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algorithms in GC and AWS cloud environments
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Abstract—In this paper, we analyze the performance of common
machine learning (ML) algorithms executed in Google Cloud and
Amazon Web Services environments. The primary metric is
training and prediction time as a function of the number of virtual
machine cores. For comparison, benchmarks also include a "bare
metal" (i.e. - non-cloud) environment, with results adjusted using
the "Multi-thread Score" to account for architectural differences
among the tested platforms.

Our focus is on CPU-intensive algorithms. The test suite
includes Support Vector Machines, Decision Trees, K-Nearest
Neighbors, Linear Models, and Ensemble Methods. The evaluated
classifiers, sourced from the scikit-learn and ThunderSVM
libraries, include: Extra Trees, Support Vector Machines, K-
Nearest Neighbors, Random Forest, Gradient Boosting Classifier,
and Stochastic Gradient Descent. GPU-accelerated deep learning
models, such as large language models, are excluded due to the
difficulty of establishing a common baseline across platforms.

The dataset used is the widely known ""Higgs dataset," which
describes kinematic properties measured by particle detectors in
the search for the Higgs boson.

Benchmark results are best described as varied—there is no
clear trend, as training and prediction times scale differently
depending on both the cloud platform and the algorithm type. This
paper provides practical insights and guidance for deploying and
optimizing CPU-based ML workloads in cloud environments.

Keywords—Public Cloud; ML/AI algorithms; performance
evaluation

I. INTRODUCTION

A. AIML computing in the public cloud — state of the art

The rapid development of Artificial Intelligence (AI) and
Machine Learning (ML) algorithms, methods, and tools has
significantly increased the demand for scalable, flexible, and
cost-efficient computing resources. Public cloud platforms [1]
such as Google Cloud Platform (GC), Amazon Web Services
(AWS), and Microsoft Azure have emerged as dominant
providers offering comprehensive computational infrastructure
for Al and ML workloads.

Public cloud computing provides on-demand access to
computing resources, enabling scalable storage, data
processing, and algorithm execution [2,3]. Moreover, public
cloud AI/ML services lower entry barriers for organizations and
researchers seeking to adopt these technologies. AI and ML
workloads, particularly deep learning applications, often require
substantial computational power, which cloud platforms
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provide through elastic compute instances and specialized
hardware such as Graphics Processing Units (GPUs).

In general, public cloud platforms offer three models of
service delivery [4]:

+ Infrastructure as a Service (IaaS): Provides raw compute,
storage, and net-working resources.

» Platform as a Service (PaaS): Offers pre-built software
frameworks and development environments.

+ Software as a Service (SaaS): Delivers ready-to-use
applications through the cloud.

This study focuses exclusively on the laaS model, as it offers
the greatest flexibility and is currently the most prevalent
approach for Al and ML applications in both academic and
industrial settings.

Public cloud Infrastructure as a Service (IaaS) operate
primarily under usage-based, scalable payment models,
enabling cost alignment with resource consumption. The most
common cost models for public cloud IaaS include:

* Pay-as-you-go (On-Demand) Model: Users are billed
based on actual re-source consumption (e.g., compute hours,
storage usage, data transfer) with no long-term commitment.

* Reserved Instances (Commitment-based) Model: Users
commit to purchasing specific resources (e.g., virtual machines,
GPUs) for a defined period (typically 1 to 3 years) in exchange
for significant discounts compared to on-demand pricing.

* Spot/Preemptible Instances Model: Providers offer spare

capacity at significantly reduced rates, but with the caveat that
instances can be terminated with little notice.
Because of flexibility for irregular usage, lack of long-term
commitment as well as ease of access via grants and credits
(such as for example [5] — in academic environments, the pay-
as-you-go (on-demand) cost model is by far the most popular
for public cloud laaS usage, particularly for Al and ML research
workloads. This cost-related concerns often become vital in case
of resource and time-consuming AI/ML application — as we will
elaborate in the next section.

B. Challenges, research gaps and scope of research

While public cloud platforms simplify AI/ML adoption for
both scholarly research and enterprise use, several challenges
persist [6], two of which are the focus of this study:

* Performance Variability: Cloud instances frequently exhibit

variable, inconsistent, or unpredictable performance,
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particularly for compute-intensive Al and ML tasks. This
variability can significantly impact execution time,
scalability, and overall workload efficiency.

* Cost Optimization: Achieving an optimal balance between
computational performance and cost efficiency remains a
complex challenge. This is further com-plicated by the lack
of transparent, consistent data regarding algorithm execution
times across different cloud environments.

This study investigates the performance of selected CPU-
based machine learning (ML) algorithms executed within public
cloud IaaS environments, with a comparative analysis between
Google Cloud (GC) and Amazon Web Services (AWS)
platforms. To provide an objective performance baseline, an
additional non-cloud "bare metal" (BM) environment is
included in the evaluation.

Our focus is on classification algorithms that are widely used
and accessible through established, open-source libraries such
as scikit-learn and ThunderSVM. GPU-based models, deep
learning frameworks, and large language models (LLMs) are
intentionally excluded due to their distinct hardware
requirements and the difficulty of establishing a unified baseline
across platforms.

Performance in our study is assessed based on algorithm
training and prediction times, with particular emphasis on
scalability in relation to the number of available virtual CPU
cores. Additionally, benchmark results are normalized using a
multi-core efficiency score derived from independent hardware
performance data to account for architectural differences among
platforms.

The research employs the well-established, balanced Higgs
dataset, ensuring relevance for large-scale classification tasks
while maintaining practical computation times. The primary
objective is to provide actionable insights into the scalability,
performance limitations, and cost implications of deploying
CPU-based ML workloads in cloud environments, with
particular consideration given to the pay-as-you-go pricing
model prevalent in academic research.

The remainder of this paper is organized as follows: Section
2 discusses related work. The research methodology and
experimental setup are detailed in Section 3. Section 4 presents
the experimental results, which are analyzed in Section 5.
Finally, Section 6 provides conclusions and future work.

II. RELATED WORK

Benchmarking the performance of public cloud providers is
a well-established research topic. Numerous studies have
evaluated the performance of different cloud platforms across a
variety of use cases, experimental setups, and operational
constraints. Most existing research focuses on low-level
performance assessments, where specific subsystems—such as
compute, memory, storage, or networking—are evaluated in
isolation. Other popular areas of investigation include the
performance of specific application domains, such as High-
Performance Computing (HPC), simulations, big data analytics,
and Internet of Things (IoT) platforms.

To date, however, the authors are not aware of any
comprehensive studies that specifically address the performance
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of Al and ML algorithms executed within public cloud IaaS
environments, particularly with respect to common
classification algorithms running in CPU-only configurations.
Below, we summarize selected studies relevant to our work in
terms of platform scope, environment, methodology, and key
findings.

Leitner and Cito [7] present a large-scale, systematic
literature review on the predictability of performance in public
Infrastructure-as-a-Service (IaaS) clouds. Their analysis
revealed substantial performance differences between cloud
providers, with multitenancy emerging as a key factor
influencing both performance variability and predictability.
Importantly, the impact of multitenancy was shown to vary
significantly between providers.

Sadooghi et al. [8] conducted an extensive quantitative study
of Amazon EC2, focusing on its suitability for running scientific
applications.  Their methodology involved low-level
benchmarking of memory, networking, and /O subsystems,
followed by an evaluation of complete scientific workloads. The
performance of AWS was compared to that of a private cloud
infrastructure (FermiCloud), highlighting inherent limitations in
public cloud environments for certain computational workloads.
However, this study focused exclusively on a single public
cloud provider (AWS) and did not address Al or ML
applications.

In another relevant study, Ericson et al. [9] investigated
performance variability across public cloud services, including
Microsoft Azure and AWS. The authors emphasized that
performance fluctuations should be a concern for cloud service
consumers, as such variability may adversely affect Quality of
Service (QoS), user experience, and ultimately, pricing
efficiency.

Collectively, these studies underscore the importance of
understanding cloud performance characteristics but also reveal
a clear gap in the literature concerning the performance of ML
algorithms across public IaaS platforms, particularly for CPU-
based workloads. Addressing this gap is the primary objective
of this work.

III. EXPERIMENTAL SETUP AND METHODOLOGY

A. Algorithm and Dataset selection

The scope of this work is limited to classification algorithms,
which was an intentional decision given the wide variety of Al
and ML methods available. We have explicitly excluded GPU-
based algorithms and regression models from the study. Despite
these exclusions, the chosen approach still covers a large and
practically relevant subset of AI/ML problems.

The selection of the dataset for benchmarking required a
careful compromise between small and large datasets. Smaller
datasets, with limited records and low complexity, often result
in very short computation times, making it difficult to measure
resource consumption accurately due to system overhead
influencing the timing. Conversely, very large and highly
complex datasets can lead to prolonged, day-long computations,
which may significantly impact both the cost and the efficiency
of the experiments.

Our dataset choice and the corresponding algorithms used in
this study are presented in Table I.
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TABLE I
ALGORITHMS USED IN THE BENCHMARK

Algorithm Description Codebase
abbreviation
TSVC Support Vector Classifier ThunderSVM
SvC
KNC K-Nearest Neighbors scikit-learn
Classifier neighbors
KNC 2 Tuned K-Nearest Neighbors scikit-learn
Classifier (with non-standard neighbors
hyperparameters) from scikit-
learn library
RFC Random Forest Classifier scikit-learn
ensemble
ETC Extra Trees Classifier scikit-learn
ensemble
SGDC SGD Classifier scikit-learn linear
model
HistGBC Hist Gradient Boosting scikit-learn
Classifier ensemble
HistGBC 2 Tuned Hist Gradient Boosting scikit-learn
Classifier (with non-standard ensemble

hyperparameters)

The dataset selected for this benchmark represents a
necessary compromise between small and large datasets.
Datasets with a limited number of records and low complexity
typically lead to very short computation times, which makes it
difficult to accurately measure resource consumption due to
system overhead influencing the timing results. In contrast,
datasets with a very large number of records and high
complexity often result in prolonged, resource-intensive
computations that can span many hours or even days, which
negatively impacts both the cost and efficiency of experimental
work.

To strike this balance, we selected the widely recognized
Higgs dataset [10], which describes kinematic properties
measured by particle detectors in the search for the Higgs boson.
The key characteristics of the dataset are as follows:

* 940160 instances

» 25 features

* 2 solution classes (“0” — background noise; “1” — signal)

» Dataset is balanced, meaning the classes have the same
number of elements for both solution classes

The scikit-learn library [11], initially developed by David
Cournapeau in 2007 developed in Python, serves as the primary
tool for implementing the benchmark suite. Scikit-learn is a
widely used, open-source machine learning library released
under a BSD license, making it suitable for both academic and
commercial applications. Scikit-learn library integrates
seamlessly with other core Python scientific libraries, including
SciPy, NumPy, and matplotlib. Scikit-learn focuses on
providing efficient implementations of various machine
learning algorithms, and it is extensively applied in both
academic research and industry settings. The library offers
comprehensive support for: data preprocessing; supervised and
unsupervised ML models; Hyperparameter tuning; model
selection and extraction of features. Since its inception, the
library has seen substantial improvements and growth thanks to
large worldwide com-munity and contributors.

B. Test Environment and hardware performance scaling

We conducted our tests across two major cloud
environments: Amazon AWS and Google Cloud (GC), as a
reference we used a non-cloud “bare metal” (BM) platform. A
uniform test suite —comprising benchmark programs written in
Python—was deployed consistently across all platforms.

The configurations of the cloud platforms and reference bare
metal configuration (BM) are summarized below:

BM setup:

* Operating system: Ubuntu 24.04 LTS

* CPU: Intel i7-11700k with 8 physical cores, 16 threads,
maximum frequency SGHz,

* CPU Architecture: x86_64,

*  Memory: 32GB virtual RAM (20GB + 12 GB swap)

» Storage: Viper M.2 NVME 512GB disk, 55GB ext4
partition used for Linux installation.

AWS setup:
* Virtual machine type: C6a-4xlarge [12,13], Compute
Optimized,

Operating system — Amazon Linux 2, lightweight Linux
distribution, owned by cloud platform vendor [14],

« CPU: AMD gen. 3 EPYC 7RI13, frequency up to
3.6GHz, 16 virtual cores, 16 threads,

* CPU Architecture: x86_64,

*  Memory: 32GB virtual RAM,

» Storage: 25GB gp3,

* Enhanced networking.

GC setup:

* Virtual machine type: c2-standard-8
Optimized in “pay as you go” model [15],

* Operating system: CentOS Stream 9, free, enterprise
grade Linux distribution [16],

* CPU: Intel Xeon Scalable Processor (Cascade Lake) 2nd
Generation, Intel® Xeon® Gold 6253CL Processor, 8
virtual cores, 8 threads, frequency up to 3.9GHz,

*  Memory: 64GB virtual RAM memory.

Compute

C. Adjusting hardware performance parameters

It is not possible to select cloud platforms with identical
hardware specifications, particularly with respect to CPU type,
clock speed, and architecture. Consequently, we selected
similar, but not identical, platforms across the different
environments. To enable meaningful performance comparisons,
we applied a hardware adjustment coefficient, calculated based
on publicly available PassMark CPU benchmark data [17]. This
approach allows us to account for the inherent performance
differences between processor types.

Our benchmarking and normalization methodology is as
follows:

* In the first step, we acquired data “as-is” (this data is not
presented in this work due to space limitations)

* In the second step, we “normalize” the data, meaning the
recorded computation times are multiplied by the values
depending on the individual benchmarks of the



subsequent processors, the baseline being our “BM”
platform, for which we assume a multiplier of 1.0.
The CPU benchmark results used to calculate the hardware

coefficients are presented in Table II.
TABLE II
ALGORITHMS USED IN THE BENCHMARK

CPU Name Intel i7-  Intel Xeon AMD
11700k Gold EPYC
6253CL 7R13
CPU Class  Desktop Server Server
CPU used on platform BM GC AWS
Multi thread score 24455 28549 82158
% difference (multi thread) 100,0% 116,7% 336,0%
Multi-core efficiency 3057 1586 1712
score
% difference (multi  100,0% 51,9% 56,0%
thread per core)
After careful consideration of the benchmarking

methodology, we concluded that the most appropriate metric for
performance normalization is the Multi-thread Score, which we
refer to as the multi-core efficiency score throughout this study.
The rationale for this choice is as follows:

* Single-thread scores differ significantly between
platforms. Since our primary interest lies in evaluating
scalability, using single-thread scores for normalization
would disproportionately favor the bare metal (BM)
platform, which has superior single-core performance.

* The total multi-thread score reflects overall processor
performance when all cores are fully utilized. However,
in cloud environments, users typically only rent a
fraction of the total available processor cores, making
this score an inaccurate basis for comparison.

* The multi-core efficiency score, calculated as the ratio
of the total multi-thread score to the number of physical
cores, provides a fairer estimate of the computational
power available per core. This metric better reflects the
effective performance scaling potential across different
platforms, making it the most suitable choice for
normalizing our benchmark results.

D. Software: platform and libraries

To ensure a uniform execution environment for all
benchmark calculations across platforms, it was necessary to
install or upgrade certain default packages and applications to
the latest available versions for each Linux distribution. For this
purpose, the respective built-in system package managers were
utilized: Aptitude for Ubuntu, and Yum for both Amazon Linux
and CentOS. The complete list of software pack-ages,
applications, and libraries used in the benchmark environment
is provided in Appendix A.

Full code and intermediate data are available under the
following link: https://github.com/gjbl/ML_Cloud Perf

E. Measurement methods and result verification

As Python has been used with scikit-learn library, it allows to
use several built-in tools for measuring calculation times and
accuracy scores.
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* Independent variable n jobs establishes the number of
vCPUs that are utilized in a given benchmark run.

* Time measurement is the basis for the primary metric — the
given algorithm's total execution time. Python method
time.time() from time library has been used to record the
timestamp directly before and after the calculations.

* Additional metrics: methods of accuracy, F1 score, and
confusion matrix [I18] have been imported from
sklearn.metrics library. While time-based performance is
our primary concern accuracy metrics were checked to
verify that all algorithms behaved correctly.

* CPU and memory: real-time observation using the standard
Linux htop tool was conducted to ensure that the full system
capacity was indeed being used.

All data related to timing was automatically recorded in csv
files and averaged over multiple executions.

IV. BENCHMARK RESULTS

A. Introduction

This section presents the results of the machine learning
performance evaluation conducted across both bare metal (BM)
and two public cloud platforms. The primary objective of this
work was to assess the scalability of selected algorithms by
measuring their training and prediction times as a function of
the number of available CPU cores.

The algorithms listed in Table I were tested on the same
dataset, with the number of CPU cores incremented to evaluate
scalability. For each iteration, both training and prediction times
were recorded. The central goal was to determine whether the
performance of the selected algorithms improves with the
addition of CPU cores. In addition, performance differences
between execution on the BM platform and the cloud Virtual
Machines (VMs) were analyzed and are reported. Due to space
limitations, only the normalized results are presented below. For
each algorithm, uniform plots are provided showing training and
prediction times separately, as a function of the number of CPU
cores used. All three platforms are shown together in each plot
for direct comparison.

The number of cores (and hence of the n_jobs parameter) on
the GC platform was limited to 8; however, as we will
demonstrate in section 4.3 regarding gain, this limitation has a
small, if any, practical impact on the final performance analysis.

The time results are presented using standard box-and-
whisker plots, with values averaged over multiple runs. An
exception is the TSVC algorithm, which, due to its significantly
longer execution times, is treated separately. For reference and
validation, the mean accuracy score (F1 score) for each
algorithm is also reported.

B. Normalized benchmark results

The benchmarks result for algorithms exhibiting clear
scalability are presented in Fig. 1 — 3. The rest of the algorithms
is discussed briefly in the subsequent subsection.

Extra Trees Classifier from scikit-learn library (ETC)

*  Mean Accuracy: 71,46%.

* Scalability: Yes, both for training and prediction
processing.
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Support Vector Machine Classifier from ThunderSVM
library (TSVC)

. Mean Accuracy score: 68,32%.

e Scalability: Yes, both for training and prediction
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2x10°

Training time [s]

2x10°

Prediction time [s]

6% 107

4x10°

I'SVC - Training Time vs Number of Cores - Normalized

L ]
L ]
®
L I >
L] . »
® @ ) @ o
o ® % o
[ ]
®
[ ]
L}
L
. ]
>
* ? %000 00
2 4 [ 8 10 12 14 16
Number of cores used
TSVC - Prediction Time vs Number of Cores - Normalized

(l.".“
L

r
&
)

8 10 12 14 16
Number of cores used

Fig. 2. Normalized Results for the TSVC classifier
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Random Forest Classifier from scikit-learn library (RFC)

. Mean Accuracy: 72,57%.
. Scalability: Yes, both for training and prediction
processing.
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Fig. 3. Normalized Results for the RFC classifier

K-Nearest Neighbors Classifier from scikit-learn library
(KNC)

. Mean Accuracy: 58,54%.

. Scalability: No scalability observed.

This algorithm did not exhibit significant scalability with
respect to the number of CPU cores. The best results (both for
training and prediction) were obtained for AWS, results for
GC were approximately 40% worse.

K-Nearest Neighbors Classifier (with non-standard
hyperparameters) from scikit-learn library (KNC_2)

. Mean Accuracy: 60,56%.

. Scalability: No scalability observed.

. Hyperparameters tweak: n_neighbors=19 - improved
accuracy and prediction time.

As its predecessor, this algorithm did not exhibit significant
scalability with respect to the number of CPU cores. The best
results (both for training and prediction) were obtained for
AWS; results for GC were approximately 60% worse.

Stochastic Gradient Decent Classifier from scikit-learn
library (SGDC)

. Efficient for this big dataset. The fastest training and
prediction time.

. Mean Accuracy 62,78%.

. Scalability: No scalability observed.

This method also did not exhibit significant scalability with

respect to the number of CPU cores. The best results for training
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were obtained for AWS; results for GC were approximately
30% worse. In the case of prediction, the difference was even
higher, with AWS being 60% better than GC.

Hist Gradient Boosting Classifier from scikit-learn library
(HistGBC)

High performance, one of the fastest for training and
predicting with a huge dataset. One of the highest
accuracy scores.

. Mean Accuracy: 73,04%.

. Scalability: No scalability observed.

. Hyperparameters: Default parameters used.

This method also did not exhibit significant scalability with
respect to the number of CPU cores. Training time was lower
by 10% for GC (with respect to AWS), while prediction time
was almost 2 times better in the case of AWS.

Hist Gradient Boosting Classifier (with non-standard

hyperparameters) HistGBC_2

. Very low training times, improved performance with

optimized hyperparameters.

. Mean Accuracy: 73,30%.

. Scalability: No scalability observed.

. Hyperparameters: /2_regularization=1.0,

learning rate=0.2, max_depth=35, max_iter=300 -
improved accuracy.

As the previous variant, this model also did not exhibit
significant scalability with respect to the number of CPU cores.
Training time was 15% lower for GC (with respect to AWS),
while prediction time was 3 times better in case of AWS.

C. Algorithm specific gain and saturation points

To determine the optimal number of CPU cores for each
algorithm with respect to computation time improvement, we
introduce a simple gain formula, defined as follows:

Thoa—Th

gaing = =" (1

n-1

here:

* T,=Mean execution time (training time or prediction time)
for n CPU cores,

* gain = Relative decrease in execution time, expressed as a
percentage.

The saturation point is defined as the lowest number of CPU
cores for which the calculated gain falls below 10%. In other
words, increasing the number of cores be-yond this point results
in less than 10% improvement in execution time between
consecutive core counts, suggesting that further scaling is not
economically or computationally efficient.

The gain and saturation point calculations are based on the
non-normalized data, as the actual (real) execution times are
considered for these evaluations. The results for algorithms
exhibiting clear scalability are presented in Fig. 4 — 6.
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We will provide a more detailed analysis of gain and
saturation in the next section.

V. DISCUSSION

A. Algorithm scalability

The results of our study clearly demonstrate that not all of the
tested algorithms exhibit true scalability with respect to the
number of virtual CPU cores (vCPUs). As indicated in the
algorithm documentation, some methods perform computations
in a purely sequential manner, meaning they are not designed to
scale with additional cores. Among the tested algorithms, Extra
Trees Classifier (ETC), Support Vector Ma-chine Classifier
(TSVC), and Random Forest Classifier (RFC) show a clear
improvement in both training and prediction times as the
number of CPU cores increases:

* RFC and ETC are ensemble methods based on generating
multiple independent decision trees. Each tree can be
trained independently in parallel, which allows these
algorithms to effectively utilize the available CPU
computational resources.

TSVC (ThunderSVM) is a library specifically optimized
for multi-core CPU execution. It leverages the OpenMP
parallelization framework, enabling the algorithm to
distribute computations across multiple threads. As a result,
increasing the number of available CPU cores has a
noticeable and measurable impact on execution time, as
reflected in the performance plots.

In contrast, the remaining algorithms—KNC, KNC 2,
SGDC, HistGBC, and HistGBC 2—do not exhibit significant
scalability for either the training or prediction phases.
Nevertheless, all methods produced stable results across the
conducted measurements:

* KNC and KNC_2: These algorithms support parallel
processing via the n_jobs parameter; however, this only
applies to the prediction phase. Despite enabling this
functionality during testing, no substantial performance
improvement was observed. The overhead associated with
parallelism appears to offset any potential time savings in
this case.

SGDC (Stochastic Gradient Descent Classifier): While the
n_jobs parameter is supported for parallelization, it is
primarily intended to accelerate regression or multi-class
classification tasks. As this study focused on a binary
classification problem, the parameter had no measurable
effect on either training or prediction times.

HistGBC and HistGBC_2: These algorithms utilize the
OpenMP parallelization library internally; however, the
implementation of the n_jobs parameter differs from other
scikit-learn methods. Despite theoretical support for
parallelism, the algorithms did not demonstrate significant
scaling behavior within the tested con-figuration.

B. Optimal number of VCPUs - gain and saturation points

By calculating the gain variable and analyzing the execution
time plots, we can identify the optimal number of virtual CPU
cores (VCPUs) for each algorithm. In this study, a reduction in
execution time of less than 10% between consecutive core
counts is considered economically insignificant, and thus the
corresponding number of cores is defined as the saturation
point.

Extra Trees Classifier (ETC):

* Training: Average gain drops below 10% for each added
core at 5 cores calculations (GC), 6 cores (BM) and 8 cores
(AWS).

* Prediction: Saturation points are: 6 (gc), 4 (BM), 7 (AWS).

Support Vector Machine Classifier (TSVC):

* Training: Saturation points are: 5 (GC), 5 (BM), 7 (AWS).

* Prediction: Saturation points are: 5 (GC), 5 (BM), 8
(AWS).

Random Forest Classifier (RFC):

* Training: Saturation points are: 5 (GC), 8 (BM), 8 (AWS).

* Prediction: Saturation points are: 5 (GC), 5 (BM), 8
(AWS).

For the remaining algorithms, which did not exhibit
significant scalability, the saturation point occurs at 2 cores,
reflecting purely sequential or near-sequential execution
behavior. The only exception is the KNC algorithm during the
prediction phase, where a slight improvement was observed
with up to 3 cores, beyond which no further time reduction
was achieved.



C. Platform differences

* BM platform was generally the fastest in cases when
algorithms were not showing any scalability trends. That is
because those algorithms were calculated only on 1 core. In
this case, BM presents the strongest benchmark score.

* AWS shows the most stable results, having the lowest
standard deviation score.

* The mean accuracy of the tested algorithms did not vary
between platforms or with different numbers of CPU cores.
This consistency in accuracy validates the correctness and
reliability of the implementation across all environments.

D. Result summary

* As expected, the non-normalized execution times on the BM
platform were generally shorter compared to the cloud
platforms, primarily due to the high single-core performance
of the local CPU. Conversely, the CPUs installed in cloud
virtual machines are server-class processors optimized for
total multi-core computational throughput rather than
single-thread performance. Cloud platforms, therefore,
exhibit a performance advantage for algorithms that
effectively utilize multiple cores.
For scalable algorithms, the BM platform demonstrates a
significant performance advantage when using a lower
number of cores. However, this ad-vantage diminishes as the
number of cores increases.
* The Time Gain plots are the final proof for the presence or
lack of scalability of the given algorithm.
To facilitate a meaningful evaluation of scalability, we
introduced the concept of the saturation point, defined as the
number of cores beyond which execution time improvement
falls below 10%. Beyond this threshold, further increasing
the number of cores is considered economically inefficient,
particularly in cloud environments where pricing is closely
tied to the number of allocated cores.
* For non-scalable algorithms, the saturation point consistently
occurs at 2 cores, indicating that increasing the number of
cores beyond this has no significant impact on performance.
For scalable algorithms, saturation points were observed to
fall between the 4th and 9th cores, depending on the specific
platform and algorithm. Based on the 10% gain threshold,
utilizing more than 9 cores may not yield sufficient
performance improvements to justify the additional cost,
especially when selecting cloud virtual machines where
pricing scales with core count.
* One contributing factor to these observations may be the use
of hyper-threading, which can inflate the apparent number
of available cores without delivering equivalent physical
performance.
Notably, the AWS platform consistently reached saturation
points at higher core counts compared to other platforms,
indicating superior scalability under the tested conditions.
* Table IIT summarizes best obtained execution times (both for
training and prediction) together with the name of the
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platform. The last column provides the number of vCPUs —
as calculated by the saturation & gain formula.

TABLE IIT
SUMMARY OF PLATFORM RESULTS AND COMPARISON, TIMES ARE NORMALIZED
FOR PERFORMANCE COEFFICIENT

Algorithm Minimal train Minimal Optimal
time prediction number of
(best time vCPUs (train/
platform) predict)
ETC 1,84 (AWS) 1,8 (AWS) 8/7
TSVC 288,9 (AWS) 349,5 (AWS) 7/6
RFC 6,96 (BM) 1,0 (AWS) 5/8
CONCLUSION

To summarize, the primary consideration when selecting a
cloud platform for Al computation should be the evaluation of
the algorithm’s scalability. This assessment depends not only on
the type of algorithm but also on the nature of the problem and
the characteristics of the dataset. Hyper-threading should not be
assumed to be as efficient as scaling with dedicated vCPUs.
Finally, if performance stability is as important as computation
runtime, AWS has demonstrated higher efficiency; however,
this may not hold true for different sets of algorithms.

As outlined in this study, our benchmarks were limited to a
selected group of classification algorithms, with an intentional
exclusion of neural network models, which represent a distinct
class of machine learning methods that require specialized
hardware, such as GPUs or TPUs, for optimal performance.

Potential extensions of this work include:

* Non-binary classification tasks, where some of the tested
algorithms may exhibit different scalability characteristics,
including greater parallelism potential.

* GPU-accelerated algorithms, such as deep learning models
or large language models (LLMs), are becoming
increasingly relevant for both research and practical Al
applications.

Additionally, future experiments could broaden the scope of
platforms evaluated to include other major public cloud
providers, such as Microsoft Azure, Oracle Cloud, or emerging
providers, to enable a more comprehensive comparison across
the industry.
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APPENDIX A
APPLICATION, PACKAGE AND LIBRARY VERSIONS USED BY THE BENCHMARK SUITE.

Application / Distribution name Description Platform Version
Linux / Ubuntu 24.04 BM Ubuntu 24.04,2 LTS kernel 6.11.0-19
Amazon Linux 2, kernel 5.1.230
Linux / Amazon Linux 2 AWS
Operating system Virtualizer: Amazon
CentOS Stream 9 kernel 5.14.0-539
Linux / CentOS Stream 9 GC
Virtualizer: KVM
Programming language BM 3.12.7
necessary for implementation
Python of ML algorithms, AWS 3.12.9
calculation of tables and plot
drawings. GC 3.9.21
System built-in shell / BM 5.2.21(1)
command interpreter —
Bash Required for writing starting AWS 4.2.46
script for Virtual Machines. GC 5.1.8(1)
Python Package Manager - BM 2501
required for install and
PIP update additional Python AWS 250.1
packaged. GC 25.0.1
BM 1.6.0
Machine learning algorithms
scikit-learn (Python package) optimized implementations AWS 1.6.0
library.
GC 1.6.1
BM 0.2.0
ThunderSVM-cpu (Python SVC parallel_lzed AWS 020
package) implementation.
GC 0.2.0
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