based and object-based 

ambisonic orders are shown in Fig. 6. 

 

 

Fig. 5. The immersion ratings averaged for different ambisonic orders. 95% 

confidence intervals for the mean are presented. The shaded grey violin plots 

indicate the distribution of data. 

 

Fig. 6. The localizability ratings averaged for different ambisonic orders. 

95% confidence intervals for the mean are presented. The shaded grey violin 

plots indicate the distribution of data. 

C. Room divergence impact on ratings 

The room divergence effect highlights how discrepancies 

between a synthesized auditory scene and the actual listening 

room can affect spatial auditory perception, particularly the 

externalization of sound and the sensation of immersion [25]. 

To mitigate the room divergence effect, the experiment was 

conducted twice, each time in a different room. The rooms 

differed mainly in their reverberation time, measuring 
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T30 = 0.19 s in the less reverberant room and T30 = 0.42 s in the 

more reverberant room. Apparently, this factor did not affect the 

results statistically significantly. Fig. 7 shows the 95% 

confidence intervals for the differences in ratings associated 

with the room, in which the listening test took place. 

 

 
Fig. 7. Room divergence impact on ratings for immersion (left) 

and localizability (right) 

VI. DISCUSSION 

Generally, sound objects had bigger impact on ratings than 

scene-based audio. Sound objects converted to the ambisonic 

format, originating from signals recorded at close microphone 

distances, were characterized by lower reverberation signal 

levels and a strong sense of proximity to the listener. It might 

seem that the distinctive acoustic features of the two rooms in 

which the experiments took place could have impacted the 

results; especially, the dominating object-based renders might 

have enhanced the perceived sound immersion in the shorter 

acoustics – despite, or perhaps because of, its clearer and more 

direct qualities. However, it turned out that the room had no 

significant impact on the ratings. 

Another factor that could have influenced the ratings might 

have been the quality of the support microphones used during 

the recording, which were of studio quality. The combined 

quality of these microphones may have surpassed the tonal 

balance of the ambisonic microphone based on MEMS capsules, 

such as the Zylia ZM-1 array, which could have been significant 

for the panel of sound engineering experts. In future research, it 

could be worth considering using the same model of support 

microphone for each instrument individually, ensuring that their 

collective quality is closer to that of the ambisonic microphone. 

Additionally, ensuring high-quality audio recordings is 

essential. An interesting point is that the Zylia ZM-1 

microphone struggled with capturing tambourine sounds (which 

was initially intended to be recorded). The result was 

unnaturally prominent sounds at higher frequencies. 

The type of music being recorded certainly influenced the test 

results as well. In this experiment, acoustic pop music was 

recorded. A characteristic feature of this genre is the frequent 

presence of a lead vocal centered in the stereo panorama and at 

the forefront of the musical mix. It can be assumed that the 

participants rated samples higher, in which the lead vocal was 

clearer and more dominant. 

VII. SUMMARY 

This study evaluates the effectiveness of combining scene-

based audio and object-based audio techniques to enhance 

spatial realism in ambisonic recordings, particularly focusing on 

the listener’s immersion and localization capabilities. 

By utilizing both a higher-order ambisonic microphone and 

strategically positioned support microphones, the captured 

360° sound field was manipulated across different ambisonic 

orders. These variations are assessed through a MUSHRA-like 

test, who rate each sample’s immersion and localizability. The 

analysis, conducted with linear mixed models (LMMs), reveals 

that higher ambisonic orders in object-based audio significantly 

improve spatial perception compared to scene-based audio, 

particularly in terms of localization accuracy. Results indicate 

that higher-order object encoding closely aligns with the human 

auditory resolution, suggesting it is a critical component in 

designing immersive audio experiences. 

Future plans for this research include refining the recording 

methodology by experimenting with different musical genres 

and testing additional ambisonic microphone arrays to better 

evaluate their impact on spatial perception. The implementation 

of a spherical loudspeaker array will serve to mitigate the room 

divergence effect while eliminating the need for binauralization, 

thus removing the dependency on HRTF selection that can 

significantly influence participants’ immersion experience. The 

authors also aim to explore advanced statistical models to 

further isolate factors influencing immersion and localization in 

various acoustic environments, providing more comprehensive 

data to guide sound engineering practices in immersive audio. 
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