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A new algorithm for generating integer partitions
and its parallel implementations on CPU and FPGA

Marek Nałęcz, and Gustaw Mazurek

Abstract—In this paper, the long-known bit representation of
integer partitions was used in a novel way to develop an algorithm
for generating the next partition of an integer n. This algorithm
is both loopless and conditionless (and therefore has strictly
constant execution time). These features lead to an efficient and
highly scalable parallel implementation on a modern multi-core
CPU processor or a modern FPGA chip. In the CPU case, just 30
processor clock cycles are required to generate the next partition
when n < 128. In the latter case, a single one of the parallel
instances uses only 1,595 look-up tables and 962 registers for
n < 128. It can produce the next partition in just 6 clock cycles.
Even cost-effective FPGAs can hold a few dozen such instances.

Keywords—parallel combinatorial algorithms; integer parti-
tions; field-programmable gate arrays; bitwise operations

I. INTRODUCTION

THE unprecedented computational power of modern field-
programmable gate array (FPGA) devices makes them

well-suited for solving combinatorial problems, which typi-
cally exhibit enormous computational complexity. One such
problem is the generation of all integer partitions of a given
integer n. Integer partitions constitute a significant and inter-
esting topic in combinatorics since the mid-eighteenth century
[1, p. 395]. In this paper, an effective parallel version of the
partition generation algorithm that fits well into the capabilities
of modern hardware is developed and presented. The proposed
algorithm uses only simple bitwise operations that can easily
be implemented on both a central processing unit (CPU)
and an FPGA. Hardware implementations of combinatorial
algorithms on FPGAs, in the spirit of [2] or [3], are an
interesting alternative to CPU or graphics processing unit
(GPU) implementations.

The remainder of this paper is organized as follows. Section
II provides a necessary combinatorial background: after intro-
ducing the bit representation of partitions used in the paper, it
presents basic operations on partitions, including the abstract
version of the partition generation algorithm and its adaptation
to the bit representation — the way of parallelizing the
algorithm is discussed, too. Then Section III provides details
regarding embedding this algorithm into the CPU and FPGA.
The sequential and parallel versions are presented on both
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platforms. The results, including timing, resource utilization,
scalability, and energy efficiency, are briefly discussed in
Section IV, along with a list of possible practical applications.

II. THEORY

A. Integer partitions

A partition λ of n, denoted as λ = (a1, a2, . . . , am) ⊢ n,
is a descending (non-increasing) representation of n as a sum
of m ≥ 0 positive summands: a1 + a2 + . . . + am = n,
a1 ≥ a2 ≥ . . . ≥ am > 0 for i = 1, . . . ,m. In line with [4],
[5], the term ‘summand’ is used in the present paper as less
confusing, although the word ‘part’ is more often encountered
in the literature. The number of all the (unrestricted) partitions
of a given n is called the partition function and is denoted p(n)
following the tables in [6]. The function p(n,m) is defined
as the number of (restricted) partitions of n into at most m
summands or (equivalently) as the number of partitions of n
into summands ≤ m [6, p. IX].

The natural order of partitions is reverse lexicographic order
[7]. In this order, the first distinct summand is greater in the
preceding of two partitions [8, pp. 320–321]. The ordering of
partitions allows for a bijection between the set of integers
{r : 0 ≤ r ≤ p(n)−1} and the set {λ : λ ⊢ n} of all partitions
of a given n using a ranking function r = Vn(λ) (defined as
the number of partitions of n preceding a given one) and its
inverse λ = Λn(r), called the unranking function [9].

In array representations, a partition is represented as a vector
(array) of elements (memory cells) of the same type. These
representations include standard representation [10, (3.17)],
[11, p. 652], [8, p. 321], part-count representation [12], [13,
(1.3)], [1, 7.2.1.4-(8)], and multiplicity representation [10,
p. 76], [13, (2.3)], [14, 5.3.2]. Standard representation requires
n(⌊log2 n⌋ + 1) bits, and part-count representation twice as
many. Multiplicity representation is slightly more compact, but
it is not suitable for every application [8, p. 321]. As all array
representations require significant memory, they are not well
suited for massive parallelization on contemporary hardware.
Therefore, the authors tend to use a more economical bit
representation.

The bit representation used throughout the present paper is
created as a left-to-right concatenation of the sequences of bits
corresponding to the consecutive summands, from the smallest
summand to the largest one. Each summand ai is represented
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as ai bits: (ai − 1) 0s followed by a single 1. An n-bit
stream obtained in this way is then left-aligned within a w-bit
machine word (where w > n) and right-padded with (w− n)
0s, constituting the binary number B(λ), which represents the
partition λ = (a1, a2, . . . , am) ⊢ n as:

B(λ) =
(
0am−110am−1−11 . . . 10a2−110a1−110w−n

)
2

=

m∑
i=1

2w−
∑m

j=i aj .
(1)

Left alignment was used because operations on the most sig-
nificant bits (MSBs) are better supported by modern hardware
than operations on the least significant bits.

The bit representation is very compact (it typically requires
an order of magnitude fewer bits than the standard representa-
tion). Perhaps this was why it was proposed by Comét at the
beginning of the digital computer era in 1953 [15, p. 22], [16,
p. 144] (actually, with the reversed order of summands). The
representation similar to (1), but without the rightmost 1 and
the following 0s, was proposed in [10, p. 75] and [17, p. 118]
as ‘difference representation’.

B. Operations on partitions

The basic operations on partitions of an integer n include:
• Determining the first and last partition in reverse lexico-

graphic order.
• Comparing any two partitions.
• Operations requiring the creation of a representation of

a partition based on finding its summands one by one,
such as computing the unranking function.

• Calculating the next partition in lexicographic or reverse
lexicographic order.

The latter operation is crucial for efficiently generating all the
partitions of a fixed integer. Using the unranking function for
this purpose, although possible, is orders of magnitude slower.

The algorithm for generating the next partition in reverse
lexicographic order has been described in its abstract (i.e.,
representation-independent) form in many sources (e.g., [10,
p. 150], [17, p. 120], [18, (14.2.1)–(14.2.2), p. 230], [19,
Alg. 7, p. 13], and [1, p. 391]). It can be written as Algorithm
A, which is the basis of all algorithms known to the authors
that generate unrestricted partitions in reverse lexicographic
order. Note that starting the representation (1) from the small-
est summands and aligning it to the left facilitates step 1 of
this algorithm. The natural implementation of step 2 requires
a loop, and steps 1 and 3 — conditional statements.

Algorithm A Generate next integer partition — abstract vers.
1: Find the smallest summand k + 1 > 1. If none, stop.
2: Use k + 1 and all of the following 1s to create as many

summands of size k as possible.
3: The remainder < k, if any, becomes the last summand.

Let us also note that all algorithms for the standard repre-
sentation contain loops, whereas all algorithms for the part-
count or multiplicity representation are loopless. However,

all algorithms for the multiplicity representation working in
reverse lexicographic order require computing the integer
division or remainder, which are not cheap operations. Finally,
all partition generation algorithms known to the authors con-
tain conditional statements; thus, they do not have a strictly
constant execution time, unless appropriately padded.

The desirable features of the algorithm to easily be paral-
lelized include: using the weakest possible parallel computa-
tion model, having the lowest memory requirements, and being
as simple as possible [20].

C. Operations on partitions in bit representation

The basic operations on the partitions of an integer n are
elementary in the bit representation. The first partition in the
reverse lexicographic order is represented by:

B(Λn(0)) = (0n−110w−n)2 = 2w−n, (2)

whereas the last is by:

B(Λn(p(n)− 1)) = (1n0w−n)2 = 2w − 2w−n. (3)

The equally simple task is to compare two partitions accord-
ing to the reverse lexicographic order by employing a trick
described in [1, Ex. 7.1.3-45, p. 590].

The first step of Algorithm A is equivalent to finding the
number t of leading 1s of B(λ). The smallest summand > 1
(if any) appears just right to this run of 1s. In this way, line 1
of Algorithm B is obtained. It applies the function ℓ(x), which
counts leading 0s, to the negated representation (the negation
is denoted by the overline). Line 2 of Algorithm B computes k,
which equals the smallest summand > 1 less one, by counting
0s following the run of leading 1s. The appropriate t-bit shift
(≪) is used to discard these 1s, followed by invoking the ℓ(x)
function.

Algorithm B Generate next integer partition — bitwise vers.
Require: p = B(Λn(r)), 0 ≤ r < p(n)− 1 {r = rank}
Require: ⌊log2 p⌋ < nmax = w − 1 {w = word length}

1: t← ℓ(p) {count leading 1s in negated representation}
2: k ← ℓ(p≪ t) {count run of 0s just right to leading 1s}
3: p← p⊕ (µnmax,k ≪ (nmax− t)) {µnmax,k precomputed}

Ensure: p = B(Λn(r + 1)) {next partition}

The second step of Algorithm A uses the k+1 summand and
all the preceding t 1s. We must construct as many summands
equal to k as possible. First, the summand k + 1 has to be
shortened by one, by changing its most significant 0 to 1.
This 1 will become the first bit of the new summand. The
following (k−1) bits (towards MSB) are included in this new
summand. Up to now, these bits were 1s. For the successor
partition, we must change all of them to 0s. The next bit to the
left will start another summand equal to k; thus, this bit will
remain 1 in the new representation. This process is repeated
right-to-left for as long as possible (i.e., until we run out of
the initial leading run of 1s). As a result, the bits at positions
w− t− 1+ k, w− t− 1+ 2k, w− t− 1+ 3k, and so on will
remain unchanged, and we must negate all remaining bits in
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the range w − t − 1, . . . , w − 1. If t is not divisible by k, a
summand < k will naturally arise on the left, implementing
step 3 of Algorithm A.

Changing selected bits from 0 to 1 and in the opposite
way simultaneously is most conveniently done by the XOR
operation ⊕ with an appropriate magic mask µt,k = 2w−t−1µk

(where µk is given below by (5)), as in line 3 of Algorithm B:

B(Λn(r + 1)) = B(Λn(r))⊕ µt,k. (4)

In conformance with the description in the previous paragraph,
the generic mask µk should be applied from bit position w−
t− 1 to the left. The mask µk should contain a 1 and then a
repeating pattern consisting of (k−1) 1s and a 0. Such a mask
is an infinite and periodic 2-adic fraction (cf. [1, p. 141]):

µk = (. . . 01k−1 01k−1 1)2 = − 2k

2k − 1
, (5)

where underscores denote the repeating pattern of bits. The
masks (5) can easily be tabulated after truncating them to w =
nmax + 1 bits, and denoting as µnmax,k for k = 1, . . . , nmax.

Algorithm B is the most compact algorithm for generating
the next partition known to the authors. It is loopless and
does not contain conditions. The table of precomputed masks
µnmax,k is sufficiently small (2 kB for nmax = 127) to fit
within a CPU L1 cache or to be implemented in an FPGA
using only look-up tables (LUTs). Function ℓ(x) used twice
in Algorithm B (lines 1 and 2) counts the leading 0s of a binary
number x. It is equivalent to the fast LZCNT operation from
the BMI1 instruction set of the x86-64 processor architecture.
Other operations required to compute the next partition include
only subtraction, multi-bit-shifting, and exclusive OR. The
simplicity of these operations has been emphasized by Comét
[15, pp. 22–23], [16, p. 144].

D. Parallelization

Algorithm B, which determines how to generate the single
next partition, can easily be applied to generate all partitions
of a fixed integer n. It is sufficient to initialize the variable p,
representing the partition, with the representation of the first
partition (2) and repeat the algorithm until the last partition (3)
is reached. Note that in this way, we generate only p(n) − 1
partitions using Algorithm B (skipping the first one, which is
the algorithm input).

This procedure for generating all partitions of integer n can
easily be parallelized as in [11, p. 644] or [20, p. 128] into M
completely independent processes. Let us assume M < p(n)
and define M + 1 ranks rk: 0 = r1 < r2 < . . . < rM <
rM+1 = p(n) − 1 that divide the range of all partition ranks
0, . . . , p(n)− 1 into M approximately equal chunks:

rk = (k−1)
⌊
p(n)− 1

M

⌋
︸ ︷︷ ︸
quotient q

+min(k−1, (p(n)− 1) mod M︸ ︷︷ ︸
remainder d

),

(6)
where k = 1, . . . ,M+1. The ranks rk and rk+1 define the first
and the last partition belonging to the k-th chunk as Λn(rk)

and Λn(rk+1), respectively. Note that a given chunk’s final
partition is also the next chunk’s initial partition.

The initial and final values of the variable p of Algorithm B
are determined by calculating the unranking function Λn, and
all intermediate values are generated using Algorithm B. We
noted above that calculating the unranking function can be
orders of magnitude slower than calculating the next partition.
In practice, however, this is irrelevant because the number
of chunks M ≪ p(n), so the expensive unranking operation
affects only a tiny fraction of the data and has no noticeable
effect on the execution time of the parallel program. Further-
more, the present study used the fastest unranking algorithm
known to the authors, given in [21] and based on the efficient
tabulation of the p(n,m) function.

Assuming the ranks (6) as the boundaries of the individual
chunks generated concurrently, the first d chunks contain q+1
partitions each, while the remaining M − d chunks contain q
partitions each. As a result, the sizes of the individual chunks
differ by at most one, allowing the work to be distributed as
evenly as possible between the chunks. Then, assume that the
number of chunks M is either a multiple of the number of
available processing elements (PEs), or is much greater than
the number of PEs. In that case, we obtain an optimal load
balance of the individual PEs.

III. EXPERIMENT

A. CPU implementation

Algorithm B was coded in C23 language and then tested on
an 11-th Gen Intel Core i7-11800H CPU processor running
the Windows 11 operating system. The GCC 14.2.0 compiler
was used for the tests presented below; almost identical results
were obtained using the Intel oneAPI 2025.0.0 compiler. The
CPU core clock frequency was fixed at 4.05 GHz to make
the timing results more reliable. The observed variability in
execution time for different runs of the same program did not
exceed a fraction of a percent.

First, the sequential version of Algorithm B was tested
to investigate the resource requirements as a function of the
partitioned integer n and the length of the partition represen-
tation w = nmax + 1. Since the CPU processor has a fixed
architecture and dedicates a single core to the execution of
the single-threaded algorithm, the only relevant resource is the
program execution time, measured in processor clock cycles.

The representation lengths w equal to 32, 64, 128, and 256
bits were analyzed. For each of them (except w = 256), the
tests included the integer n = nmax = w − 1 and several
smaller integers n for which the number of partitions p(n)
exceeded for the first time the consecutive powers of 10 (in
the range from 102 to 1012). The largest value tested in the
sequential mode was n = 185 —- the program execution
time exceeded 5.5 hours in this case. To ensure good time
measurement accuracy for smaller values of n, the generation
of all partitions was repeated multiple times, so that the actual
program execution time did not drop below 1 s. The results are
presented in Fig. 1, showing the net program execution time
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Fig. 1. CPU user time per partition as a function of n for different word
lengths w.

(defined as the user time given by the system time command)
divided by the number of generated partitions.

Fig. 1 shows that the generation time of a single partition
does not depend on n for a fixed nmax = w − 1. Minor
deviations visible in the plot result from the inaccuracy of the
measurement of the execution time. Although the tested pro-
gram was the only user application running on the computer
during the measurements, dozens of unavoidable operating
system processes were running in the background. The second
observation concerns the identical generation times of a single
partition for w = 32 and w = 64. This results from the fact
that although the CPU processor actually has a dual 32/64-bit
architecture, the test application was compiled for 64-bit mode
even with w = 32 (as this variant was faster).

Since the number of clock cycles per partition depends only
on the word length w, this relationship is presented in Fig. 2.
As mentioned above, the partition generation times for w = 32
and w = 64 are identical. Then, the function grows slightly
faster than linearly —- a relationship close to linear is obtained
using a logarithmic scale on the vertical axis. The number
of clock cycles c can be approximated by the formula c ≈
12 ew/140 for w ∈ {64, 128, 256}. However, this relationship
should not be given much importance — it does not result from
the essence of the problem or the algorithm but only from the
properties of the multiple precision arithmetic library used by
the compiler, which extends the capabilities of the natively
64-bit CPU.

Further studies concerned the parallel version of Algo-
rithm B, obtained in the manner described in Subsection II-D.
The problem was decomposed into M completely independent
chunks. Since the hardware platform has eight physical cores,
each capable of running two concurrent threads, the study was
carried out for M changing from 1 to 16, then with a step
of 16 up to 128. Each time, the speedup obtained thanks to
parallelization was determined and estimated as the ratio of
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Fig. 2. CPU user time per partition as a function word length w.
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Fig. 3. CPU user speed-up factor as a function of the number M of
concurrently scheduled chunks.

user time to real execution time (both values were returned by
the system time command). The results are shown in Fig. 3.

As long as the number of chunks did not exceed the number
of physical processor cores (M ≤ 8), the obtained speedup
was essentially equal to M (it was within 99.3. . . 99.9% of M ).
The speedup was slightly lower for M values ranging from
9 to 16 because of the concurrent execution of two threads
on one physical core and the overhead of handling system
applications in the background. Nevertheless, it remained at
96.7. . . 98.3% of M , which should be considered an excellent
result. For larger values of M , which are multiples of the
number of virtual cores (16), the speedup settled at approx-
imately 15.7. The results indicate the excellent scalability of
the parallel version of Algorithm B with respect to the number
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of processor cores. Thanks to parallelization, even on a not
very powerful CPU used in the experiments, it turned out to
be possible to generate all (approximately 1013) partitions of
integer n = 211 in a time slightly exceeding 5 hours. The
generation of all partitions of such a large integer n on a PC
platform has not been reported in the literature so far, to the
best of the authors’ knowledge.

During these timing experiments of the parallel version of
the program, the effective power consumed by the notebook
computer used in the tests (with the display turned off) was
measured by the VOLTCRAFT Energy Logger 4000 as 62 W.
At the same time, the HWINFO version 8.28 software showed
the total CPU power (averaged over half an hour of the
computations) as 40.3 W, most of which was consumed by the
Intel Architecture cores (36.9 W). Consequently, only about
60% of the power consumed by the computer was devoted to
the computation of the partitions.

Obtaining such promising parallelization results for Algo-
rithm B on the CPU raises questions about parallelization
results on the FPGA platform. It should scale better with
respect to the word length w (due to the lack of need to use
a software multiple precision library) and with the number of
chunks M executed in parallel (due to the lack of overhead
for handling operating system tasks), and also to provide much
better energy efficiency. This approach is investigated in the
following Subsection III-B.

B. FPGA implementation

The authors are unaware of previous studies on the gen-
eration of the next partition using an FPGA. Despite its
title, Butler’s article [2] is devoted to partition unranking, not
generation; the work [22] regards set, not integer, partitions.
For this reason, an attempt to implement Algorithm B in
FPGA technology would be justified. An FPGA device made
in 28 nm technology (XC7A100T by AMD) was chosen,
available on a Digilent Nexys A7-100T development board
[23]. It offers a rich amount of programmable logic resources
(15,850 programmable logic slices, each with four 6-input
LUTs and eight flip-flops), which encourages the prototyping
of complex algorithms. Moreover, the selected board is offered
as a cost-optimized evaluation platform for academic purposes.

Algorithm B was coded in VHDL for w = 128 as a pipeline
shown in Fig. 4 (pipeline registers and clock distribution are
not shown for clarity). The computation process is controlled
by a simple state machine that receives input signals, counts
the clock cycles required to process a complete iteration,
and drives status output flags. The computation is initialized
with a starting 128-bit word p = B(Λn(r)) representing the
partition (P_IN), accompanied by ND = 1 and LB_EN = 0.
After completing the iteration, the VALID flag signals the
appearance of a next partition representation p = B(Λn(r+1))
at P_OUT. It is then fed back to the input (and used externally
if needed), when LB_EN = 1, to start a new iteration.
If a required final partition (given in CMP_IN) appears at
P_OUT, the CMP_OUT flag is additionally activated, and
the number of executed iterations is presented at the CNT
output.
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Fig. 4. Implementation of Algorithm B as Partition Process module.

The processing pipeline consists of several lower-level mod-
ules. The LZC 128 module presented in Fig. 5 is responsible
for counting leading zeros ℓ(X) in a 128-bit binary word X,
and it consists of two (smaller by half) LZC 64 modules. Each
LZC 64 module is realized again in a similar manner from
two yet smaller modules LZC 32 (described in detail in [24]),
and composed hierarchically from even smaller (16- and 8-bit)
blocks. The combination logic that gives the zero-count result
Z is implemented as an extension of the logic equations given
in [24, (20)–(24)].

The LOC 128 module is a modified version of LZC 128
with negated all input bits to obtain the functionality of
counting leading ones in a 128-bit word. Both bit shifters
(SHIFTER 128) are well-known barrel shifters with seven
layers of simple 2:1 multiplexers controlled by individual bits
of the SHIFT input. The ROM block contains 128 words,
128 bits each, equal to the precomputed masks µnmax,k for
k = 1, . . . , nmax, with an extra zero fill-in at address 0.

To replicate numerous instances of Algorithm B and in-
tegrate them with higher-level functionality, each instance
was wrapped in the Partition Engine module, depicted in
Fig. 6. This module incorporates an additional state machine,
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Fig. 5. LZC 128 module, implementing ℓ(X), which counts leading 0s.
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Fig. 6. Implementation of the wrapper module Partition Engine.

launched by the START input, that controls the algorithm
iterations (by driving ND and LB_EN signals) until achieving
the last partition, which is signaled by CMP_OUT. It also
contains two 128-bit registers that supply the words repre-
senting the first (P_START) and the last (P_STOP) partition
scheduled for the given instance of the algorithm. These
two words are programmed during a setup stage (before the
START signal) via a simple 8-bit bus (ADDR, DATA, SEL_1,
SEL_2). At the output of the Partition Engine, the WORKING
flag signals the activity state (i.e., when the iterations are
performed), and the CNT value shows the number of executed
iterations.

The top-level module shown in Fig. 7 contains M instances
of Partition Engine, a Communication Controller, and one
Phase Locked Loop (PLL) that doubles the input clock fre-
quency. All the instances of the Partition Engine work in
parallel and share the common START signal. There is one
difference in CNT_INIT input values — the first instance
of Partition Engine works with CNT_INIT = 1, while the
others with CNT_INIT = 0. Such a difference avoids double-
counting the last partitions, which are simultaneously used
as the starting ones for the subsequent instances. All the
CNT outputs from the Partition Engines are concatenated
into one large (M × 32-bit) shift register to enable 8-bit
readouts and final summation after finishing the iterations. All
WORKING flags are ORed to obtain a global flag required
for counting iterations, determining the total processing time,
and detecting the end of computations. The Communication
Controller implements a UART interface and an additional
state machine to handle a simple text-based protocol used to
communicate with the host PC. The RXD and TXD pins of the
UART are wired to the USB-UART bridge on the development

#1

#M

#2

CLK
200 MHz

...

Partition

Engine

Partition

Partition

Engine

Engine
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100 MHz
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LED0

LED10
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PLL

Fig. 7. The top-level schematics.

board to connect to the host PC USB port. All the modules
operate synchronously with a clock from the PLL. The board
is powered from the host PC via a USB cable.

The design was implemented in Vivado 2020.2 for M = 36
parallel instances of the Partition Engine. Preliminary estima-
tion of the combinational path delay yielded a minimum clock
period of 4.643 ns, which resulted in a 215 MHz clock fre-
quency limit. Therefore, the design was implemented with the
clock frequency of 200 MHz. More than 91% of Slice LUTs
were utilized (57,985 LUTs configured as logic). Additionally,
26% of Slice Registers (33,135) were occupied. No scarce
FPGA resources like block RAM and DSP slices were used.
Each instance of the Partition Engine takes 1,591. . . 1,595
LUTs and 866. . . 962 registers, depending on the location and
on the optimization results. The Communication Controller
requires only 598 LUTs and 240 registers.

To check design scalability, additional configurations of the
Partition Process module were designed in VHDL, synthesized
and implemented for w ∈ {16, 32, 64, 256}, similarly to the
structure shown in Fig. 4. The logic utilization for each case
was then read from the post-implementation report generated
in the Vivado environment. The LUT and register counts
required by each instance of the Partition Engine are presented
in Fig. 8 for all considered values of w. The close-to-linear
relationship between the word length w and FPGA resource
utilization is readily visible.

The computation of each iteration of Algorithm B takes
6 clock cycles due to pipeline implementation. The project
runtime is controlled by the host PC in the MATLAB en-
vironment via a serial link. In this parallel implementation,
the complete computations for n = 127 (generating p(n) =
3, 913, 864, 295 partitions) take 652,310,727 clock cycles and
last for 3.262 s, as measured by the internal cycle counter
in the Communication Controller. During these computations,
the development board consumes 1.74 W of supply power
from the USB port (the real-time supply voltage and current
were measured with the UT658DUAL USB Tester from UNI-
T). It must be mentioned that the considered design is fully
scalable, and the parallelization factor M is limited only by
LUT availability, since the register utilization is always much
lower than that of LUTs. For instance, the project could be
moved to the bigger device (XC7A200T) from the Artix-7
FPGA family, which contains more than twice the available
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Fig. 8. FPGA resource utilization as a function word length w.

resources (134,600 LUTs). In this extended platform, up to 84
instances of the Partition Engine could be implemented (for
w = 128), and the computation time for the same problem
size of n = 127 would be reduced to 1.4 s, thanks to the
increased parallelism.

IV. CONCLUSIONS

In this paper, a novel integer partition generation algorithm
based on the bit representation was developed. Its unique
features (loopless, conditionless, and pure function) lead to the
efficient parallel implementations on a CPU and an FPGA,
which have been described in detail. The parallel instances
are independent, resulting in much better flexibility of the
hardware implementation than linear systolic arrays proposed
in [22]. Each instance in the FPGA implementation uses only
LUTs and registers (less than 1,600 and 1,000, respectively,
for n < 128). Hence, it is highly scalable and easily portable
to different hardware platforms.

Although the single-instance FPGA implementation is four
times slower than the single-threaded CPU implementation for
nmax = 127, the FPGA is a more promising platform. First, it
scales better with the word length. For example, increasing the
word length by 2 (to 256) in the CPU implementation results
in a 2.5 times longer execution time. In contrast, in the FPGA
implementation, the number of parallel instances that fit within
the chip resources decreases linearly (2 times) in this case.
Second, even on a cost-optimized evaluation FPGA platform
used in this research, the number of parallel instances is a few
times greater than the number of cores available on typical
CPU processors (except the highest-end solutions). Finally, the
energy advantage of the FPGA solution prevails: the energy
required to compute one partition using the parallel FPGA
implementation (1.45 nJ) is approximately 23 times lower than
that required by the multi-threaded application on the CPU
used in the experiment (33 nJ).

The presented implementations were designed only as a
proof of concept. Hence, the generated partitions are just
counted. However, the results prove that the fast and energy-
efficient FPGA generation of combinatorial objects is feasible.
The proposed approach seems thus helpful in solving open
problems such as computing the average number of distinct
summands of a partition [11, p. 653], the maximum number of
such summands, the average number of summands [8, p. 331],
or the average length of a rim representation [16, p. 144], [10,
pp. 75–76]. This could be the subject of further research.
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