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Modeling and analysis of human control actions
using fuzzy interactive information systems

Leszek Rolka

Abstract—This paper focuses on the problem of modeling
and analyzing the actions of human operators who perform
demanding tasks such as real-time control of a complex dynamic
plant. To this end, an approach that bases on the idea of
interactive fuzzy information systems is proposed. In particular,
we discuss the problem of selecting and generating perception and
action attributes to describe the aircraft control tasks realized
by a skilled pilot. A method consisting of several stages is
proposed for modeling pilot-airplane interactions. The initial
information system with sensory attributes is replaced with
more complex attributes at subsequent stages. To determine
the decision rules of the pilot, we apply flow graphs that are
suitable for representing fuzzy interactive information systems
and for evaluating properties and quality of the human operator’s
decision model.

Keywords—human assisted control; interactive information
systems; fuzzy flow graphs

I. INTRODUCTION

HUMANS have the ability to process, understand and
store information in the form that depends on the com-

plexity level of coming data and the involvement of brain
structures. A human expert (operator), who performs a control
process, observes and causes changes in the state of the
controlled object until its desired state is reached.

Many authors were interested in mathematical modeling
of pilot control actions from the point of view of control
theory. McRuer was one of the first who attempted to describe
the human operator’s properties. He proposed a mathematical
model of the dynamic behavior of a pilot [1]–[3]. This model
has a form of a transfer function that contains inertial and
differential elements characterized by several time constants
that are related to the learned stereotypes, neuromuscular lag,
the lead time reflecting the pilot’s ability to predict, and the
delay between the eye’s perception and the brain’s response.

In [4], the authors presented the results of experiments
conducted on a flight simulator with a group of pilots. The
recorded data were used to obtain the average values of the
pilot’s time constants and the response delay in the McRuer
pilot model. Similarly, in [5], different variants of the Tustin-
McRuer model were considered and used to approximate pilot
behavior.

An interesting concept that helps determine the parameters
of pilot behavior was presented in [6]. The authors discussed
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the structural model by Hess [2], [3], which is a modification
of the McRuer’s approach. This model takes into account the
pilot’s ability to close an additional inner loop by responding to
the perception of kinesthetic cues. Yet another model presented
[6] was the composite model of pilot behavior based on neural
network approach.

Other methods such as fuzzy inference, Bayesian networks
and Petri nets were described in the [7] for modeling and
simulating the behavior of a pilot connected to an avionics
system.

In [8], the author discussed the concept of fuzzy control
for modeling pilot actions. The control actions generated by a
fuzzy pilot model were compared with the control of a human
pilot in the task of compensation of the glade slope deviation.
In addition, a comparison between the cognitive pilot model
and the human pilot was presented.

In contrast to the above-mentioned work on pilot behavior
modeling, we consider a decision-oriented approach focusing
on the interactions between the pilot and his or her environ-
ment. To describe these interactions, the concept of interactive
information systems [9], [10] can be used for representing
agent-environment connections that emerge in the agent’s
perception and action processes. An agent is understood as
a unit that perceives information derived from an environment
and can affect the environment by making his or her actions.

Interactive information systems, and especially interactive
decision tables, can be perceived as an extension of the rough
set theory introduced by Pawlak [11]. More recently, it has
been developed into a generalized paradigm called interactive
granular computing [12]–[16]. However, current research on
interaction-oriented information systems lacks applications
and connections to various approaches that have been intro-
duced in the framework of the rough set and especially fuzzy-
rough set theories [17]. To fill this gap and extend our previous
work [18], we present in this paper an approach to analysis
of control actions of a human operator that combines the
concept of interaction information systems with the fuzzy flow
graph method [19]. We consider the process of selecting and
generating fuzzy attributes in interactive information systems
that represent the process of aircraft control. Moreover, we
provide an illustrating example basing on data recorded in a
real-world application: aircraft altitude stabilization that was
performed by a (human) pilot.

The crucial point in applications of the crisp and fuzzy
rough set theories consists in constructing a proper information
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system. This is done by identifying the condition and decision
attributes, and building a decision table using data collected
from a decision-making process. This is not always a trivial
task however, especially in the case of a fuzzy knowledge
representation, which involves the problem of a suitable choice
of fuzzy linguistic values of attributes.

In the presented approach, we propose to distinguish in-
formation systems at several stages, that are characterized by
different forms of description of the object and its control
process.

Initial information about the controlled object, which is col-
lected at the first stage, consist of a set of recorded parameters
obtained from measurement sensors and indicators. It serves
as a source for generating a more abstract representation at the
next stages that has the form of information systems, which
depend on the skills and experience of the human operator.

As the process of human reasoning and decision-making is
vague in nature, it can be hardly described by using attributes
that have merely numeric or symbolic (crisp) values. This
is why we prefer to apply fuzzy attributes that adopt values
expressed in terms of membership in a set of corresponding
linguistic notions that can be suitably selected and tuned to get
a more sophisticated and flexible decision model of a human
operator.

In the analysis of interactive fuzzy decision tables, the fuzzy
flow graph method introduced in [17], [19] is used. Is serves as
a tool for determining decision rules of the pilot and to evaluate
their quality and statistical characteristics. In this paper, we
introduce an improved formal description of the flow graph
method, which is clearer and removes some inconsistencies
of the original notation.

II. ATTRIBUTES IN HUMAN OPERATOR’S ACTION MODEL

A. Attributes in Interactive Information Systems

In the interactive information systems [9], [10], one can
consider two groups of attributes connected with the percep-
tion process, called the atomic and the constructible attributes.
Atomic (sensory) attributes represent basic process data, which
are obtained with measurement sensors. An atomic attribute
could be open, when it is an injection function into its value
domain or closed, when it is a surjection function into its value
domain, respectively. The information system that possesses
only closed type of attributes is called closed static information
system [9]. The original information systems introduced by
Pawlak are exactly this kind of systems. In our approach to
modeling pilot-aircraft interactions, we do not limit ourselves
to this kind of systems. The constructible attributes are com-
plex and defined on the basis of atomic attributes. If b is a
constructible attribute, then for the defined atomic attributes
a1, a2, . . . , an and any object x

b(x) = F (a1(x), a2(x), . . . , an(x)), (1)

F :Va1
× Va2

× . . .× Van
→ Vb,

where Vai
denotes the value domain of the atomic attributes

ai, Vb is the value domain of the constructible attribute b, and
i = 1, 2, . . . , n [9].

Actions made by an agent will be connected with a special
kind of attributes called the action attributes. In [10], the
authors suggested that the value of an action attribute should
contain, apart from the elementary action, also the specified
goal and the expected perceptual results of the given action.
This is a consequence of the assumption and observation that
every action of the agent bases on the agent’s knowledge, the
results of perception, and the chosen goal of activity.

B. Modeling the Pilot-Aircraft Interactions

When analyzing the process of controlling an airplane by a
pilot, we focus on the following elements:

1) the pilot, who can be seen as an agent with skills and
adaptability;

2) the aircraft, which is the closest environment (aircraft
states affect the pilot, and his or her actions);

3) the distant environment, e.g., turbulence or weather, that
can influence the states of the aircraft and inner states
of the pilot, but does not depend on the pilot and the
aircraft.

In the following considerations, we focus on the pilot-
aircraft interactions, because the distant environment will be
indirectly taken into account in the actual states of the pilot
and the aircraft. To describe the interactions of the human
operator with the controlled object, it is necessary to build
abstract information systems of various degree of complexity.
We propose to divide the process of creating the human
operator action model into several stages.

Stage 1

Information system at the initial stage represents the object
(aircraft). It is denoted by IS(1) = ⟨U,A(1), {Va} a∈A(1)⟩
and consists of a universe U of elements characterized by
a set of sensory attributes A(1) = {a1, a2, . . . , an}. Values of
these attributes Vai

(Tj), i = 1, . . . , n, j = 1, . . . , k, . . . are
taken from actual measurements using sensors. The parame-
ters T1, T2, . . . , Tk, . . . indicate instants of time at which the
measurements are made.

The set of attributes A(1) = Env ∪ Act consists of two
groups of attributes:

• Env are the attributes that describe the object (environ-
ment), that is, the state variables of the plant;

• Act is the set of attributes representing control variables
that can be used by the operator (agent) to interact with
the object and change its state.

The values of attributes from the set A(1) are real numbers.
This first level information system described above forms the
base for creating an interactive information system.

Stage 2

The process of controlling an object involves maintaining
specific values (e.g. flight parameters) at the desired level. Let
us assume that the operator receives information about the
object at the time instant Tk. The state of an object, perceived
by the operator, is described on the base of subset of attributes
A(1), because the pilot takes into account only those attributes
that are important in the actual control task. Hence, a new
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information system for the object seen by the operator (agent)
is described by IS(2) = ⟨U,A(2), {Va} a∈A(2)⟩.

The set of attributes A(2) is useful for creating an inner
model of the pilot. The inner model of a human operator
plays an essential role in an interaction with a dynamic
object. This is understood as a replica of the outside world
in the operator’s consciousness that constitutes a result of
reduction of input information in the perception channels. Only
that part of information that is significant for actual activity
reaches the operator’s consciousness. The inner model bases
on selected features and can be treated as a simplified, reduced
to characteristic features reflection of the world.

A set of new attributes A(2) bases on the atomic attributes
A(1). This is an extension of the set A(1) because it includes
additional attributes representing the object’s dynamics, which
helps the human operator predict its future state. The set of
new attributes is denoted by A(2) = Env1 ∪ Env2 ∪ Act1,
where:

• Env1 are attributes representing differences between re-
quired and actual values of parameters (control errors);

• Env2 are attributes that express the direction of change
of parameters;

• Act1 denotes attributes representing the control activities
of the human operator.

The values of attributes from the set A(2) are still real
numbers, although the ranges of values of these attributes are
smaller than those of the attributes from the set A(1). They
express deviations and the changes of the variables. We can
say that the attributes from the set A(2) are not exactly atomic.
They are constructible, since they are functions of the atomic
attributes from Env, but in a simple form.

Stage 3

Human operators actually perform the inference process
using their inner model. The input of this model is the
information from the perception. However, it is transformed
and reduced at higher levels of the brain structures into
linguistic terms rather than numbers. Therefore, for modeling
of such a process, we propose to use information system
with fuzzy attributes ISF = ⟨U,B, {Vb} b∈B⟩, where B =
Env1F ∪Env2F∪ActF = EnvF∪ActF. The set of attributes
B is derived from the set A(2). Hence, the attributes have a
constructible form, and the set B consists of:

• EnvF = Env1F ∪ Env2F – the set of attributes with
fuzzy values, describing the perceived object (environ-
ment) from the operator’s (agent) point of view; they are
constructed from the sets Env1 and Env2, respectively,
and they have the same meaning as mentioned at the
previous stage;

• ActF – the set of attributes with fuzzy values, represent-
ing an action of the operator (agent), derived directly from
the set Act1.

The values of attributes from the set B are calculated in a
step called fuzzyfication, during which the crisp values of each
attribute from the set A(2) are transformed into membership
degrees to the linguistic values assigned to all attributes from
the set B. The main problem, however, is choosing the right

form and number of linguistic values associated with each
attribute. If the number of linguistic terms is too small, then the
granulation of information is not subtle enough. An important
issue in the fuzzyfication is an exact location of the limit points
of particular membership functions that represent linguistic
values.

In practice, experts encounter difficulties, when they try to
formalize their knowledge and experience. In consequence, de-
termining the limits points of the fuzzy membership functions
becomes a serious problem, especially in the case of large
number of input variables. On the other hand, the experts
can be supported based on the recorded data set from the
classification process they carry out.

Stage 4

At the final stage, the set of attributes is divided into two
disjoint parts: a subset of condition and a subset of decision
attributes. Hence, an information system can be presented in
the form of a decision table. In the case of aircraft control, we
can describe the pilot’s decision process with the help of an
interactive fuzzy information system expressed as a decision
table DTF = ⟨U,CF ∪DF, {Va} a∈C∪D⟩. We distinguish the
following sets of fuzzy attributes:

• CF = EnvF ∪ActprevF denoting condition attributes that
are defined at the previous stage and represent differences
between required and actual values of parameters or
the direction of parameters changes, where ActprevF are
attributes that represent previous control actions of the
operator;

• DF = ActcurF denoting decision attributes representing
current actions and expressing qualitative changes in the
control units.

It should be noted that the reasoning and decision-making
process performed by the human operator involves inevitable
hesitation and delay, especially under stressful conditions.
An additional delay can be caused by nonlinearity of the
controlled plant and mechanical properties of control elements.
Therefore, fuzzy information systems that describe human
control of a dynamic object should be specified using condition
and decision attributes generated for different moments in
time. In our case, decision tables (which are the preferred form
of information systems) consists of columns, which represent
particular attributes, and rows that correspond to a selected
time instants. Due the necessary delay, the decision table
DTF include condition attributes at the time Tk and decision
attributes at the time Tk+1 in a selected row.

C. Determining of the Pilot’s Action Model

In order to analyze the decision table DTF with fuzzy
attributes, it is necessary to set up the initial parameters:

• the starting point of a flight phase;
• the goal of the control process in the form of fixed flight

parameters;
• the set of selected attributes Aphase ⊆ (CF ∪ DF) from

the decision table DTF;
• the size of the time window;
• the number of the time window i = 1.
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The algorithm for obtaining decision rules for a selected
flight phase consists of the following steps, repeated until the
end of the flight phase:

1) build a decision table DTFi from the information system
ISFi for the time window i, with attributes Aphase;

2) determine the decision rules DRi by using a fuzzy flow
graph representing the decision table DTFi;

3) transfer the decision rules DRi with additional informa-
tion such as the certainty factor and strength of particular
decision rules to the decision table DTphase;

4) select the next time window, i = i+ 1.
The decision table DTphase includes decision rules DRi

from particular time windows in a given flight phase.
In the next step, the decision rules DRphase for the decision

table DTphase, and the rules for the particular actions DRActi,
i = 1, . . . , k, are constructed.

The final decision table contains the knowledge about the
object control process.

III. FLOW GRAPH REPRESENTATION OF FUZZY
INFORMATION SYSTEMS

To construct and analyze fuzzy interactive information sys-
tems, we must recall a formal description of a decision table
with fuzzy attributes that was introduced in [20].

In the following, a finite set of N elements forming a uni-
verse U = {u1, . . . , uN} is considered. Every element u ∈ U
is characterized by a tuple of values of fuzzy attributes AF

that contains n condition attributes CF = {cF1, . . . , cFn}, and
m decision attributes DF = {dF1, . . . , dFm}.

Any fuzzy attribute is connected with a family of its
linguistic values. The subset CFi = {Ci1, . . . , Cini

} consists
of ni linguistic values of the condition attribute cFi. and the
subset DFj = {Dj1, . . . , Djmj}, includes mj linguistic values
of the decision attribute dFj , i = 1, . . . , n, and j = 1, . . . ,m.

For each element u in the universe U , a degree of mem-
bership (which is a value from the interval [0, 1]) to particular
linguistic values of all condition and decision attributes needs
to be assigned. In contrast to crisp information systems, any
element u ∈ U can posses membership (to a degree between 0
and 1) to more than one linguistic value. Because of this, the
values of attributes for any u ∈ U can be interpreted as fuzzy
sets defined in the domain of respective linguistic values, as
can be observed in Tables I, and II.

In a well defined fuzzy information system, the membership
degrees of any element u ∈ U in the linguistic values AF of
all fuzzy attributes AF = CF ∪DF must satisfy the following
conditions [21]:

∃Aik ∈ AFi (µAik
(u) ≥ 0.5,

µAik−1
(u) = 1− µAik

(u) ∨
µAik+1

(u) = 1− µAik
(u)),

(2)

|AFi(u)| =
∑

Aik∈AFi

µAik
(u) = 1. (3)

By considering all combinations of linguistic values, one
can generate a complete set of p decision rules, denoted by
DR = {R1, . . . , Rp}.

We can express a decision rule Rk ∈ DR as follows

IF [(cF1 is Ck
1 ) . . . AND (cFi is C

k
i ) . . .

AND (cFn is Ck
n)]

THEN [(dF1 is Dk
1 ) . . . AND (dFj is Dk

j ) . . .
AND (dFm is Dk

m)],

(4)

where: k = 1, . . . , p ,

p = (
∏n

i=1 ni)× (
∏m

j=1 mj) ,

Ck
i ∈ CFi , i = 1, . . . n ,

Dk
j ∈ DFj , j = 1, . . . ,m.

It should be noted that that real-world decision systems
usually contain only a subset of all possible decision rules. By
inspecting particular elements u ∈ U from a given information
system, it is possible to check how they support a selected
decision rule Rk ∈ DR. It can be done by evaluating the
degree of confirmation of the decision rule’s premise, and the
degree of confirmation of the decision rule’s conclusion. To
this end, a T-norm operator (prod) is used to obtain the
resulting membership of a given element u ∈ U in those
linguistic values of attributes that are present in a selected
decision rule Rk.

Confirmation degree of the decision rule Rk ∈ DR by an
element u ∈ U , denoted as cfmk(u), is defined as follows

cfmk(u) = T(cfmk
P(u), cfm

k
C(u)) , (5)

where cfmk
P(u) is the degree of confirmation of the decision

rule’s premise

cfmk
P(u) = T(µCk

1
(u), µCk

2
(u), . . . , µCk

n
(u)) , (6)

and cfmk
C(u) is the degree of confirmation of the decision

rule’s conclusion

cfmk
C(u) = T(µDk

1
(u), µDk

2
(u), . . . , µDk

m
(u)) . (7)

Basing on the formulae (6), (7) and (5), we are able to
determine for all elements u ∈ U a detailed support of the
decision rule Rk ∈ DR:

support of the premise

supp(cfmk
P) = {cfmk

P(u1)/u1, cfm
k
P(u2)/u2, . . . ,

cfmk
P(uN )/uN} ,

(8)

support of the consequent

supp(cfmk
C) = {cfmk

C(u1)/u1, cfm
k
C(u2)/u2, . . . ,

cfmk
C(uN )/uN} ,

(9)

and support of the decision rule Rk, respectively

supp(Rk) = {cfmk(u1)/u1, cfm
k(u2)/u2, . . . ,

cfmk(uN )/uN} .
(10)

The support sets defined in (8), (9), and (10) are used in
the generalized concept of flow graphs that is suitable for
modeling and analysis of fuzzy information systems.

The idea of a crisp flow graph that helps to evaluate the
statistical properties of crisp decision systems, was proposed
by Pawlak [22]–[24]. The fuzzy-oriented flow graph approach
was introduced in [17], [19].
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TABLE I
DECISION TABLE FOR TIME WINDOW 1

cF1 cF2 cF3 cF4 dF1

C11 C12 C13 C14 C15 C21 C22 C23 C31 C32 C33 C41 C42 C43 D11 D12 D13

u1 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
u2 0.0 0.0 0.9 0.1 0.0 0.0 0.9 0.1 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.9 0.1
u3 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.9 0.1 0.0 1.0 0.0
u4 0.0 0.0 0.1 0.9 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.2 0.8
u5 0.0 0.0 0.0 1.0 0.0 0.0 0.9 0.1 1.0 0.0 0.0 0.0 0.2 0.8 0.2 0.8 0.0
u6 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.2 0.0 1.0 0.0 0.2 0.8 0.0 0.0 1.0 0.0
u7 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0
u8 0.0 0.0 0.2 0.8 0.0 0.1 0.9 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.1 0.9 0.0
u9 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.1 0.9 0.0 0.0 1.0 0.0
u10 0.0 0.0 0.0 0.1 0.9 0.0 0.0 1.0 0.0 0.1 0.9 0.0 1.0 0.0 0.0 0.0 1.0

TABLE II
DECISION TABLE FOR TIME WINDOW 2

cF1 cF2 cF3 cF4 dF1

C11 C12 C13 C14 C15 C21 C22 C23 C31 C32 C33 C41 C42 C43 D11 D12 D13

u1 0.0 0.0 0.0 0.9 0.1 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0
u2 0.1 0.9 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0
u3 0.0 0.0 1.0 0.0 0.0 0.0 0.8 0.2 0.0 0.0 1.0 1.0 0.0 0.0 0.1 0.9 0.0
u4 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.9 0.1 0.1 0.9 0.0 0.0 1.0 0.0
u5 0.0 0.2 0.8 0.0 0.0 0.1 0.9 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0
u6 0.0 0.0 0.9 0.1 0.0 0.0 0.9 0.1 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.9 0.1
u7 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.9 0.1 1.0 0.0 0.0
u8 0.0 0.8 0.2 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 1.0 0.0
u9 0.2 0.8 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.8 0.2 0.0
u10 0.0 0.1 0.9 0.0 0.0 0.0 0.9 0.1 0.0 0.2 0.8 0.8 0.2 0.0 0.0 1.0 0.0

A crisp flow graph [23], [24] has the form of directed acyclic
final graph G = (N ,B, f low), where N is a set of nodes,
B ⊆ N ×N is a set of directed branches, flow: B → R+ is a
flow function with values in the set of positive real numbers.

For a given pair (A,B) ∈ B, the node A is an input of
the node B, and the node B is an output of the node A. The
throughflow from the node A to the node B is denoted by
flow(A,B).

The input and the output of the node A are denoted by
In(A) and Out(A), respectively.

The set In(G) of the input nodes of a graph G is defined
as

In(G) = {A ∈ N : In(A) = ∅} , (11)

and the set Out(G) of the output nodes of G as

Out(G) = {A ∈ N : Out(A) = ∅} .

Inflow of the node A ∈ N is determined by summing the
throughflow from its input

flow+(A) =
∑

B∈In(A)

flow(B,A) , (12)

and outflow of the node A by summing the throughflow to its
output

flow−(A) =
∑

B∈Out(A)

flow(A,B) . (13)

Since for any internal node A its inflow flow+(A) is equal
to its outflow flow−(A), it is called flow of the node A.

The flow in the graph G can be obtained by summing the
inflow from the graph input nodes or by summing the outflow
to the graph output nodes, as follows

flow(G) =
∑

A∈In(G)

flow−(A) =
∑

A∈Out(G)

flow+(A) . (14)

To make it easier to compare the flow of different nodes in
a graph, flow normalization should be performed.

The normalized throughflow from the node A to the node
B is defined as

Flow(A,B) =
flow(A,B)

flow(G)
, (15)

and the normalized flow of the node A as

Flow(A) =
flow(A)

flow(G)
. (16)

Flow graphs can be used for representing information
systems that are expressed in the form of decision tables.
This is done by constructing a layered feedforward graph
consisting of a set of condition layers and a set of decision
layers. Every graph layer contains nodes corresponding to
values of one single attribute. The first (arbitrarily chosen)
condition attribute is represented by the input layer and the
remaining condition attributes by consecutive hidden layers
of nodes in the flow graph. Although, in the general case,
there may be several decision attributes present in a decision
system, it is sufficient to consider only one decision attribute.
Therefore, the output layer containing nodes corresponding
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to the decision attribute constitutes the final part of the flow
graph.

Since each element u ∈ U is described by a combination
of attribute values, we can imagine it “flowing” by taking
a distinct path consisting of the corresponding nodes in the
condition and decision layers of the flow graph. However, in
the case of fuzzy attributes, each element u ∈ U can possess
several linguistic values simultaneously, and therefore it may
“flow” through more than one path in the flow graph.

A selected path in the flow graph corresponds to a single row
in the decision table and generates a respective decision rule.
To determine consistency of a decision rule, it is necessary to
check whether there are no other decision rules that have the
same condition attribute values, but different values of decision
attributes. In terms of flow graph representation, this can be
done by determining a certainty factor defined for a branch of
a flow graph G as follows

cer(A,B) =
Flow(A,B)

Flow(A)
. (17)

It is also possible to evaluate the contribution of different
decision rules to a selected decision by determining the
coverage factor that is defined for a branch of a flow graph G
by

cov(A,B) =
Flow(A,B)

Flow(B)
. (18)

The certainty and coverage factors satisfy the following
balance equations∑

B∈Out(A)

cer(A,B) = 1 ,
∑

A∈In(B)

cov(A,B) = 1 . (19)

To determine the flow between selected nodes of neighbour-
ing graph layers it is necessary to take into account the degree
of membership of particular elements of the universe U in the
linguistic values represented by those nodes. For a given node
A, we denote by Ã a fuzzy set in the domain U that expresses
the membership of the elements u ∈ U in a linguistic value
that is represented by the node A.

Let us consider a branch between the nodes A and B. The
cardinality of intersection of the sets Ã and B̃, is equal to the
fuzzy throughflow flow(A,B) for the branch (A,B). The
following balance equation holds for the nodes of the input
and internal layers, if the fuzzy sets intersection is determined
using the T-norm operator prod:

flow−(A) = |Ã| , (20)

|Ã| =
∑

B∈Out(A)

flow(A,B) =
∑

B∈Out(A)

|Ã ∩ B̃| .

Under the same assumption the balance equation for the nodes
of the output and internal layers,

flow+(A) = |Ã| , (21)

|Ã| =
∑

B∈I(A)

flow(B,A) =
∑

B∈I(A)

|Ã ∩ B̃| .

Furthermore, the equality flow+(A) = flow−(A) =
flow(A) is satisfied for any internal node A.

For a more concise notation of the dependencies in a flow
graph, its initial part consisting of the input and the hidden
layers, which represent condition attributes, can be replaced
by a single layer of nodes. Such a resulting layer consists
of the nodes that correspond to different combinations of the
condition attributes’ linguistic values.

Let us denote by A∗ a node in the resulting layer. As a se-
lected combination of linguistic values of condition attributes,
the node A∗ expresses the premise of some decision rule
Rk. Support of the premise of the rule Rk can be calculated
by using (8). If a node B in the output layer expresses a
conclusion of the decision rule Rk, then the branch (A∗,B)
represents this decision rule.

In consequence, by applying the definition (10), we can
express the fuzzy cardinality of the support of the rule Rk as
the flow between the node A∗ and the node B

|supp(Rk)| = flow(A∗, B) . (22)

Finally, basing on the formulae (8), (9), and (10), the
certainty factor cer(A∗, B), the coverage factor cov(A∗, B),
and the strength str(Rk) of the decision rule Rk can be
determined, as follows

cer(Rk) =
|supp(Rk)|
|supp(cfmk

P)|
= cer(A∗, B) , (23)

cov(Rk) =
|supp(Rk)|
|supp(cfmk

C)|
= cov(A∗, B) , (24)

str(Rk) =
|supp(Rk)|

|U |
= Flow(A∗, B) . (25)

All assumptions and requirements made in the above defi-
nitions are necessary to satisfy flow conservation equations in
a fuzzy flow graph.

IV. EXAMPLE

To illustrate the presented approach in analysis of pilot
actions, we consider the task of maintaining the aircraft
altitude at a desired level.

The subset of condition attributes includes:

cF1 – difference between desired and actual altitude,
cF2 – vertical speed,
cF3 – derivative of vertical speed,
cF4 – previous change of rudder deflection.

The subset of decision attributes includes a single element:

dF1 – change of rudder deflection.

The attributes have the following sets of linguistic values:

CF1 = {C11 – "Large Negative", C12 – "Small Negative",
C13 – "Zero", C14 – "Small Positive",
C15 – "Large Positive"},

CF2 = {C21 – "Negative", C22 – "Zero", C23 – "Positive"},

CF3 = {C31 – "Negative", C32 – "Zero", C33 – "Positive"},

CF4 = {C41 – "Negative", C42 – "Zero", C43 – "Positive"},

DF1 = {D11 – "Decrease", D12 – "Zero", D13 – "Increase"}.
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Membership functions of all linguistic values of the con-
dition and decision attributes have a standard triangular and
trapezoidal form. Tables I and II correspond to decision tables
DTF1 and DTF2 (subsection II-C) from the first and the
second time windows, respectively.

All fuzzy attributes can be represented by subsequent layers
of nodes in the respective fuzzy flow graph. A single node
corresponds to a linguistic value of a selected attribute. The
layers representing the condition attributes can be replaced by
a single (resulting) layer. Taking into account all combinations
of linguistic values, we obtain all possible decision rules and
determine strength, certainty and the coverage factors for them.
All decision rules having certainty factor below 0.6, coverage
factor below 0.1, and strength below 4% are discarded.

As described in the subsection II-C, we get for the first time
window the set of decision rules DR1 that corresponds to a
fuzzy flow representing the decision table DTF1:

R1
1: IF [(cF1 is C13) AND (cF2 is C22) AND (cF3 is C32)

AND (cF4 is C42)] THEN (dF1 is D12),

R2
1: IF [(cF1 is C14) AND (cF2 is C22) AND (cF3 is C31)

AND (cF4 is C43)] THEN (dF1 is D12),

R3
1: IF [(cF1 is C14) AND (cF2 is C23) AND (cF3 is C33)

AND (cF4 is C42)] THEN (dF1 is D13),

R4
1: IF [(cF1 is C15) AND (cF2 is C23) AND (cF3 is C33)

AND (cF4 is C42)] THEN (dF1 is D13).

For the second time window, we determine the set of
decision rules DR2:

R1
2: IF [(cF1 is C12) AND (cF2 is C21) AND (cF3 is C31)

AND (cF4 is C42)] THEN (dF1 is D11),

R2
2: IF [(cF1 is C12) AND (cF2 is C21) AND (cF3 is C33)

AND (cF4 is C41)] THEN (dF1 is D12),

R3
2: IF [(cF1 is C13) AND (cF2 is C22) AND (cF3 is C32)

AND (cF4 is C42)] THEN (dF1 is D12),

R4
2: IF [(cF1 is C13) AND (cF2 is C22) AND (cF3 is C33)

AND (cF4 is C41)] THEN (dF1 is D12),

R5
2: IF [(cF1 is C14) AND (cF2 is C21) AND (cF3 is C31)

AND (cF4 is C43)] THEN (dF1 is D12).

By using the formulae (23), (24), and (25), the statistical
characteristics of the decision rules for every time window
can be discovered.

In the first time window, the decision rule R1
1 has the

highest strength, and the decision rule R4
1 has the lowest, i.e.,

str(R1
1) = 41.7%, and str(R4

1) = 8.1%, respectively. Cer-
tainty factors are relatively high for all rules: cer(R1

1) = 0.98,
cer(R2

1) = 0.85, cer(R3
1) = 0.91, and cer(R4

1) = 1.00. The
decision rule str(R3

1) has the highest coverage factor and the
decision rule str(R2

1) has the lowest: cov(R3
1) = 0.62, and

cov(R2
1) = 0.18, respectively.

By merging the sets DR1 and DR2, a new decision table
(DTphase) containing these representative decision rules can
be obtained, which can be treated as a part of the model
of pilot’s actions. Furthermore, we can also select decision

rules with respect to particular linguistic values of decision
attribute, denoted by DRd1 i, i = 1, 2, 3. It is also possible
to detect inconsistent decision rules in the Table DTphase. In
such a case, expanding the set of condition attributes may be
necessary.

In the presented example, we consider only two time
windows for extracting decision rules of a pilot. In reality, the
analysis of a large number of decision tables obtained from
control protocols for a given flight phase, is needed. In this
way, we get closer to an exact action model of an operator.

V. CONLUSIONS

The concept of interactive information systems is suitable
for modelling control processes performed on a complex plant
by a human expert. The considered task of stabilization of
the aircraft’s altitude is a dynamic process, which requires
repeated recording and analysis of the pilot’s control actions.
Information systems obtained for different time windows can
be represented by fuzzy flow graphs for determining the
decision rules of the pilot. The presented approach can be
developed in future work by considering more linguistic values
of fuzzy attributes to obtain improved models of pilot actions.
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Intelligence, D. Ślęzak et al., Eds., vol. 3641. Berlin Heidelberg:
Springer-Verlag, 2005, pp. 354–363.

[21] A. Mieszkowicz-Rolka and L. Rolka, “Multi-criteria decision-making
with linguistic labels,” in Proceedings of the 17th Conference on Com-
puter Science and Intelligence Systems, ser. Annals of Computer Science
and Information Systems, M. Ganzha, L. Maciaszek, M. Paprzycki, and
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