

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 4, PP. 1-10

Manuscript received August 20, 2025; revised September 2025. doi: 10.24425/ijet.2025.155471

Abstract—In this paper, we analyze the performance of common

machine learning (ML) algorithms executed in Google Cloud and

Amazon Web Services environments. The primary metric is

training and prediction time as a function of the number of virtual

machine cores. For comparison, benchmarks also include a "bare

metal" (i.e. - non-cloud) environment, with results adjusted using

the "Multi-thread Score" to account for architectural differences

among the tested platforms.

Our focus is on CPU-intensive algorithms. The test suite

includes Support Vector Machines, Decision Trees, K-Nearest

Neighbors, Linear Models, and Ensemble Methods. The evaluated

classifiers, sourced from the scikit-learn and ThunderSVM

libraries, include: Extra Trees, Support Vector Machines, K-

Nearest Neighbors, Random Forest, Gradient Boosting Classifier,

and Stochastic Gradient Descent. GPU-accelerated deep learning

models, such as large language models, are excluded due to the

difficulty of establishing a common baseline across platforms.

The dataset used is the widely known "Higgs dataset," which

describes kinematic properties measured by particle detectors in

the search for the Higgs boson.

Benchmark results are best described as varied—there is no

clear trend, as training and prediction times scale differently

depending on both the cloud platform and the algorithm type. This

paper provides practical insights and guidance for deploying and

optimizing CPU-based ML workloads in cloud environments.

Keywords—Public Cloud; ML/AI algorithms; performance

evaluation

I. INTRODUCTION

A. AI/ML computing in the public cloud – state of the art

The rapid development of Artificial Intelligence (AI) and

Machine Learning (ML) algorithms, methods, and tools has

significantly increased the demand for scalable, flexible, and

cost-efficient computing resources. Public cloud platforms [1]

such as Google Cloud Platform (GC), Amazon Web Services

(AWS), and Microsoft Azure have emerged as dominant

providers offering comprehensive computational infrastructure

for AI and ML workloads.

Public cloud computing provides on-demand access to

computing resources, enabling scalable storage, data

processing, and algorithm execution [2,3]. Moreover, public

cloud AI/ML services lower entry barriers for organizations and

researchers seeking to adopt these technologies. AI and ML

workloads, particularly deep learning applications, often require

substantial computational power, which cloud platforms

This work was supported by the Statutory Grant of the Polish Ministry of

Science and Higher Education.

provide through elastic compute instances and specialized

hardware such as Graphics Processing Units (GPUs).

In general, public cloud platforms offer three models of

service delivery [4]:

• Infrastructure as a Service (IaaS): Provides raw compute,

storage, and net-working resources.

• Platform as a Service (PaaS): Offers pre-built software

frameworks and development environments.

• Software as a Service (SaaS): Delivers ready-to-use

applications through the cloud.

This study focuses exclusively on the IaaS model, as it offers

the greatest flexibility and is currently the most prevalent

approach for AI and ML applications in both academic and

industrial settings.

Public cloud Infrastructure as a Service (IaaS) operate

primarily under usage-based, scalable payment models,

enabling cost alignment with resource consumption. The most

common cost models for public cloud IaaS include:

• Pay-as-you-go (On-Demand) Model: Users are billed

based on actual re-source consumption (e.g., compute hours,

storage usage, data transfer) with no long-term commitment.

• Reserved Instances (Commitment-based) Model: Users

commit to purchasing specific resources (e.g., virtual machines,

GPUs) for a defined period (typically 1 to 3 years) in exchange

for significant discounts compared to on-demand pricing.

• Spot/Preemptible Instances Model: Providers offer spare

capacity at significantly reduced rates, but with the caveat that

instances can be terminated with little notice.

Because of flexibility for irregular usage, lack of long-term

commitment as well as ease of access via grants and credits

(such as for example [5] – in academic environments, the pay-

as-you-go (on-demand) cost model is by far the most popular

for public cloud IaaS usage, particularly for AI and ML research

workloads. This cost-related concerns often become vital in case

of resource and time-consuming AI/ML application – as we will

elaborate in the next section.

B. Challenges, research gaps and scope of research

While public cloud platforms simplify AI/ML adoption for

both scholarly research and enterprise use, several challenges

persist [6], two of which are the focus of this study:

• Performance Variability: Cloud instances frequently exhibit

variable, inconsistent, or unpredictable performance,

Grzegorz Blinowski and Marcin Bogucki are with Institute of Computer
Science, Warsaw University of Technology, Warszawa, Poland (e-mail:

grzegorz.blinowski@pw.edu.pl, marcin.bogucki.stud@pw.edu.pl).

Performance evaluation of selected ML

algorithms in GC and AWS cloud environments
Grzegorz Blinowski, and Marcin Bogucki

2 G. BLINOWSKI, M. BOGUCKI

particularly for compute-intensive AI and ML tasks. This

variability can significantly impact execution time,

scalability, and overall workload efficiency.

• Cost Optimization: Achieving an optimal balance between

computational performance and cost efficiency remains a

complex challenge. This is further com-plicated by the lack

of transparent, consistent data regarding algorithm execution

times across different cloud environments.

This study investigates the performance of selected CPU-

based machine learning (ML) algorithms executed within public

cloud IaaS environments, with a comparative analysis between

Google Cloud (GC) and Amazon Web Services (AWS)

platforms. To provide an objective performance baseline, an

additional non-cloud "bare metal" (BM) environment is

included in the evaluation.

Our focus is on classification algorithms that are widely used

and accessible through established, open-source libraries such

as scikit-learn and ThunderSVM. GPU-based models, deep

learning frameworks, and large language models (LLMs) are

intentionally excluded due to their distinct hardware

requirements and the difficulty of establishing a unified baseline

across platforms.

Performance in our study is assessed based on algorithm

training and prediction times, with particular emphasis on

scalability in relation to the number of available virtual CPU

cores. Additionally, benchmark results are normalized using a

multi-core efficiency score derived from independent hardware

performance data to account for architectural differences among

platforms.

The research employs the well-established, balanced Higgs

dataset, ensuring relevance for large-scale classification tasks

while maintaining practical computation times. The primary

objective is to provide actionable insights into the scalability,

performance limitations, and cost implications of deploying

CPU-based ML workloads in cloud environments, with

particular consideration given to the pay-as-you-go pricing

model prevalent in academic research.

The remainder of this paper is organized as follows: Section

2 discusses related work. The research methodology and

experimental setup are detailed in Section 3. Section 4 presents

the experimental results, which are analyzed in Section 5.

Finally, Section 6 provides conclusions and future work.

II. RELATED WORK

Benchmarking the performance of public cloud providers is

a well-established research topic. Numerous studies have

evaluated the performance of different cloud platforms across a

variety of use cases, experimental setups, and operational

constraints. Most existing research focuses on low-level

performance assessments, where specific subsystems—such as

compute, memory, storage, or networking—are evaluated in

isolation. Other popular areas of investigation include the

performance of specific application domains, such as High-

Performance Computing (HPC), simulations, big data analytics,

and Internet of Things (IoT) platforms.

To date, however, the authors are not aware of any

comprehensive studies that specifically address the performance

of AI and ML algorithms executed within public cloud IaaS

environments, particularly with respect to common

classification algorithms running in CPU-only configurations.

Below, we summarize selected studies relevant to our work in

terms of platform scope, environment, methodology, and key

findings.

Leitner and Cito [7] present a large-scale, systematic

literature review on the predictability of performance in public

Infrastructure-as-a-Service (IaaS) clouds. Their analysis

revealed substantial performance differences between cloud

providers, with multitenancy emerging as a key factor

influencing both performance variability and predictability.

Importantly, the impact of multitenancy was shown to vary

significantly between providers.

Sadooghi et al. [8] conducted an extensive quantitative study

of Amazon EC2, focusing on its suitability for running scientific

applications. Their methodology involved low-level

benchmarking of memory, networking, and I/O subsystems,

followed by an evaluation of complete scientific workloads. The

performance of AWS was compared to that of a private cloud

infrastructure (FermiCloud), highlighting inherent limitations in

public cloud environments for certain computational workloads.

However, this study focused exclusively on a single public

cloud provider (AWS) and did not address AI or ML

applications.

In another relevant study, Ericson et al. [9] investigated

performance variability across public cloud services, including

Microsoft Azure and AWS. The authors emphasized that

performance fluctuations should be a concern for cloud service

consumers, as such variability may adversely affect Quality of

Service (QoS), user experience, and ultimately, pricing

efficiency.

Collectively, these studies underscore the importance of

understanding cloud performance characteristics but also reveal

a clear gap in the literature concerning the performance of ML

algorithms across public IaaS platforms, particularly for CPU-

based workloads. Addressing this gap is the primary objective

of this work.

III. EXPERIMENTAL SETUP AND METHODOLOGY

A. Algorithm and Dataset selection

The scope of this work is limited to classification algorithms,

which was an intentional decision given the wide variety of AI

and ML methods available. We have explicitly excluded GPU-

based algorithms and regression models from the study. Despite

these exclusions, the chosen approach still covers a large and

practically relevant subset of AI/ML problems.

The selection of the dataset for benchmarking required a

careful compromise between small and large datasets. Smaller

datasets, with limited records and low complexity, often result

in very short computation times, making it difficult to measure

resource consumption accurately due to system overhead

influencing the timing. Conversely, very large and highly

complex datasets can lead to prolonged, day-long computations,

which may significantly impact both the cost and the efficiency

of the experiments.

Our dataset choice and the corresponding algorithms used in

this study are presented in Table I.

PERFORMANCE EVALUATION OF SELECTED ML ALGORITHMS IN GC AND AWS CLOUD ENVIRONMENTS 3

TABLE I

ALGORITHMS USED IN THE BENCHMARK

Algorithm

abbreviation

Description Codebase

TSVC Support Vector Classifier ThunderSVM

SVC
KNC K-Nearest Neighbors

Classifier

scikit-learn

neighbors

KNC_2 Tuned K-Nearest Neighbors
Classifier (with non-standard

hyperparameters) from scikit-
learn library

scikit-learn
neighbors

RFC Random Forest Classifier scikit-learn

ensemble
ETC Extra Trees Classifier scikit-learn

ensemble

SGDC SGD Classifier scikit-learn linear
model

HistGBC Hist Gradient Boosting

Classifier

scikit-learn

ensemble

HistGBC_2 Tuned Hist Gradient Boosting
Classifier (with non-standard

hyperparameters)

scikit-learn
ensemble

The dataset selected for this benchmark represents a

necessary compromise between small and large datasets.

Datasets with a limited number of records and low complexity

typically lead to very short computation times, which makes it

difficult to accurately measure resource consumption due to

system overhead influencing the timing results. In contrast,

datasets with a very large number of records and high

complexity often result in prolonged, resource-intensive

computations that can span many hours or even days, which

negatively impacts both the cost and efficiency of experimental

work.

To strike this balance, we selected the widely recognized

Higgs dataset [10], which describes kinematic properties

measured by particle detectors in the search for the Higgs boson.

The key characteristics of the dataset are as follows:

• 940160 instances

• 25 features

• 2 solution classes (“0” – background noise; “1” – signal)

• Dataset is balanced, meaning the classes have the same

number of elements for both solution classes

The scikit-learn library [11], initially developed by David

Cournapeau in 2007 developed in Python, serves as the primary

tool for implementing the benchmark suite. Scikit-learn is a

widely used, open-source machine learning library released

under a BSD license, making it suitable for both academic and

commercial applications. Scikit-learn library integrates

seamlessly with other core Python scientific libraries, including

SciPy, NumPy, and matplotlib. Scikit-learn focuses on

providing efficient implementations of various machine

learning algorithms, and it is extensively applied in both

academic research and industry settings. The library offers

comprehensive support for: data preprocessing; supervised and

unsupervised ML models; Hyperparameter tuning; model

selection and extraction of features. Since its inception, the

library has seen substantial improvements and growth thanks to

large worldwide com-munity and contributors.

B. Test Environment and hardware performance scaling

We conducted our tests across two major cloud

environments: Amazon AWS and Google Cloud (GC), as a

reference we used a non-cloud “bare metal” (BM) platform. A

uniform test suite —comprising benchmark programs written in

Python—was deployed consistently across all platforms.

The configurations of the cloud platforms and reference bare

metal configuration (BM) are summarized below:

BM setup:

• Operating system: Ubuntu 24.04 LTS

• CPU: Intel i7-11700k with 8 physical cores, 16 threads,

maximum frequency 5GHz,

• CPU Architecture: x86_64,

• Memory: 32GB virtual RAM (20GB + 12 GB swap)

• Storage: Viper M.2 NVME 512GB disk, 55GB ext4

partition used for Linux installation.

AWS setup:

• Virtual machine type: C6a-4xlarge [12,13], Compute

Optimized,

• Operating system – Amazon Linux 2, lightweight Linux

distribution, owned by cloud platform vendor [14],

• CPU: AMD gen. 3 EPYC 7R13, frequency up to

3.6GHz, 16 virtual cores, 16 threads,

• CPU Architecture: x86_64,

• Memory: 32GB virtual RAM,

• Storage: 25GB gp3,

• Enhanced networking.

GC setup:

• Virtual machine type: c2-standard-8 Compute

Optimized in “pay as you go” model [15],

• Operating system: CentOS Stream 9, free, enterprise

grade Linux distribution [16],

• CPU: Intel Xeon Scalable Processor (Cascade Lake) 2nd

Generation, Intel® Xeon® Gold 6253CL Processor, 8

virtual cores, 8 threads, frequency up to 3.9GHz,

• Memory: 64GB virtual RAM memory.

C. Adjusting hardware performance parameters

It is not possible to select cloud platforms with identical

hardware specifications, particularly with respect to CPU type,

clock speed, and architecture. Consequently, we selected

similar, but not identical, platforms across the different

environments. To enable meaningful performance comparisons,

we applied a hardware adjustment coefficient, calculated based

on publicly available PassMark CPU benchmark data [17]. This

approach allows us to account for the inherent performance

differences between processor types.

Our benchmarking and normalization methodology is as

follows:

• In the first step, we acquired data “as-is” (this data is not

presented in this work due to space limitations)

• In the second step, we “normalize” the data, meaning the

recorded computation times are multiplied by the values

depending on the individual benchmarks of the

4 G. BLINOWSKI, M. BOGUCKI

subsequent processors, the baseline being our “BM”

platform, for which we assume a multiplier of 1.0.

The CPU benchmark results used to calculate the hardware

coefficients are presented in Table II.
TABLE II

ALGORITHMS USED IN THE BENCHMARK

CPU Name Intel i7-

11700k

Intel Xeon

Gold

6253CL

AMD

EPYC

7R13

CPU Class Desktop Server Server

CPU used on platform BM GC AWS

Multi thread score 24455 28549 82158

% difference (multi thread) 100,0% 116,7% 336,0%

Multi-core efficiency

score

3057 1586 1712

% difference (multi

thread per core)

100,0% 51,9% 56,0%

After careful consideration of the benchmarking

methodology, we concluded that the most appropriate metric for

performance normalization is the Multi-thread Score, which we

refer to as the multi-core efficiency score throughout this study.

The rationale for this choice is as follows:

• Single-thread scores differ significantly between

platforms. Since our primary interest lies in evaluating

scalability, using single-thread scores for normalization

would disproportionately favor the bare metal (BM)

platform, which has superior single-core performance.

• The total multi-thread score reflects overall processor

performance when all cores are fully utilized. However,

in cloud environments, users typically only rent a

fraction of the total available processor cores, making

this score an inaccurate basis for comparison.

• The multi-core efficiency score, calculated as the ratio

of the total multi-thread score to the number of physical

cores, provides a fairer estimate of the computational

power available per core. This metric better reflects the

effective performance scaling potential across different

platforms, making it the most suitable choice for

normalizing our benchmark results.

D. Software: platform and libraries

To ensure a uniform execution environment for all

benchmark calculations across platforms, it was necessary to

install or upgrade certain default packages and applications to

the latest available versions for each Linux distribution. For this

purpose, the respective built-in system package managers were

utilized: Aptitude for Ubuntu, and Yum for both Amazon Linux

and CentOS. The complete list of software pack-ages,

applications, and libraries used in the benchmark environment

is provided in Appendix A.

Full code and intermediate data are available under the

following link: https://github.com/gjbl/ML_Cloud_Perf

E. Measurement methods and result verification

As Python has been used with scikit-learn library, it allows to

use several built-in tools for measuring calculation times and

accuracy scores.

• Independent variable n_jobs establishes the number of

vCPUs that are utilized in a given benchmark run.

• Time measurement is the basis for the primary metric – the

given algorithm's total execution time. Python method

time.time() from time library has been used to record the

timestamp directly before and after the calculations.

• Additional metrics: methods of accuracy, F1 score, and

confusion matrix [18] have been imported from

sklearn.metrics library. While time-based performance is

our primary concern accuracy metrics were checked to

verify that all algorithms behaved correctly.

• CPU and memory: real-time observation using the standard

Linux htop tool was conducted to ensure that the full system

capacity was indeed being used.

All data related to timing was automatically recorded in csv

files and averaged over multiple executions.

IV. BENCHMARK RESULTS

A. Introduction

This section presents the results of the machine learning

performance evaluation conducted across both bare metal (BM)

and two public cloud platforms. The primary objective of this

work was to assess the scalability of selected algorithms by

measuring their training and prediction times as a function of

the number of available CPU cores.

The algorithms listed in Table I were tested on the same

dataset, with the number of CPU cores incremented to evaluate

scalability. For each iteration, both training and prediction times

were recorded. The central goal was to determine whether the

performance of the selected algorithms improves with the

addition of CPU cores. In addition, performance differences

between execution on the BM platform and the cloud Virtual

Machines (VMs) were analyzed and are reported. Due to space

limitations, only the normalized results are presented below. For

each algorithm, uniform plots are provided showing training and

prediction times separately, as a function of the number of CPU

cores used. All three platforms are shown together in each plot

for direct comparison.

The number of cores (and hence of the n_jobs parameter) on

the GC platform was limited to 8; however, as we will

demonstrate in section 4.3 regarding gain, this limitation has a

small, if any, practical impact on the final performance analysis.

The time results are presented using standard box-and-

whisker plots, with values averaged over multiple runs. An

exception is the TSVC algorithm, which, due to its significantly

longer execution times, is treated separately. For reference and

validation, the mean accuracy score (F1 score) for each

algorithm is also reported.

B. Normalized benchmark results

The benchmarks result for algorithms exhibiting clear

scalability are presented in Fig. 1 – 3. The rest of the algorithms

is discussed briefly in the subsequent subsection.

Extra Trees Classifier from scikit-learn library (ETC)

• Mean Accuracy: 71,46%.

• Scalability: Yes, both for training and prediction

processing.

PERFORMANCE EVALUATION OF SELECTED ML ALGORITHMS IN GC AND AWS CLOUD ENVIRONMENTS 5

Fig. 1. Normalized Results for the ETC classifier

Support Vector Machine Classifier from ThunderSVM

library (TSVC)

• Mean Accuracy score: 68,32%.

• Scalability: Yes, both for training and prediction

processing

Fig. 2. Normalized Results for the TSVC classifier

Random Forest Classifier from scikit-learn library (RFC)

• Mean Accuracy: 72,57%.

• Scalability: Yes, both for training and prediction

processing.

Fig. 3. Normalized Results for the RFC classifier

K-Nearest Neighbors Classifier from scikit-learn library

(KNC)

• Mean Accuracy: 58,54%.

• Scalability: No scalability observed.

This algorithm did not exhibit significant scalability with

respect to the number of CPU cores. The best results (both for

training and prediction) were obtained for AWS, results for

GC were approximately 40% worse.

K-Nearest Neighbors Classifier (with non-standard

hyperparameters) from scikit-learn library (KNC_2)

• Mean Accuracy: 60,56%.

• Scalability: No scalability observed.

• Hyperparameters tweak: n_neighbors=19 - improved

accuracy and prediction time.

As its predecessor, this algorithm did not exhibit significant

scalability with respect to the number of CPU cores. The best

results (both for training and prediction) were obtained for

AWS; results for GC were approximately 60% worse.

Stochastic Gradient Decent Classifier from scikit-learn

library (SGDC)

• Efficient for this big dataset. The fastest training and

prediction time.

• Mean Accuracy 62,78%.

• Scalability: No scalability observed.

This method also did not exhibit significant scalability with

respect to the number of CPU cores. The best results for training

6 G. BLINOWSKI, M. BOGUCKI

were obtained for AWS; results for GC were approximately

30% worse. In the case of prediction, the difference was even

higher, with AWS being 60% better than GC.

Hist Gradient Boosting Classifier from scikit-learn library

(HistGBC)

High performance, one of the fastest for training and

predicting with a huge dataset. One of the highest

accuracy scores.

• Mean Accuracy: 73,04%.

• Scalability: No scalability observed.

• Hyperparameters: Default parameters used.

This method also did not exhibit significant scalability with

respect to the number of CPU cores. Training time was lower

by 10% for GC (with respect to AWS), while prediction time

was almost 2 times better in the case of AWS.

Hist Gradient Boosting Classifier (with non-standard

hyperparameters) HistGBC_2

• Very low training times, improved performance with

optimized hyperparameters.

• Mean Accuracy: 73,30%.

• Scalability: No scalability observed.

• Hyperparameters: l2_regularization=1.0,

learning_rate=0.2, max_depth=5, max_iter=300 -

improved accuracy.

As the previous variant, this model also did not exhibit

significant scalability with respect to the number of CPU cores.

Training time was 15% lower for GC (with respect to AWS),

while prediction time was 3 times better in case of AWS.

C. Algorithm specific gain and saturation points

To determine the optimal number of CPU cores for each

algorithm with respect to computation time improvement, we

introduce a simple gain formula, defined as follows:

𝑔𝑎ⅈ𝑛𝑛 =
𝑇𝑛−1−𝑇𝑛

𝑇𝑛−1
 (1)

here:

• Tn = Mean execution time (training time or prediction time)

for n CPU cores,

• gain = Relative decrease in execution time, expressed as a

percentage.

The saturation point is defined as the lowest number of CPU

cores for which the calculated gain falls below 10%. In other

words, increasing the number of cores be-yond this point results

in less than 10% improvement in execution time between

consecutive core counts, suggesting that further scaling is not

economically or computationally efficient.

The gain and saturation point calculations are based on the

non-normalized data, as the actual (real) execution times are

considered for these evaluations. The results for algorithms

exhibiting clear scalability are presented in Fig. 4 – 6.

Fig. 4. Gain and saturation for ETC algorithm.

Fig. 5. Gain and saturation for ETC algorithm.

PERFORMANCE EVALUATION OF SELECTED ML ALGORITHMS IN GC AND AWS CLOUD ENVIRONMENTS 7

Fig. 6. Gain and saturation for RFC algorithm

We will provide a more detailed analysis of gain and

saturation in the next section.

V. DISCUSSION

A. Algorithm scalability

The results of our study clearly demonstrate that not all of the

tested algorithms exhibit true scalability with respect to the

number of virtual CPU cores (vCPUs). As indicated in the

algorithm documentation, some methods perform computations

in a purely sequential manner, meaning they are not designed to

scale with additional cores. Among the tested algorithms, Extra

Trees Classifier (ETC), Support Vector Ma-chine Classifier

(TSVC), and Random Forest Classifier (RFC) show a clear

improvement in both training and prediction times as the

number of CPU cores increases:

• RFC and ETC are ensemble methods based on generating

multiple independent decision trees. Each tree can be

trained independently in parallel, which allows these

algorithms to effectively utilize the available CPU

computational resources.

• TSVC (ThunderSVM) is a library specifically optimized

for multi-core CPU execution. It leverages the OpenMP

parallelization framework, enabling the algorithm to

distribute computations across multiple threads. As a result,

increasing the number of available CPU cores has a

noticeable and measurable impact on execution time, as

reflected in the performance plots.

In contrast, the remaining algorithms—KNC, KNC_2,

SGDC, HistGBC, and HistGBC_2—do not exhibit significant

scalability for either the training or prediction phases.

Nevertheless, all methods produced stable results across the

conducted measurements:

• KNC and KNC_2: These algorithms support parallel

processing via the n_jobs parameter; however, this only

applies to the prediction phase. Despite enabling this

functionality during testing, no substantial performance

improvement was observed. The overhead associated with

parallelism appears to offset any potential time savings in

this case.

• SGDC (Stochastic Gradient Descent Classifier): While the

n_jobs parameter is supported for parallelization, it is

primarily intended to accelerate regression or multi-class

classification tasks. As this study focused on a binary

classification problem, the parameter had no measurable

effect on either training or prediction times.

• HistGBC and HistGBC_2: These algorithms utilize the

OpenMP parallelization library internally; however, the

implementation of the n_jobs parameter differs from other

scikit-learn methods. Despite theoretical support for

parallelism, the algorithms did not demonstrate significant

scaling behavior within the tested con-figuration.

B. Optimal number of VCPUs - gain and saturation points

By calculating the gain variable and analyzing the execution

time plots, we can identify the optimal number of virtual CPU

cores (vCPUs) for each algorithm. In this study, a reduction in

execution time of less than 10% between consecutive core

counts is considered economically insignificant, and thus the

corresponding number of cores is defined as the saturation

point.

Extra Trees Classifier (ETC):

• Training: Average gain drops below 10% for each added

core at 5 cores calculations (GC), 6 cores (BM) and 8 cores

(AWS).

• Prediction: Saturation points are: 6 (gc), 4 (BM), 7 (AWS).

Support Vector Machine Classifier (TSVC):

• Training: Saturation points are: 5 (GC), 5 (BM), 7 (AWS).

• Prediction: Saturation points are: 5 (GC), 5 (BM), 8

(AWS).

Random Forest Classifier (RFC):

• Training: Saturation points are: 5 (GC), 8 (BM), 8 (AWS).

• Prediction: Saturation points are: 5 (GC), 5 (BM), 8

(AWS).

For the remaining algorithms, which did not exhibit

significant scalability, the saturation point occurs at 2 cores,

reflecting purely sequential or near-sequential execution

behavior. The only exception is the KNC algorithm during the

prediction phase, where a slight improvement was observed

with up to 3 cores, beyond which no further time reduction

was achieved.

8 G. BLINOWSKI, M. BOGUCKI

C. Platform differences

• BM platform was generally the fastest in cases when

algorithms were not showing any scalability trends. That is

because those algorithms were calculated only on 1 core. In

this case, BM presents the strongest benchmark score.

• AWS shows the most stable results, having the lowest

standard deviation score.

• The mean accuracy of the tested algorithms did not vary

between platforms or with different numbers of CPU cores.

This consistency in accuracy validates the correctness and

reliability of the implementation across all environments.

D. Result summary

• As expected, the non-normalized execution times on the BM

platform were generally shorter compared to the cloud

platforms, primarily due to the high single-core performance

of the local CPU. Conversely, the CPUs installed in cloud

virtual machines are server-class processors optimized for

total multi-core computational throughput rather than

single-thread performance. Cloud platforms, therefore,

exhibit a performance advantage for algorithms that

effectively utilize multiple cores.

• For scalable algorithms, the BM platform demonstrates a

significant performance advantage when using a lower

number of cores. However, this ad-vantage diminishes as the

number of cores increases.

• The Time Gain plots are the final proof for the presence or

lack of scalability of the given algorithm.

• To facilitate a meaningful evaluation of scalability, we

introduced the concept of the saturation point, defined as the

number of cores beyond which execution time improvement

falls below 10%. Beyond this threshold, further increasing

the number of cores is considered economically inefficient,

particularly in cloud environments where pricing is closely

tied to the number of allocated cores.

• For non-scalable algorithms, the saturation point consistently

occurs at 2 cores, indicating that increasing the number of

cores beyond this has no significant impact on performance.

• For scalable algorithms, saturation points were observed to

fall between the 4th and 9th cores, depending on the specific

platform and algorithm. Based on the 10% gain threshold,

utilizing more than 9 cores may not yield sufficient

performance improvements to justify the additional cost,

especially when selecting cloud virtual machines where

pricing scales with core count.

• One contributing factor to these observations may be the use

of hyper-threading, which can inflate the apparent number

of available cores without delivering equivalent physical

performance.

• Notably, the AWS platform consistently reached saturation

points at higher core counts compared to other platforms,

indicating superior scalability under the tested conditions.

• Table III summarizes best obtained execution times (both for

training and prediction) together with the name of the

platform. The last column provides the number of vCPUs –

as calculated by the saturation & gain formula.

TABLE III

SUMMARY OF PLATFORM RESULTS AND COMPARISON, TIMES ARE NORMALIZED

FOR PERFORMANCE COEFFICIENT

Algorithm Minimal train

time

 (best

platform)

Minimal

prediction

time

Optimal

number of

vCPUs (train /

predict)

ETC 1,84 (AWS) 1,8 (AWS) 8 / 7

TSVC 288,9 (AWS) 349,5 (AWS) 7 / 6

RFC 6,96 (BM) 1,0 (AWS) 5 / 8

CONCLUSION

To summarize, the primary consideration when selecting a

cloud platform for AI computation should be the evaluation of

the algorithm’s scalability. This assessment depends not only on

the type of algorithm but also on the nature of the problem and

the characteristics of the dataset. Hyper-threading should not be

assumed to be as efficient as scaling with dedicated vCPUs.

Finally, if performance stability is as important as computation

runtime, AWS has demonstrated higher efficiency; however,

this may not hold true for different sets of algorithms.

As outlined in this study, our benchmarks were limited to a

selected group of classification algorithms, with an intentional

exclusion of neural network models, which represent a distinct

class of machine learning methods that require specialized

hardware, such as GPUs or TPUs, for optimal performance.

Potential extensions of this work include:

• Non-binary classification tasks, where some of the tested

algorithms may exhibit different scalability characteristics,

including greater parallelism potential.

• GPU-accelerated algorithms, such as deep learning models

or large language models (LLMs), are becoming

increasingly relevant for both research and practical AI

applications.

Additionally, future experiments could broaden the scope of

platforms evaluated to include other major public cloud

providers, such as Microsoft Azure, Oracle Cloud, or emerging

providers, to enable a more comprehensive comparison across

the industry.

ACKNOWLEDGEMENTS

We are very grateful to anonymous reviewers for their

appropriate and constructive suggestions to improve this paper.

PERFORMANCE EVALUATION OF SELECTED ML ALGORITHMS IN GC AND AWS CLOUD ENVIRONMENTS 9

APPENDIX A

APPLICATION, PACKAGE AND LIBRARY VERSIONS USED BY THE BENCHMARK SUITE.

Application / Distribution name Description Platform Version

Linux / Ubuntu 24.04

Operating system

BM Ubuntu 24.04,2 LTS kernel 6.11.0-19

Linux / Amazon Linux 2 AWS

Amazon Linux 2, kernel 5.1.230

Virtualizer: Amazon

Linux / CentOS Stream 9 GC

CentOS Stream 9 kernel 5.14.0-539

Virtualizer: KVM

Python

Programming language

necessary for implementation

of ML algorithms,

calculation of tables and plot

drawings.

BM 3.12.7

AWS 3.12.9

GC 3.9.21

Bash

System built-in shell /

command interpreter –

Required for writing starting

script for Virtual Machines.

BM
5.2.21(1)

AWS
4.2.46

GC 5.1.8(1)

PIP

Python Package Manager -

required for install and

update additional Python

packaged.

BM 25.0.1

AWS 25.0.1

GC 25.0.1

scikit-learn (Python package)

Machine learning algorithms

optimized implementations

library.

BM 1.6.0

AWS 1.6.0

GC 1.6.1

ThunderSVM-cpu (Python

package)

SVC parallelized

implementation.

BM 0.2.0

AWS 0.2.0

GC 0.2.0

REFERENCES

[1] P. Borra, “Comparison and analysis of leading cloud service providers

(AWS, Azure and GCP)”, in International Journal of Advanced Research
in Engineering and Technology (IJARET) Volume, 15, 266-278, 2024.
https://doi.org/10.17605/OSF.IO/T2DHW

[2] M. Armbrust, A. Fox, A., et al., “A view of cloud computing”, in

Communications of the ACM, 53(4), 50-58. 2010.
https://doi.org/10.1145/1721654.1721672

[3] A. Rashid, A., A. Chaturvedi, “Cloud computing characteristics and

services: a brief review”, in International Journal of Computer Sciences
and Engineering, 7(2), 421-426, 2019.
https://doi.org/10.26438/ijcse/v7i2.421426

[4] Q. Zhang, I. Cheng, R. Boutaba, “Cloud computing: state-of-the-art and

research challenges”, in Journal of internet services and applications, 1, 7-

18, 2010. https://doi.org/10.1007/s13174-010-0007-6

[5] Amazon Web Services, “AWS Cloud Credits for Research”, Retrieved
from https://aws.amazon.com/grants/, 2023.

[6] M. Goswami, “Challenges and Solutions in Integrating AI with Multi-
Cloud Architectures”, in International Journal of Enhanced Research in
Management & Computer Applications ISSN, 2319-747, 2021.

[7] P. Leitner, J. Cito, “Patterns in the chaos—a study of performance
variation and predictability in public IAaS clouds

“, in ACM Transactions on Internet Technology (TOIT), 16(3), 1-23,
2016. https://doi.org/10.1145/2885497

[8] Sadooghi, I. Martin, et al., “Understanding the performance and potential

of cloud computing for scientific applications”, in IEEE Transactions on
Cloud Computing, 5(2), 358-371, 2015.
https://doi.ieeecomputersociety.org/10.1109/TCC.2015.2404821

[9] J. Ericson, M. Mohammadian, F. Santana, “Analysis of performance

variability in public cloud computing”, in 2017 IEEE International

Conference on Information Reuse and Integration (IRI) (pp. 308-314).
IEEE, 2017. https://doi.org/10.1109/IRI.2017.47

[10] OpenML, "Higgs Boson dataset description," [Online]. Available:
https://www.openml.org/search?type=data&sort=runs&id=44129&status
=active , [Accessed 20.01.2025]

[11] F. Pedregosa, G. Varoquaux, et al., “Scikit-learn: Machine learning in

Python”, in the Journal of machine Learning Research, 12, 2825-2830,
2011.

[12] Amazon AWS, "AWS EC2 Instance Types," [Online]. Available:
https://aws.amazon.com/ec2/instance-types/c6a/ . [Accessed 25.03.2025].

[13] Amazon AWS, "AWS EC2 CPU Options," [Online]. Available:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-

https://doi.org/10.17605/OSF.IO/T2DHW
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.26438/ijcse/v7i2.421426
https://doi.org/10.1007/s13174-010-0007-6
https://aws.amazon.com/grants/
https://doi.org/10.1145/2885497
https://doi.ieeecomputersociety.org/10.1109/TCC.2015.2404821
https://doi.org/10.1109/IRI.2017.47
https://www.openml.org/search?type=data&sort=runs&id=44129&status=active
https://www.openml.org/search?type=data&sort=runs&id=44129&status=active
https://aws.amazon.com/ec2/instance-types/c6a/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html#cpu-options-compute-optimized

10 G. BLINOWSKI, M. BOGUCKI

supported-instances-values.html#cpu-options-compute-optimized

[Accessed 25.03.2025].

[14] Amazon AWS, "AWS Amazon Linux 2 - Product Landing Page,"
[Online]. Available: https://aws.amazon.com/amazon-linux-2
[Accessed 25 03 2025].

[15] Google Inc., "Google Compute Optimized Machines," [Online].

Available: https://cloud.google.com/compute/docs/compute-optimized-

machines#c2_machine_types
[Accessed 25 03 2025].

[16] The CentOS Project, "Official CentOS Project Website," [Online].

Available: https://www.centos.org/ [Accessed 01.04.2025].

[17] PassMark, "CPU Benchmark Comparison," [Online]. Available:
https://www.cpubenchmark.net/compare/3896vs4539vs6160/Intel-i7-

11700K-vs-Intel-Xeon-Gold-6253CL-vs-AMD-EPYC-7R13-64-Core
[Accessed 25 03 2025].

[18] D. M. Powers, “Evaluation: from precision, recall and F-measure to ROC,

informedness, markedness and correlation”, arXiv preprint
arXiv:2010.16061, 2020.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/cpu-options-supported-instances-values.html#cpu-options-compute-optimized
https://aws.amazon.com/amazon-linux-2
https://cloud.google.com/compute/docs/compute-optimized-machines#c2_machine_types
https://cloud.google.com/compute/docs/compute-optimized-machines#c2_machine_types
https://www.cpubenchmark.net/compare/3896vs4539vs6160/Intel-i7-11700K-vs-Intel-Xeon-Gold-6253CL-vs-AMD-EPYC-7R13-64-Core
https://www.cpubenchmark.net/compare/3896vs4539vs6160/Intel-i7-11700K-vs-Intel-Xeon-Gold-6253CL-vs-AMD-EPYC-7R13-64-Core

