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Abstract—In this paper, we analyze the performance of common 

machine learning (ML) algorithms executed in Google Cloud and 

Amazon Web Services environments. The primary metric is 

training and prediction time as a function of the number of virtual 

machine cores. For comparison, benchmarks also include a "bare 

metal" (i.e. - non-cloud) environment, with results adjusted using 

the "Multi-thread Score" to account for architectural differences 

among the tested platforms. 

Our focus is on CPU-intensive algorithms. The test suite 

includes Support Vector Machines, Decision Trees, K-Nearest 

Neighbors, Linear Models, and Ensemble Methods. The evaluated 

classifiers, sourced from the scikit-learn and ThunderSVM 

libraries, include: Extra Trees, Support Vector Machines, K-

Nearest Neighbors, Random Forest, Gradient Boosting Classifier, 

and Stochastic Gradient Descent. GPU-accelerated deep learning 

models, such as large language models, are excluded due to the 

difficulty of establishing a common baseline across platforms. 

The dataset used is the widely known "Higgs dataset," which 

describes kinematic properties measured by particle detectors in 

the search for the Higgs boson. 

Benchmark results are best described as varied—there is no 

clear trend, as training and prediction times scale differently 

depending on both the cloud platform and the algorithm type. This 

paper provides practical insights and guidance for deploying and 

optimizing CPU-based ML workloads in cloud environments. 

 

Keywords—Public Cloud; ML/AI algorithms; performance 

evaluation 

I. INTRODUCTION 

A. AI/ML computing in the public cloud – state of the art 

The rapid development of Artificial Intelligence (AI) and 

Machine Learning (ML) algorithms, methods, and tools has 

significantly increased the demand for scalable, flexible, and 

cost-efficient computing resources. Public cloud platforms [1] 

such as Google Cloud Platform (GC), Amazon Web Services 

(AWS), and Microsoft Azure have emerged as dominant 

providers offering comprehensive computational infrastructure 

for AI and ML workloads. 

Public cloud computing provides on-demand access to 

computing resources, enabling scalable storage, data 

processing, and algorithm execution [2,3]. Moreover, public 

cloud AI/ML services lower entry barriers for organizations and 

researchers seeking to adopt these technologies. AI and ML 

workloads, particularly deep learning applications, often require 

substantial computational power, which cloud platforms 
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provide through elastic compute instances and specialized 

hardware such as Graphics Processing Units (GPUs). 

In general, public cloud platforms offer three models of 

service delivery [4]: 

• Infrastructure as a Service (IaaS): Provides raw compute, 

storage, and net-working resources. 

• Platform as a Service (PaaS): Offers pre-built software 

frameworks and development environments. 

• Software as a Service (SaaS): Delivers ready-to-use 

applications through the cloud. 

This study focuses exclusively on the IaaS model, as it offers 

the greatest flexibility and is currently the most prevalent 

approach for AI and ML applications in both academic and 

industrial settings. 

Public cloud Infrastructure as a Service (IaaS) operate 

primarily under usage-based, scalable payment models, 

enabling cost alignment with resource consumption. The most 

common cost models for public cloud IaaS include:  

• Pay-as-you-go (On-Demand) Model: Users are billed 

based on actual re-source consumption (e.g., compute hours, 

storage usage, data transfer) with no long-term commitment.  

• Reserved Instances (Commitment-based) Model: Users 

commit to purchasing specific resources (e.g., virtual machines, 

GPUs) for a defined period (typically 1 to 3 years) in exchange 

for significant discounts compared to on-demand pricing. 

• Spot/Preemptible Instances Model: Providers offer spare 

capacity at significantly reduced rates, but with the caveat that 

instances can be terminated with little notice. 

Because of flexibility for irregular usage, lack of long-term 

commitment as well as ease of access via grants and credits 

(such as for example [5] – in academic environments, the pay-

as-you-go (on-demand) cost model is by far the most popular 

for public cloud IaaS usage, particularly for AI and ML research 

workloads. This cost-related concerns often become vital in case 

of resource and time-consuming AI/ML application – as we will 

elaborate in the next section. 

B. Challenges, research gaps and scope of research 

While public cloud platforms simplify AI/ML adoption for 

both scholarly research and enterprise use, several challenges 

persist [6], two of which are the focus of this study: 

• Performance Variability: Cloud instances frequently exhibit 

variable, inconsistent, or unpredictable performance, 
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particularly for compute-intensive AI and ML tasks. This 

variability can significantly impact execution time, 

scalability, and overall workload efficiency. 

• Cost Optimization: Achieving an optimal balance between 

computational performance and cost efficiency remains a 

complex challenge. This is further com-plicated by the lack 

of transparent, consistent data regarding algorithm execution 

times across different cloud environments. 
 

This study investigates the performance of selected CPU-

based machine learning (ML) algorithms executed within public 

cloud IaaS environments, with a comparative analysis between 

Google Cloud (GC) and Amazon Web Services (AWS) 

platforms. To provide an objective performance baseline, an 

additional non-cloud "bare metal" (BM) environment is 

included in the evaluation. 

Our focus is on classification algorithms that are widely used 

and accessible through established, open-source libraries such 

as scikit-learn and ThunderSVM. GPU-based models, deep 

learning frameworks, and large language models (LLMs) are 

intentionally excluded due to their distinct hardware 

requirements and the difficulty of establishing a unified baseline 

across platforms. 

Performance in our study is assessed based on algorithm 

training and prediction times, with particular emphasis on 

scalability in relation to the number of available virtual CPU 

cores. Additionally, benchmark results are normalized using a 

multi-core efficiency score derived from independent hardware 

performance data to account for architectural differences among 

platforms. 

The research employs the well-established, balanced Higgs 

dataset, ensuring relevance for large-scale classification tasks 

while maintaining practical computation times. The primary 

objective is to provide actionable insights into the scalability, 

performance limitations, and cost implications of deploying 

CPU-based ML workloads in cloud environments, with 

particular consideration given to the pay-as-you-go pricing 

model prevalent in academic research. 

The remainder of this paper is organized as follows: Section 

2 discusses related work. The research methodology and 

experimental setup are detailed in Section 3. Section 4 presents 

the experimental results, which are analyzed in Section 5. 

Finally, Section 6 provides conclusions and future work. 

II. RELATED WORK 

Benchmarking the performance of public cloud providers is 

a well-established research topic. Numerous studies have 

evaluated the performance of different cloud platforms across a 

variety of use cases, experimental setups, and operational 

constraints. Most existing research focuses on low-level 

performance assessments, where specific subsystems—such as 

compute, memory, storage, or networking—are evaluated in 

isolation. Other popular areas of investigation include the 

performance of specific application domains, such as High-

Performance Computing (HPC), simulations, big data analytics, 

and Internet of Things (IoT) platforms. 

To date, however, the authors are not aware of any 

comprehensive studies that specifically address the performance 

of AI and ML algorithms executed within public cloud IaaS 

environments, particularly with respect to common 

classification algorithms running in CPU-only configurations. 

Below, we summarize selected studies relevant to our work in 

terms of platform scope, environment, methodology, and key 

findings. 

Leitner and Cito [7] present a large-scale, systematic 

literature review on the predictability of performance in public 

Infrastructure-as-a-Service (IaaS) clouds. Their analysis 

revealed substantial performance differences between cloud 

providers, with multitenancy emerging as a key factor 

influencing both performance variability and predictability. 

Importantly, the impact of multitenancy was shown to vary 

significantly between providers. 

Sadooghi et al. [8] conducted an extensive quantitative study 

of Amazon EC2, focusing on its suitability for running scientific 

applications. Their methodology involved low-level 

benchmarking of memory, networking, and I/O subsystems, 

followed by an evaluation of complete scientific workloads. The 

performance of AWS was compared to that of a private cloud 

infrastructure (FermiCloud), highlighting inherent limitations in 

public cloud environments for certain computational workloads. 

However, this study focused exclusively on a single public 

cloud provider (AWS) and did not address AI or ML 

applications. 

In another relevant study, Ericson et al. [9] investigated 

performance variability across public cloud services, including 

Microsoft Azure and AWS. The authors emphasized that 

performance fluctuations should be a concern for cloud service 

consumers, as such variability may adversely affect Quality of 

Service (QoS), user experience, and ultimately, pricing 

efficiency. 

Collectively, these studies underscore the importance of 

understanding cloud performance characteristics but also reveal 

a clear gap in the literature concerning the performance of ML 

algorithms across public IaaS platforms, particularly for CPU-

based workloads. Addressing this gap is the primary objective 

of this work. 

III. EXPERIMENTAL SETUP AND METHODOLOGY 

A. Algorithm and Dataset selection 

The scope of this work is limited to classification algorithms, 

which was an intentional decision given the wide variety of AI 

and ML methods available. We have explicitly excluded GPU-

based algorithms and regression models from the study. Despite 

these exclusions, the chosen approach still covers a large and 

practically relevant subset of AI/ML problems. 

The selection of the dataset for benchmarking required a 

careful compromise between small and large datasets. Smaller 

datasets, with limited records and low complexity, often result 

in very short computation times, making it difficult to measure 

resource consumption accurately due to system overhead 

influencing the timing. Conversely, very large and highly 

complex datasets can lead to prolonged, day-long computations, 

which may significantly impact both the cost and the efficiency 

of the experiments. 

Our dataset choice and the corresponding algorithms used in 

this study are presented in Table I. 
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TABLE I  

ALGORITHMS USED IN THE BENCHMARK 

Algorithm 

abbreviation  

Description Codebase 

TSVC Support Vector Classifier ThunderSVM 

SVC 
KNC K-Nearest Neighbors 

Classifier 

scikit-learn 

neighbors 

KNC_2 Tuned K-Nearest Neighbors 
Classifier (with non-standard 

hyperparameters) from scikit-
learn library 

scikit-learn 
neighbors 

   

RFC Random Forest Classifier scikit-learn 

ensemble 
ETC Extra Trees Classifier scikit-learn 

ensemble 

SGDC SGD Classifier scikit-learn linear 
model 

HistGBC Hist Gradient Boosting 

Classifier 

scikit-learn 

ensemble 

HistGBC_2 Tuned Hist Gradient Boosting 
Classifier (with non-standard 

hyperparameters) 

scikit-learn 
ensemble 

 

The dataset selected for this benchmark represents a 

necessary compromise between small and large datasets. 

Datasets with a limited number of records and low complexity 

typically lead to very short computation times, which makes it 

difficult to accurately measure resource consumption due to 

system overhead influencing the timing results. In contrast, 

datasets with a very large number of records and high 

complexity often result in prolonged, resource-intensive 

computations that can span many hours or even days, which 

negatively impacts both the cost and efficiency of experimental 

work. 

To strike this balance, we selected the widely recognized 

Higgs dataset [10], which describes kinematic properties 

measured by particle detectors in the search for the Higgs boson. 

The key characteristics of the dataset are as follows: 

• 940160 instances 

• 25 features 

• 2 solution classes (“0” – background noise; “1” – signal) 

• Dataset is balanced, meaning the classes have the same 

number of elements for both solution classes 

The scikit-learn library [11], initially developed by David 

Cournapeau in 2007 developed in Python, serves as the primary 

tool for implementing the benchmark suite. Scikit-learn is a 

widely used, open-source machine learning library released 

under a BSD license, making it suitable for both academic and 

commercial applications. Scikit-learn library integrates 

seamlessly with other core Python scientific libraries, including 

SciPy, NumPy, and matplotlib. Scikit-learn focuses on 

providing efficient implementations of various machine 

learning algorithms, and it is extensively applied in both 

academic research and industry settings. The library offers 

comprehensive support for: data preprocessing; supervised and 

unsupervised ML models; Hyperparameter tuning; model 

selection and extraction of features.  Since its inception, the 

library has seen substantial improvements and growth thanks to 

large worldwide com-munity and contributors. 

B. Test Environment and hardware performance scaling 

We conducted our tests across two major cloud 

environments: Amazon AWS and Google Cloud (GC), as a 

reference we used a non-cloud “bare metal” (BM) platform. A 

uniform test suite —comprising benchmark programs written in 

Python—was deployed consistently across all platforms. 

The configurations of the cloud platforms and reference bare 

metal configuration (BM) are summarized below: 

 

BM setup: 

• Operating system: Ubuntu 24.04 LTS 

• CPU: Intel i7-11700k with 8 physical cores, 16 threads, 

maximum frequency 5GHz, 

• CPU Architecture: x86_64, 

• Memory: 32GB virtual RAM (20GB + 12 GB swap) 

• Storage: Viper M.2 NVME 512GB disk, 55GB ext4 

partition used for Linux installation. 

 

 

AWS setup: 

• Virtual machine type: C6a-4xlarge [12,13], Compute 

Optimized, 

• Operating system – Amazon Linux 2, lightweight Linux 

distribution, owned by cloud platform vendor [14], 

• CPU: AMD gen. 3 EPYC 7R13, frequency up to 

3.6GHz, 16 virtual cores, 16 threads, 

• CPU Architecture: x86_64, 

• Memory: 32GB virtual RAM, 

• Storage: 25GB gp3, 

• Enhanced networking. 

 

GC setup: 

• Virtual machine type: c2-standard-8 Compute 

Optimized in “pay as you go” model [15], 

• Operating system: CentOS Stream 9, free, enterprise 

grade Linux distribution [16], 

• CPU: Intel Xeon Scalable Processor (Cascade Lake) 2nd 

Generation, Intel® Xeon® Gold 6253CL Processor, 8 

virtual cores, 8 threads, frequency up to 3.9GHz, 

• Memory: 64GB virtual RAM memory. 

C. Adjusting hardware performance parameters 

It is not possible to select cloud platforms with identical 

hardware specifications, particularly with respect to CPU type, 

clock speed, and architecture. Consequently, we selected 

similar, but not identical, platforms across the different 

environments. To enable meaningful performance comparisons, 

we applied a hardware adjustment coefficient, calculated based 

on publicly available PassMark CPU benchmark data [17]. This 

approach allows us to account for the inherent performance 

differences between processor types. 

Our benchmarking and normalization methodology is as 

follows: 

• In the first step, we acquired data “as-is” (this data is not 

presented in this work due to space limitations) 

• In the second step, we “normalize” the data, meaning the 

recorded computation times are multiplied by the values 

depending on the individual benchmarks of the 
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subsequent processors, the baseline being our “BM” 

platform, for which we assume a multiplier of 1.0. 

The CPU benchmark results used to calculate the hardware 

coefficients are presented in Table II. 
TABLE II  

ALGORITHMS USED IN THE BENCHMARK 

CPU Name Intel i7- 

11700k 

Intel Xeon 

Gold 

6253CL 

AMD 

EPYC 

7R13 

CPU Class Desktop Server Server 

CPU used on platform BM GC AWS 

Multi thread score 24455 28549 82158 

% difference (multi thread) 100,0% 116,7% 336,0% 

Multi-core efficiency 

score 

3057 1586 1712 

% difference (multi 

thread per core)   

100,0% 51,9% 56,0% 

 

After careful consideration of the benchmarking 

methodology, we concluded that the most appropriate metric for 

performance normalization is the Multi-thread Score, which we 

refer to as the multi-core efficiency score throughout this study. 

The rationale for this choice is as follows: 

 

•  Single-thread scores differ significantly between 

platforms. Since our primary interest lies in evaluating 

scalability, using single-thread scores for normalization 

would disproportionately favor the bare metal (BM) 

platform, which has superior single-core performance. 

• The total multi-thread score reflects overall processor 

performance when all cores are fully utilized. However, 

in cloud environments, users typically only rent a 

fraction of the total available processor cores, making 

this score an inaccurate basis for comparison. 

•  The multi-core efficiency score, calculated as the ratio 

of the total multi-thread score to the number of physical 

cores, provides a fairer estimate of the computational 

power available per core. This metric better reflects the 

effective performance scaling potential across different 

platforms, making it the most suitable choice for 

normalizing our benchmark results. 

D. Software: platform and libraries 

To ensure a uniform execution environment for all 

benchmark calculations across platforms, it was necessary to 

install or upgrade certain default packages and applications to 

the latest available versions for each Linux distribution. For this 

purpose, the respective built-in system package managers were 

utilized: Aptitude for Ubuntu, and Yum for both Amazon Linux 

and CentOS. The complete list of software pack-ages, 

applications, and libraries used in the benchmark environment 

is provided in Appendix A.  

Full code and intermediate data are available under the 

following link: https://github.com/gjbl/ML_Cloud_Perf 

 

E. Measurement methods and result verification 

As Python has been used with scikit-learn library, it allows to 

use several built-in tools for measuring calculation times and 

accuracy scores.  

• Independent variable n_jobs establishes the number of 

vCPUs that are utilized in a given benchmark run. 

• Time measurement is the basis for the primary metric – the 

given algorithm's total execution time. Python method 

time.time() from time library has been used to record the 

timestamp directly before and after the calculations. 

• Additional metrics: methods of accuracy, F1 score, and 

confusion matrix [18] have been imported from 

sklearn.metrics library. While time-based performance is 

our primary concern accuracy metrics were checked to 

verify that all algorithms behaved correctly. 

• CPU and memory: real-time observation using the standard 

Linux htop tool was conducted to ensure that the full system 

capacity was indeed being used.  

All data related to timing was automatically recorded in csv 

files and averaged over multiple executions. 

IV. BENCHMARK RESULTS 

A. Introduction 

This section presents the results of the machine learning 

performance evaluation conducted across both bare metal (BM) 

and two public cloud platforms. The primary objective of this 

work was to assess the scalability of selected algorithms by 

measuring their training and prediction times as a function of 

the number of available CPU cores.  

The algorithms listed in Table I were tested on the same 

dataset, with the number of CPU cores incremented to evaluate 

scalability. For each iteration, both training and prediction times 

were recorded. The central goal was to determine whether the 

performance of the selected algorithms improves with the 

addition of CPU cores. In addition, performance differences 

between execution on the BM platform and the cloud Virtual 

Machines (VMs) were analyzed and are reported. Due to space 

limitations, only the normalized results are presented below. For 

each algorithm, uniform plots are provided showing training and 

prediction times separately, as a function of the number of CPU 

cores used. All three platforms are shown together in each plot 

for direct comparison.  

The number of cores (and hence of the n_jobs parameter) on 

the GC platform was limited to 8; however, as we will 

demonstrate in section 4.3 regarding gain, this limitation has a 

small, if any, practical impact on the final performance analysis. 

The time results are presented using standard box-and-

whisker plots, with values averaged over multiple runs. An 

exception is the TSVC algorithm, which, due to its significantly 

longer execution times, is treated separately. For reference and 

validation, the mean accuracy score (F1 score) for each 

algorithm is also reported. 

B. Normalized benchmark results 

The benchmarks result for algorithms exhibiting clear 

scalability are presented in Fig. 1 – 3. The rest of the algorithms 

is discussed briefly in the subsequent subsection. 

 

Extra Trees Classifier from scikit-learn library (ETC) 

• Mean Accuracy: 71,46%. 

• Scalability: Yes, both for training and prediction 

processing. 
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Fig. 1. Normalized Results for the ETC classifier 

 

Support Vector Machine Classifier from ThunderSVM 

library (TSVC) 

• Mean Accuracy score: 68,32%. 

• Scalability: Yes, both for training and prediction 

processing 

 

 
Fig. 2. Normalized Results for the TSVC classifier 

 

Random Forest Classifier from scikit-learn library (RFC) 

 

• Mean Accuracy: 72,57%. 

• Scalability: Yes, both for training and prediction 

processing. 

 

 
Fig. 3. Normalized Results for the RFC classifier 

 

K-Nearest Neighbors Classifier from scikit-learn library 

(KNC) 

• Mean Accuracy: 58,54%. 

• Scalability: No scalability observed. 

 

This algorithm did not exhibit significant scalability with 

respect to the number of CPU cores. The best results (both for 

training and prediction) were obtained for AWS, results for 

GC were approximately 40% worse. 

 

K-Nearest Neighbors Classifier (with non-standard 

hyperparameters) from scikit-learn library (KNC_2) 

 

• Mean Accuracy: 60,56%. 

• Scalability: No scalability observed. 

• Hyperparameters tweak: n_neighbors=19 - improved 

accuracy and prediction time.  

As its predecessor, this algorithm did not exhibit significant 

scalability with respect to the number of CPU cores. The best 

results (both for training and prediction) were obtained for 

AWS; results for GC were approximately 60% worse. 

 

Stochastic Gradient Decent Classifier from scikit-learn 

library (SGDC) 

• Efficient for this big dataset. The fastest training and 

prediction time. 

• Mean Accuracy 62,78%. 

• Scalability: No scalability observed. 

This method also did not exhibit significant scalability with 

respect to the number of CPU cores. The best results for training 
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were obtained for AWS; results for GC were approximately 

30% worse. In the case of prediction, the difference was even 

higher, with AWS being 60% better than GC. 

 

Hist Gradient Boosting Classifier from scikit-learn library 

(HistGBC) 

High performance, one of the fastest for training and 

predicting with a huge dataset. One of the highest 

accuracy scores.   

• Mean Accuracy: 73,04%. 

• Scalability: No scalability observed. 

• Hyperparameters: Default parameters used. 

This method also did not exhibit significant scalability with 

respect to the number of CPU cores. Training time was lower 

by 10% for GC (with respect to AWS), while prediction time 

was almost 2 times better in the case of AWS. 

 

Hist Gradient Boosting Classifier (with non-standard 

hyperparameters) HistGBC_2 

• Very low training times, improved performance with 

optimized hyperparameters. 

• Mean Accuracy: 73,30%. 

• Scalability: No scalability observed. 

• Hyperparameters: l2_regularization=1.0, 

learning_rate=0.2, max_depth=5, max_iter=300 - 

improved accuracy. 

As the previous variant, this model also did not exhibit 

significant scalability with respect to the number of CPU cores. 

Training time was 15% lower for GC (with respect to AWS), 

while prediction time was 3 times better in case of AWS. 

C. Algorithm specific gain and saturation points 

To determine the optimal number of CPU cores for each 

algorithm with respect to computation time improvement, we 

introduce a simple gain formula, defined as follows: 

 

𝑔𝑎ⅈ𝑛𝑛 =
𝑇𝑛−1−𝑇𝑛

𝑇𝑛−1
 (1) 

 

here: 

• Tn = Mean execution time (training time or prediction time) 

for n CPU cores, 

• gain = Relative decrease in execution time, expressed as a 

percentage. 

The saturation point is defined as the lowest number of CPU 

cores for which the calculated gain falls below 10%. In other 

words, increasing the number of cores be-yond this point results 

in less than 10% improvement in execution time between 

consecutive core counts, suggesting that further scaling is not 

economically or computationally efficient.  

The gain and saturation point calculations are based on the 

non-normalized data, as the actual (real) execution times are 

considered for these evaluations. The results for algorithms 

exhibiting clear scalability are presented in Fig. 4 – 6. 

 

 
Fig. 4. Gain and saturation for ETC algorithm. 

 

 
Fig. 5. Gain and saturation for ETC algorithm. 
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Fig. 6. Gain and saturation for RFC algorithm 

 

We will provide a more detailed analysis of gain and 

saturation in the next section. 

 

V. DISCUSSION 

A. Algorithm scalability 

The results of our study clearly demonstrate that not all of the 

tested algorithms exhibit true scalability with respect to the 

number of virtual CPU cores (vCPUs). As indicated in the 

algorithm documentation, some methods perform computations 

in a purely sequential manner, meaning they are not designed to 

scale with additional cores. Among the tested algorithms, Extra 

Trees Classifier (ETC), Support Vector Ma-chine Classifier 

(TSVC), and Random Forest Classifier (RFC) show a clear 

improvement in both training and prediction times as the 

number of CPU cores increases: 

• RFC and ETC are ensemble methods based on generating 

multiple independent decision trees. Each tree can be 

trained independently in parallel, which allows these 

algorithms to effectively utilize the available CPU 

computational resources. 

• TSVC (ThunderSVM) is a library specifically optimized 

for multi-core CPU execution. It leverages the OpenMP 

parallelization framework, enabling the algorithm to 

distribute computations across multiple threads. As a result, 

increasing the number of available CPU cores has a 

noticeable and measurable impact on execution time, as 

reflected in the performance plots. 

In contrast, the remaining algorithms—KNC, KNC_2, 

SGDC, HistGBC, and HistGBC_2—do not exhibit significant 

scalability for either the training or prediction phases. 

Nevertheless, all methods produced stable results across the 

conducted measurements: 

• KNC and KNC_2: These algorithms support parallel 

processing via the n_jobs parameter; however, this only 

applies to the prediction phase. Despite enabling this 

functionality during testing, no substantial performance 

improvement was observed. The overhead associated with 

parallelism appears to offset any potential time savings in 

this case. 

• SGDC (Stochastic Gradient Descent Classifier): While the 

n_jobs parameter is supported for parallelization, it is 

primarily intended to accelerate regression or multi-class 

classification tasks. As this study focused on a binary 

classification problem, the parameter had no measurable 

effect on either training or prediction times. 

• HistGBC and HistGBC_2: These algorithms utilize the 

OpenMP parallelization library internally; however, the 

implementation of the n_jobs parameter differs from other 

scikit-learn methods. Despite theoretical support for 

parallelism, the algorithms did not demonstrate significant 

scaling behavior within the tested con-figuration. 

B. Optimal number of VCPUs - gain and saturation points 

By calculating the gain variable and analyzing the execution 

time plots, we can identify the optimal number of virtual CPU 

cores (vCPUs) for each algorithm. In this study, a reduction in 

execution time of less than 10% between consecutive core 

counts is considered economically insignificant, and thus the 

corresponding number of cores is defined as the saturation 

point. 
 

Extra Trees Classifier (ETC): 

• Training: Average gain drops below 10% for each added 

core at 5 cores calculations (GC), 6 cores (BM) and 8 cores 

(AWS). 

• Prediction: Saturation points are: 6 (gc), 4 (BM), 7 (AWS). 
 

Support Vector Machine Classifier (TSVC): 

• Training: Saturation points are: 5 (GC), 5 (BM), 7 (AWS). 

• Prediction: Saturation points are: 5 (GC), 5 (BM), 8 

(AWS). 
 

Random Forest Classifier (RFC): 

• Training: Saturation points are: 5 (GC), 8 (BM), 8 (AWS). 

• Prediction: Saturation points are: 5 (GC), 5 (BM), 8 

(AWS). 
 

For the remaining algorithms, which did not exhibit 

significant scalability, the saturation point occurs at 2 cores, 

reflecting purely sequential or near-sequential execution 

behavior. The only exception is the KNC algorithm during the 

prediction phase, where a slight improvement was observed 

with up to 3 cores, beyond which no further time reduction 

was achieved. 
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C. Platform differences 

• BM platform was generally the fastest in cases when 

algorithms were not showing any scalability trends. That is 

because those algorithms were calculated only on 1 core. In 

this case, BM presents the strongest benchmark score.  

• AWS shows the most stable results, having the lowest 

standard deviation score. 

• The mean accuracy of the tested algorithms did not vary 

between platforms or with different numbers of CPU cores. 

This consistency in accuracy validates the correctness and 

reliability of the implementation across all environments. 

D. Result summary 

• As expected, the non-normalized execution times on the BM 

platform were generally shorter compared to the cloud 

platforms, primarily due to the high single-core performance 

of the local CPU. Conversely, the CPUs installed in cloud 

virtual machines are server-class processors optimized for 

total multi-core computational throughput rather than 

single-thread performance. Cloud platforms, therefore, 

exhibit a performance advantage for algorithms that 

effectively utilize multiple cores. 

• For scalable algorithms, the BM platform demonstrates a 

significant performance advantage when using a lower 

number of cores. However, this ad-vantage diminishes as the 

number of cores increases. 

• The Time Gain plots are the final proof for the presence or 

lack of scalability of the given algorithm. 

• To facilitate a meaningful evaluation of scalability, we 

introduced the concept of the saturation point, defined as the 

number of cores beyond which execution time improvement 

falls below 10%. Beyond this threshold, further increasing 

the number of cores is considered economically inefficient, 

particularly in cloud environments where pricing is closely 

tied to the number of allocated cores. 

• For non-scalable algorithms, the saturation point consistently 

occurs at 2 cores, indicating that increasing the number of 

cores beyond this has no significant impact on performance. 

• For scalable algorithms, saturation points were observed to 

fall between the 4th and 9th cores, depending on the specific 

platform and algorithm. Based on the 10% gain threshold, 

utilizing more than 9 cores may not yield sufficient 

performance improvements to justify the additional cost, 

especially when selecting cloud virtual machines where 

pricing scales with core count. 

• One contributing factor to these observations may be the use 

of hyper-threading, which can inflate the apparent number 

of available cores without delivering equivalent physical 

performance. 

• Notably, the AWS platform consistently reached saturation 

points at higher core counts compared to other platforms, 

indicating superior scalability under the tested conditions. 

• Table III summarizes best obtained execution times (both for 

training and prediction) together with the name of the 

platform. The last column provides the number of vCPUs – 

as calculated by the saturation & gain formula. 

 

TABLE III  

SUMMARY OF PLATFORM RESULTS AND COMPARISON, TIMES ARE NORMALIZED 

FOR PERFORMANCE COEFFICIENT 

Algorithm Minimal train 

time 

 (best 

platform) 

Minimal 

prediction 

time 

Optimal 

number of 

vCPUs (train / 

predict) 

ETC 1,84 (AWS) 1,8 (AWS) 8 / 7 

TSVC 288,9 (AWS) 349,5 (AWS) 7 / 6 

RFC 6,96 (BM) 1,0 (AWS) 5 / 8 

 

 

CONCLUSION 

To summarize, the primary consideration when selecting a 

cloud platform for AI computation should be the evaluation of 

the algorithm’s scalability. This assessment depends not only on 

the type of algorithm but also on the nature of the problem and 

the characteristics of the dataset. Hyper-threading should not be 

assumed to be as efficient as scaling with dedicated vCPUs. 

Finally, if performance stability is as important as computation 

runtime, AWS has demonstrated higher efficiency; however, 

this may not hold true for different sets of algorithms. 

As outlined in this study, our benchmarks were limited to a 

selected group of classification algorithms, with an intentional 

exclusion of neural network models, which represent a distinct 

class of machine learning methods that require specialized 

hardware, such as GPUs or TPUs, for optimal performance. 

 

Potential extensions of this work include: 

• Non-binary classification tasks, where some of the tested 

algorithms may exhibit different scalability characteristics, 

including greater parallelism potential. 

• GPU-accelerated algorithms, such as deep learning models 

or large language models (LLMs), are becoming 

increasingly relevant for both research and practical AI 

applications. 

 

Additionally, future experiments could broaden the scope of 

platforms evaluated to include other major public cloud 

providers, such as Microsoft Azure, Oracle Cloud, or emerging 

providers, to enable a more comprehensive comparison across 

the industry. 
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APPENDIX A 

APPLICATION, PACKAGE AND LIBRARY VERSIONS USED BY THE BENCHMARK SUITE. 

 

Application / Distribution name Description Platform Version 

Linux / Ubuntu 24.04 

Operating system 

BM Ubuntu 24.04,2 LTS kernel 6.11.0-19 

Linux / Amazon Linux 2 AWS 

Amazon Linux 2, kernel 5.1.230 

Virtualizer: Amazon 

Linux / CentOS Stream 9 GC 

CentOS Stream 9 kernel 5.14.0-539 

Virtualizer: KVM 

Python 

Programming language 

necessary for implementation 

of ML algorithms, 

calculation of tables and plot 

drawings. 

BM 3.12.7 

AWS 3.12.9 

GC 3.9.21 

Bash 

System built-in shell / 

command interpreter – 

Required for writing starting 

script for Virtual Machines. 

BM 
5.2.21(1) 

AWS 
4.2.46 

GC 5.1.8(1) 

 

PIP 

Python Package Manager - 

required for install and 

update additional Python 

packaged. 

BM 25.0.1 

AWS 25.0.1 

GC 25.0.1 

scikit-learn (Python package) 

Machine learning algorithms 

optimized implementations 

library. 

BM 1.6.0 

AWS 1.6.0 

GC  1.6.1 

ThunderSVM-cpu (Python 

package) 

SVC parallelized 

implementation. 

BM 0.2.0 

AWS 0.2.0 

GC 0.2.0 
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