J]

D
e Manuscript received September 3, 2025; revised October 2025.

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 4, PP. 1-7
doi: 10.24425/ijet.2025.155469

Data-driven dependency injection for embedded
software, enhancing reusability with C++

Slawomir Niespodziany

Abstract—This article presents an architecture for engineering
reusable embedded software using modern C++ principles and
a custom-built dependency injection framework. It details the
framework’s design, specifically tailored for resource-constrained
environments. The framework promotes modular and testable
architecture. Its data—driven (via Json file) configuration defines
component dependencies and determines their instantiation. The
article demonstrates how such approach facilitates component
decoupling and provides a viable path for developers to create
scalable, portable, and high-quality embedded software, signifi-
cantly reducing future development efforts.

Keywords—data driven; dependency injection; embedded;
reusability

I. INTRODUCTION

HEN it comes to non-recurring engineering costs of

building an embedded system, the contribution of
software development grows, compared to the cost of hardware
design in recent years. The reason for that has two origins.

Firstly, semiconductor complexity grows accordingly to the
Moore’s law [1]. While several decades ago the hardware
capabilities were limited and only basic software algorithms
were be able to fit into memory and execute with the available
processing power, now the progressing development has lead
the industry to a point where hardware is no longer the
bottleneck. Silicon manufacturers constantly put more features
into their products. The chips scale down. The effort from
the mechanical design perspective doesn’t change much. PCB
design is still a task which can be tackled by individuals or
small teams. On the other hand side, the software for more
complex systems is sometimes developed by hundreds of engi-
neers. This happens to be a problem from various perspectives
(e.g. management or budget), but at certain project scale (e.g.
spaceships, self-driving cars) increasing the team size may not
necessarily lead to increasing its capabilities [2]. With a little
luck, Al based solutions may be a remedy in some time, but
that doesn’t seem to be yet.

Secondly, for a business case to be successful nowadays,
the functionality of a device shall not be trivial. The unique
intellectual properties embedded and tightly integrated into
products are essential to win markets. No less important is
the ability for the product to adapt to changing expectations.
The embedded electronics - once shipped, remain untouched

Institute of
Poland

with
Technology,

Slawomir Niespodziany is
Science, = Warsaw University of
slawomir.niespodziany @pw.edu.pl).

Computer
(e-mail:

for the product’s lifetime. On the other hand, the software is a
subject to constant OTA (or non—OTA) updates [3], sometimes
making its development a never ending story.

II. REUSABLE SOFTWARE

One solution to mitigate the mentioned problems is reusing
once developed software. A prerequisite for this is imple-
menting it in a way which allows for such reuse in the
future. In long term this leads to enhancing scalability and
maintainability [4], directly impacting the underlying business
needs.

Over the years software industry has developed multiple
methodologies and patterns which support reusability. They
are, however, underestimated in embedded engineering [5]. It
is a complex field in the sense of combining various sciences
and problem domains (e.g. electronics, system engineering,
signal processing, low-level development). For this reason,
it happens to lag behind the industry in applying some of
the modern practices. Recently [0], such include contener-
ization, dependency management, CI/CD pipelines, evolving
build tools and incrementing language standards (e.g. C++14).
However, since all of those are in reach, the only missing
piece is an established practice, directing how to utilize them.
It may seem difficult to provide a methodology applicable
too any new project, as embedded software is usually tightly
coupled with the hardware specific for each. However, the C++
language standard is a great starting point.

This paper describes an architecture proposal and a
framework implementing it - Diff - Dependency Injection
Framework in its First variant. The proposed architecture
structurizes process of designing embedded software, enabling
it to be reused in the future. Its main design goal is to provide
universal and testable software, portable between an arbitrary
set of architectures and targeted for embedded systems (but
with an option to be applied in other projects too). The
fundamental building block is Dependency Injection pattern
[7]. Because of the nature of embedded platforms, the imple-
mentation language is C++14, shall nowadays be supported
by all maintained compilers (it is already over 10 years
old). Compared to C, or even C++03 it offers a significant
improvement in capabilities, which allow for implementing
various automations, described further.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

ITI. COMPONENTIZATION

Well designed reusable application is composed of multiple
independent parts [8]. Each can be either used to assemble
another application, or replaced for its updated version (e.g.
to fix bugs) without the impact on other parts. In this sense
such parts can be viewed as building blocks. In the context of
this paper they are referred to as components. Each component
provides certain, well-defined functionality.

Components in an application interact with each other. One

way to achieve this is to make one component depend on
another. As a result the first knows the interface of the second.
However, this can easily result in leakage of the internal details
of the dependency into its interface, resulting in tight coupling
of both components.
A better approach provides the interface as a separate entity,
requiring both components depend on that interface [9]. In the
proposed architecture it is a separate component - an interface
component. It only consists of the definition of the interface,
no implementation. In most cases it will fit into a single header
file, thus it is easy to maintain and is expected to change rarely.
Nevertheless, it is an important element, as both neighboring
components depend on it (Figure 1). One component will
implement that interface and the other will use it.

«components» |
ComponentA = Only depends on the interface Iﬁ

uses

h 4
®«inrerface component:
Interfacel

implements

«component» - |
ComponentB = Only depends on the interface Iﬁ

Fig. 1. A thin, independent interface provides a way for both components
to interact with each other. ComponentA uses interface implemented by
ComponentB. Both components are dependent on that interface, but not
on each other. This results in a decoupled set of building blocks for the
application.

The components consisting of implementations of various
features are simply referred to as components.

A. Interface component

As interface component consists of no implementation, it fits
into one or several header files and can be stored in form of
a header—only library. It is provided as an abstract C++ class,
consisting of pure—virtual member functions. This isolates the
interface. It allows other components to inherit from it and
implement the required functionality.

The advantage of such approach comes primarily from the
design order. Firstly, an interface is defined and released. Only
then a component inherits from it and provides the implemen-
tation. This prevents from information leakage from the inside

S. NIESPDOZIANY

of a component towards the inter—component boundary.

An interface obviously needs to be thoughtfully designed,
as it is expected to account for all the information, which
may be passed through it in the future use—cases. It is a
subject for updates and versioning. New interface versions may
be released in time and they may even form an inheritance
hierarchy to maintain backward compatibility. It must be kept
in mind, however, that using an updated interface version
will result in the need of updating all the implementations
depending on it. While it may seem to be a problem, it shall
rather be considered as a form of controlled damage. Usually,
when software is developed without this kind of structure,
updates which drag multiple other updates along occur in
random points. With the proposed architecture this area is
known upfront and thus can be kept minimal to reduce the
chance for an update to be necessary.

B. Component

Regular component can be accessed and communicated with
through the interfaces it inherits end exposes. It consists of
algorithms and data structures and provides implementations
for the abstract functions. A component is implemented in
form of a C++ class and may utilize other classes and external
libraries, depending on the domain of the problem it solves.
It may inherit from multiple interfaces. This allows for those
interfaces to be fine grained and independent from each other.

A component only depends on its related interface com-
ponents. Because no other components depend on it, it can
be easily replaced by its equivalent (e.g. an updated version),
without breaking any dependency relations.

1) Implementation: For an implementation of a component
there are no restrictions regarding its internals. From the
framework perspective it has to be provided as a C++ class and
inherit a base class template diff::Component. This base class
serves several purposes. Firstly, it stores ID of a component
used by the framework to identify it and the dependencies it
exposes. Secondly, it provides the framework with information
about the interfaces through which a it shall be exposed as
a dependency. This provides an important distinction from
the inheritance hierarchy, which simply results from the im-
plementation needs and should not be considered by the
framework. Lastly, the base class provides a member function
used for per instance configuration, using user—provided set of
parameters.

A component may expose dependencies in two ways -
directly and from the side. The component object may be
a dependency itself. In such case it implements a specific
interface and is then injected as it. For a more fine grained
functionality, there may be a need to expose multiple smaller
dependencies. For this reason, a set of internal objects, which
implement certain interface can be exposed from the side of
the component. In such case the ID of each such dependency
is composed of the parent component ID and a suffix provided
individually for each dependency. In such case the parent
component, which owns its side dependencies, implements a
member function which fills up a map consisting of suffixes
and references to the internally owned dependency objects.

DATA-DRIVEN DEPENDENCY INJECTION FOR IOT AND EMBEDDED SOFTWARE, ENHANCING REUSABILITY WITH C++ 3

The first parameter of the base class template is the compo-
nent type itself. The framework uses CRTP [10] (Curiously
Recurring Template Pattern) to automate several tasks and
offload them from the user. Then a wrapper type diff::as can
be used to make the component inherit a selected interface.
This also makes the framework notified about the implemented
dependency type and will result in exposing it as a dependency
of the interface type. A wrapper type diff::side can similarly
be used to expose multiple side dependencies, but it also
requires a corresponding member function to be implemented.
Examples are shown in Figure 2 and Figure 3.

using diff;

class MyComponent public Component<
MyComponent,
as<InterfaceA>> {

public:

// Implementation of InterfaceA

}i

Fig. 2. Component MyComponent inherits from a base class template
diff::Component, parametrized with the component type MyComponent itsself
(CRTP) and a wrapper class diff::as for InterfaceA, further implemented by
the component itsself. This enables framework to expose the component as
a dependency of type InterfaceA. Its identifier is the same as the component
ID.

GEEEEEEeEeaeeeeeeect

using std;

using diff;

class MyComponent public Component<
MyComponent,
as<InterfaceA>,
side<InterfaceB>> {

protected:
class MyInternal public InterfaceB { ... };
MyInternal a, b;

void side (map<string,
reference_wrapper<InterfaceB>>
&sideDeps) {
sideDeps.emplace ("a", a);
sideDeps.emplace ("b", b);
}

bi

Fig. 3. By extending the example in Figure 2, base class template is
parametrized with wrapper type diff::side for InterfaceB. This also requires
providing member function side and enables the framework to expose objects
returned by this function. In this case, two objects - a and b - are exposed
as InterfaceB under the identifiers composed with the parent object ID and
given suffixes.

Dependencies are passed to a component via its constructor.
The framework automatically determines the number and types
of dependencies to be injected for a component. Depending on
the user provided dependency identifiers proper dependencies

are selected for injection. Figure 4 shows an exemplary
implementation.

#include <InterfaceA.h>
#include <InterfaceB.h>

using diff;

class MyComponent
public Component<MyComponent> {
public:

MyComponent (InterfaceA &a, InterfaceB &b);

}i

Fig. 4. Consuming dependencies is as simple as accepting them in component
constructor. The injection is handled by the framework as described in further
sections.

C. Module

Component is a logical entity, but it has to be released

in a physical form. For an interface component this form is
a header-only library, usually consisting of a single header
file. It does not require building, thus it is natively platform
independent. Regular components are released in form of
statically linked libraries. Less often, depending on the require-
ments and possibilities, they may also be dynamically linked.
Storing components in form of C++ libraries allows them to
be processed, managed, versioned and distributed with use of
tools developed for that purpose and used across the industry
(e.g. CMake, Conan?2).
Another benefit of keeping all the components in separate
libraries is the fact that they can be either linked with the
final binary or not. This trivial integration method enables
automated composition of multiple varaints of an application
and can be automatically realized by CI/CD pipelines [!1].

D. Performance considerations

The presented architecture is based on Dependency Injection
design pattern which decouples components from each other.
This comes at a cost of referencing dependencies through their
polymorphic interfaces, not directly the objects. Because of
this indirection, there is a slight overhead on performance.
The compiler firstly accesses the virtual functions table and
then calls the actual implementation [|2]. This additional
memory access may impact the performance of very specific
applications, composed of multiple components, accessed very
often (e.g. a component per each image pixel, or per data
sample). For such high—performance applications a simple
workaround could be to use the polymorphic interface to
hand over memory pointers and then operate directly on
buffers. In most cases, however, this effect is negligible. When
considering the benefits brought by component decoupling, the
resulting trade—off is desired.

IV. COMPONENT MANAGEMENT

The previous section focused on how to implement indi-
vidual components to make a decoupled design. This section
describes mechanisms used internally by the framework to
allow for data—driven management, based on user—provided
information.

A. Component factory

A component of a given class may have multiple instances.

Each instance is constructed during application startup and has
its own configuration. This is handled by the framework, based
on data loaded from the user. Startup time instantiation allows
for the application to be reconfigured without rebuilding.
For this purpose each component has its own factory and
each factory is referenced by the initializing code when a
component requires constructing.
Framework provides a template class Factory, which inherits
from an AbstractFactory. This allows the initialization code
to be independent from concrete component classes. All fac-
tories available within an application are accessed through
a FactoryRegistry, which is a publicly accessible singleton
class, aggregating them. Factory of each component type
requires to be instantiated on its own and registered within
the FactoryRegistry to be further available. This actions are
automated and realized by the RAIl-like FactoryRegisterer.

From the users point of view, to allow the framework to
construct components of a given type, a FactoryRegisterer
for that type has to be instantiated as a static variable in
its own module. When the module is linked with the appli-
cation binary, FactoryRegisterer performs construction of the
underlying factory and registers it within FactoryRegistry. This
happens without user intervention. From there, the framework
engine is able to construct enu number of components of the
discussed type. Figure 5 presents all the code required for that
purpose from the implementers perspective. Figure 6 depicts
architectural relationship between the described classes.

using diff;

class MyComponent
public Component<MyComponent> {

bi

FactoryRegisterer<MyComponent> g_registerer;

Fig. 5. FactoryRegisterer (a RAIl-type class) constructs a factory for the
given type of components and registers its within a global FactoryRegistry.
This happens transparently when the module is linked with the application
binary.

B. Dependency registry

When a component implements interfaces meant for being
injected as a dependencies, its reference is stored in a De-
pendencyRegistry. It is a non—owning container, which holds
references to all dependencies in the application. Each entry
stores a reference to the target, its identifier and knows its (type

S. NIESPDOZIANY

«Singleton: 1
FactoryRegistry <o——

FactoryRegisterer | . Factory Component
<MyComponent> -l ©<Mycamponent> ©<Mycamponent>

N4

1us
‘MyComponent

#*

@ AbstractFactory ® AbstractComponent

Fig. 6. User component derives from the Component template, which inherits
from AbstractComponent interface. A factory class for the new component is
instantiated by the registerer object and registered in the global registry. When
constructing a component instance, the factory is accessed through the registry
(via its abstract interface) and used to construct an instance (owned by the
framework through its abstract interface).

of the interface). When a new component is constructed, its
factory searches for matching dependencies in this registry and
injects them into the objects constructor.

C. Component configuration

Each component instance may be individually configured.
This configuration is loaded by the initialization code and
used to customize each instance when constructed. Inter-
nally the configuration for each object is represented as a
set of ConfigEntry objects. Each ConfigEntry is a template
parametrized by data type stored by it. It has an abstract base
class AbstractConfigEntry, which allows for aggregation of
multiple entries together. Entries are kept in a Config object
per component instance. Each entry is characterized by a key
of type std::string.

Internal component code accesses its configuration with
a dedicated member function inherited with the Component
class:

template<typename T>
const T& config<T>(const std::string& key)

where T is the expected data type and key identifies a particular
entry. Entries may be of type std::string, or an integers of
any size. For the numeric entries the framework takes care
of range checking and conversion operations. Figure 7 shows
examplary usage and Figure 8 shows the described type
hierarchy.

V. DATA DRIVEN COMPONENT INSTANTIATION

Component implementations are provided to an application
through modules. Linking the corresponding library makes a
component class available, but no instances have yet been cre-
ated. The framework provides several mechanisms, intended
to be executed at the startup phase to dynamically make use of
the linked resources and compose a hierarchy of component
instances. It is determined at this point which dependencies are
injected into which components. All this happens according to
a Topology object, consisting of the required data. This object

DATA-DRIVEN DEPENDENCY INJECTION FOR IOT AND EMBEDDED SOFTWARE, ENHANCING REUSABILITY WITH C++ 5

using diff;

class MyComponent
public Component<MyComponent> {
public:
MyComponent ()
buffer_ (config<int> ("bufSize"), "x’) {

}

void read(char *pBuffer) {
std: :memcpy (pBuffer,
S&buffer_[0],
config<int> ("chunkSize"));

}

private:
std::vector<char> buffer_;

bi

Fig. 7. Component code accesses the user—config with config() member
function inherited with the Component class. It can be invoked for a given
type and key and returnd the corresponding value. Framework takes care of
checking existence of the entry, its type and possible conversions.

@Config 1‘} *

@ AbstractConfigEntry

@ ConfigEntry <T=

Fig. 8. Component config has flat structure. ConfigEntry;T; objects hold
values, while being aggregated by a Config object. This is possible thanks to
sharing a common abstract interface.

can be prepared in two ways - loaded from a Json file, or built
with a sequence of calls to a TopologyBuilder.

A. Json defined topology

Topology loaded from a file is the most convenient way of
working with an application, which requires dynamic reconfig-
uration, debugging, or a simple way of adding and removing
features on the go. At the application startup the file is loaded
and translated into a Topology object, which is then used to
compose object hierarchy step-by-step.

The information stored in the file consists of a set of entries.
Each entry represents a single component instance to be
constructed. The information required by each consists of the
type of object to be created and an ID to be assigned to it. The
identifier can be further used to reference the instance when
injecting it as a dependency for another objects. Additionally,
a component with dependencies requires list of which objects
shall be injected as those dependencies. Depending on the
internal implementation, configuration is also be provided
here. Entries in the file are processed sequentially, thus any in-
stances used as dependencies shall occur prior the components
depending on them. Figure 9 presents an exemplary Json file.

Figure 10 shows the resulting component topology. Figure 11
presents the component hierarchy used in the example.

"type" "ThrottlePedal",

"id" "throttle_0",

"config" : {
"sensitivity" "high"

}

"DieselEngine",
"engine_0"

"type"
nign

"type" "CruiseControl",

"id" "cruiseControl_O0O",

"config" : {
"maxSpeedKmph" 140

br

"dependencies" : [
"engine_0",
"throttle_O0O"

Fig. 9. This exemplary Json topology represents a cruise control system
for a vehicle. The CruiseControl component has two dependencies - a
throttle and an engine. These dependencies are satisfied by ThrottlePedal
and DieselEngine components, which are injected according to the given
identifiers. However, if the design consisted of complementary components
ThrottleLever and ElectricMotor, they could be easily substituted, allowing to
reuse CruiseControl implementation.

| cruiseControl_0 : CruiseControl |
o IThrottle throttle_ = throttle_0
o IEngine engine_ = engine_0

& maxSpeedKmph = 140

[throttle_0 : ThrottlePedal |

[engine_0 : DieselEngine |
| & sensitivity = high |

Fig. 10. Object topology resulting from the Json in Figure 9.

B. Programmatically defined topology

As much as Json file is convenient for working with, it
may not be the best solution for deploying application for
production with. Firstly, in production environment the appli-
cation is not expected to require modifiable configuration. The
resources may be limited, thus the usage of additional library
for parsing Json documents may seem excessive. Also, if the
system is really constrained (e.g. a bare—metal application)
there may not even be a possibility to store and load files.
Secondly, exposing configuration in such an explicit way
may lead to security concerns. If the file was accessible for
unauthorized access it could pose a risk of leaking the design
details, breaking functionality, or even damaging the hardware.

| @ CruiseControl
[
|

|
o CruiseControl(IThrottle &throttle, IEngine &engine) |

/N

@ IEngine @ IThrottle

@DieselEngine @ElectricMotor @ThrottlePedal

@ThrottleLever

Fig. 11. Component hierarchy used in exemplary Json in Figure 9.

Anticipating for such scenarios, the framework offers a
TopologyBuilder class, which can be used to construct Topol-
ogy by executing a series of calls to its member functions.
Figure 12 presents examplary code, constructing the same
topology as the Json file presented in previous section. In
fact, an arbitrary Json file can be automatically converted
to the corresponding code with a dedicated tool. This saves
development effort and allows for seamless integration with
CI/CD.

using diff;

void load_topology (Topology &topology) {
TopologyBuilder builder (topology);

builder
.component ("ThrottlePedal",
"throttle_0")
.config("sensitivity", "high");

builder
.component ("DieselEngine"s,
"engine_0"s);

builder
.component ("CruiseControl"s,
"cruiseControl_0"s)
.config("maxSpeedKmph", 140)
.dependency ("engine_0"s)
.dependency ("throttle_0"s);

Fig. 12. The same topology as in Figure 9 defined programmatically.

VI. EXEMPLARY APPLICATIONS

The described architecture has formed throughout several
non—trivial, commercial projects. One key requirement was
common to all of them - software reusability for further similar
projects. In each case there was the first specific use—case,
which could be satisfied by simply implementing a solution
of moderate complexity. However, it was known upfront, that
there will further use—cases - similar, but not identical - where
simple configuration change would not be sufficient to fully
cover the requirements. Moreover, it was required for the
application to easily accommodate for functionalities yet to

S. NIESPDOZIANY

be implemented and not break, nor collide with, any existing
features. Below are two examples where the proposed solution
was proven successful.

A. Digital signal processing pipeline control

This automotive—grade application had to control a DSP
pipeline composed of multiple DSP blocks. The pipeline was
distributed across multiple processing units - general purpose
CPUs and digital signal processors. Each customer required
a slightly different topology of the processing chain and for
each one the hardware executing the algorithms was different.
This required two layers of configurability. Firstly, the set
of DSP block, which the application communicated with had
to be modifiable. Secondly, the communication method with
subgroups of those blocks also had to be configurable.

B. Maritime hybrid propulsion integration

Another real world example where this concept was exer-

cised is an application integrating multiple components of a
hybrid maritime propulsion system. Such a system consists
of a full-sized diesel engine, energy bank, electric motors
with converters and additional appliances - pumps, sensors,
protection devices, navigation equipment and control stand
(possibly multiple). Most of such devices in such system
are interconnected with multiple CAN buses, each possibly
operating a different higher level protocol (e.g. CanOpen,
J1939).
The set of devices used in in the project was relatively
stable, with an option to add new device models from time to
time. However, individual requirements of various customers
resulted in different hardware configurations. A typical use—
case was that an appliance (e.g. a pump or a sensor) could
be plugged into different CAN bus, depending on its physical
location and the routing of each bus. With the help of a Json
file, such a requirement could be adapted for on the fly.

VII. CONCLUSIONS AND FURTHER WORK

The proposed architecture, at first theoretical, later verified
in real-world projects has a great potential to structurize
software development in embedded engineering. It provides
a guidance on how to implement reusable software modules
and integrates the development process with modern method-
ologies (unit testing, CI/CD).

Further work on the project will consist of multiple addi-
tional features. The proposed framework already provides the
capability for integration with modern tools, used throughout
the industry, however, out-of-the-box integration with such
would be another step forward. Another critical requirement
is the ability to smoothly integrate with users CI/CD pipeline.
For this reason some additional adjustments need to be imple-
mented. Such include scripts supporting automatic recognition
of modules required for linking and binary creation. A GUI
tool can also be provided for topology creation (replacing
writing the Json file manually).

One of the critical aspects of using any tool for embedded
systems is their ability to not use dynamic memory allocation.

DATA-DRIVEN DEPENDENCY INJECTION FOR IOT AND EMBEDDED SOFTWARE, ENHANCING REUSABILITY WITH C++ 7

This is a crucial requirement of many safety sensitive appli-
cations. For this reason a set of custom allocators needs to
be implemented to replace the ones provided by the standard
library. Another aspect worth taking care of is configurabil-
ity. While simple configuration may seem enough for basic
use—cases, real world scenarios may require more complex,
hierarchical component configuration.

Several of the mentioned features are already being worked
on, others are planned. The proposed concept shows potential
for improving embedded software development in multiple
aspects.

REFERENCES

[1] C. A. Mack, “Fifty years of moore’s law,” IEEE Transactions on
semiconductor manufacturing, vol. 24, no. 2, pp. 202-207, 2011.
[Online]. Available: https://doi.org/10.1109/tsm.2010.2096437

[2] P. C. Pendharkar and J. A. Rodger, “The relationship between software
development team size and software development cost,” Communica-
tions of the ACM, vol. 52, no. 1, pp. 141-144, 2009.

[3] B. B. Brown, “Over-the-air (ota) updates in embedded microcontroller
applications: Design trade-offs and lessons learned,” Analog Dialogue
Technical Journal, vol. 52, pp. 52-11, 2018.

[4] E. Razina and D. S. Janzen, “Effects of dependency injection on main-
tainability,” in Proceedings of the 11th IASTED International Conference
on Software Engineering and Applications: Cambridge, MA, 2007, p. 7.

[5] P. Koopman, “Embedded system design issues (the rest of the story),”
in Proceedings International Conference on Computer Design. VLSI
in Computers and Processors. 1EEE, 1996, pp. 310-317. [Online].
Available: https://doi.org/10.1109/iccd.1996.563572

[6] D. Ajiga, P. A. Okeleke, S. O. Folorunsho, and C. Ezeigweneme,
“Methodologies for developing scalable software frameworks that sup-
port growing business needs,” Int. J. Manag. Entrep. Res, vol. 6, no. 8,
pp. 2661-2683, 2024.

[71 D. Prasanna, Dependency injection: design patterns using spring and
guice. Simon and Schuster, 2009.

[8] J. Helander and A. Forin, “Mmlite: A highly componentized system
architecture,” in Proceedings of the 8th ACM SIGOPS European
workshop on Support for composing distributed applications, 1998, pp.
96-103. [Online]. Available: https://doi.org/10.1145/319195.319210

[9] K.-K. Lau, “Software component models,” in Proceedings of the 28th
international conference on Software engineering, 2006, pp. 1081-1082.
[Online]. Available: https://doi.org/10.1145/1134285.1134516

[10] K. Laemmermann, “C++ the design and evolution of c++,” 2012.

[11] F. Zampetti, S. Geremia, G. Bavota, and M. Di Penta, “Ci/cd pipelines
evolution and restructuring: A qualitative and quantitative study,” in
2021 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 1EEE, 2021, pp. 471-482. [Online]. Available:
https://doi.org/10.1109/icsme52107.2021.00048

[12] K. Driesen and U. Holzle, “The direct cost of virtual function calls in
c++,” in Proceedings of the 11th ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, 1996, pp.
306-323. [Online]. Available: https://doi.org/10.1145/236337.236369

https://doi.org/10.1109/tsm.2010.2096437
https://doi.org/10.1109/iccd.1996.563572
https://doi.org/10.1145/319195.319210
https://doi.org/10.1145/1134285.1134516
https://doi.org/10.1109/icsme52107.2021.00048
https://doi.org/10.1145/236337.236369

	Introduction
	Reusable software
	Componentization
	Interface component
	Component
	Implementation

	Module
	Performance considerations

	Component management
	Component factory
	Dependency registry
	Component configuration

	Data driven component instantiation
	Json defined topology
	Programmatically defined topology

	Exemplary applications
	Digital signal processing pipeline control
	Maritime hybrid propulsion integration

	Conclusions and further work
	References

