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Abstract—Constrained optimization is central to large-scale
machine learning, particularly in parallel and distributed envi-
ronments. This paper presents a comprehensive study of aug-
mented Lagrangian—based algorithms for such problems, includ-
ing classical Lagrangian relaxation, the method of multipliers, the
Alternating Direction Method of Multipliers (ADMM), Bertsekas’
algorithm, Tatjewski’s method, and the Separable Augmented
Lagrangian Algorithm (SALA). We develop a unified theoretical
framework, analyze convergence properties and decomposition
strategies, and evaluate these methods on two representative
classes of tasks: regularized linear systems and K-means cluster-
ing. Numerical experiments on synthetic and real-world datasets
show that Bertsekas’ method consistently achieves the best
balance of convergence speed and solution quality, while ADMM
offers practical scalability under decomposition but struggles in
high-dimensional or ill-conditioned settings. Tatjewski’s method
benefits significantly from partitioning, whereas the classical Aug-
mented Lagrangian approach proves computationally inefficient
for large-scale problems. These findings clarify the trade-offs
among augmented Lagrangian algorithms, highlighting Bert-
sekas’ method as the most effective for distributed optimization
and providing guidance for algorithm selection in large-scale
machine learning applications.
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lel Computing, Convex and Non-convex Optimization, ADMM,
Distributed Computing, Clustering, Support Vector Machine,
Regression

I. INTRODUCTION

ODERN machine learning (ML) tasks frequently in-
volve optimizing high-dimensional models under ex-
plicit constraints, such as parameter bounds, resource limita-
tions, or fairness criteria. Examples include risk minimization
with regularization, network flow, and structured prediction. To
meet the demands of scale and privacy, data and computations
are often distributed across multiple processors or agents,
requiring parallel algorithms for constrained optimization. In
such distributed settings, classical single-machine solvers are
typically inadequate due to communication bottlenecks.
Augmented Lagrangian techniques address these challenges
by combining Lagrange multipliers with quadratic penalties.
This formulation mitigates duality gaps while preserving sep-
arability, making it well-suited for parallel implementations.
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A prominent example is the Alternating Direction Method
of Multipliers (ADMM), which integrates dual decomposition
with augmented penalties to enable independent updates across
machines, followed by consistency enforcement. ADMM has
become popular in distributed ML for its simplicity and
effectiveness.

Beyond ADMM, other algorithms extend this approach for
distributed optimization. Ordinary Lagrangian relaxation (dual
decomposition) suffers from duality gaps and slow conver-
gence. The classic method of multipliers improves conver-
gence but requires coupled updates, limiting scalability. Bert-
sekas’ algorithm introduces damped multiplier updates to im-
prove separability and convergence speed. Tatjewski’s method
similarly refines decomposition with scaled multipliers. The
Separable Augmented Lagrangian Algorithm (SALA) further
exploits primal reformulation and resource-based splitting for
parallel efficiency.

To provide a rigorous foundation for this work, we consider
the constrained optimization problem:

min  f(x) (1)

st. h(z)=0 (2)

where f: R" — R and h : R™ — R™ with m < n. Our focus
is on parallelizable algorithms for solving (1), (2) when the
structure is separable, enabling distributed computation.

In this paper, we present a comprehensive comparison of six
methods for solving such problems in a distributed setting:
ordinary Lagrangian relaxation, the classical augmented La-
grangian (multiplier) method, ADMM, Bertsekas’ algorithm,
Tatjewski’s method, and the SALA scheme. We examine their
theoretical properties, including convergence behavior and
duality gap management, and discuss the practical implications
of their update rules, step-size adjustments, and penalty param-
eters. Each method’s ability to decompose global objectives
into local subproblems is critically analyzed in the context of
parallel ML tasks.

Our analysis is complemented by numerical experiments
on distributed clustering and sparse recovery problems, which
serve to illustrate the practical trade-offs and validate the theo-
retical considerations discussed. Through this unified treatment
and comparative evaluation, we aim to clarify the roles of
these augmented Lagrangian algorithms within the broader
landscape of distributed ML optimization and to inform the
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design of scalable and efficient parallel routines for real-world
applications.

II. REVIEW OF AUGMENTED LAGRANGIAN-BASED
ALGORITHMS

The Lagrangian method, introduced by Arrow et al. [!],
reformulates constrained optimization as:

= f(x) + Nh(z), 3)

where A is the vector of Lagrange multipliers. The dual
function follows as:

Lz, \)

g(A) = min L(z, \). 4)

x

While effective for convex problems, this approach struggles
with nonconvexity due to duality gaps. Hestenes [2] and
Powell [3] improved this by adding a quadratic penalty:

Ly(@,)) = f(2) + M(@) + Slh@IE )

For separable problems, the augmented Lagrangian takes the
form:

2

» (6)
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introducing non-separability. Bertsekas [4] restored separabil-
ity by introducing an auxiliary variable s:

§:p;%

=1

(2, \, 5) gHsi fxinJr)\Thi(:ri)} NG

Tanikawa and Mukai [5] refined this with an additional penalty
term:

Lystes) = 3 [

=1

+ (A(s)T + Bh(s)TM(s)) hi(z:)] . (8)

Nwachukwu and Karbowski [6] extended Bertsekas’ method
by scaling A updates with < 1:

)+ Ellsi — il

k+1 __ k _k
Z; = arg zHéI)I} L, (@i, AT, 87), )
st =&l + (1 - a ™, (10)
ML= AP 1 Bph (M. (11

Tatjewski [7] modified the quadratic term for alternative
decomposition:

o(x, A, 5) Zl )+ M hy(x)
g ;h s;) + hi(@:) ] (12)
J#i

Another widely used approach is the Alternating Direction
Method of Multipliers (ADMM) [8], which efficiently handles
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large-scale problems with the decision vector (x,z) and the
constraint Az + Bz = ¢

= arg mmian(x,zk, Y, (13)
2= arg mzin L (a1 2 29, (14)
ML= \E (APt 4 B2RTL —¢). (15)
However, ADMM requires convexity [9], [10], making it

unsuitable for our problem. A better alternative is the Sepa-
rated Augmented Lagrangian Algorithm (SALA) by Hamdi et

al. [11]-[13], which introduces auxiliary variables s;:
N
mren)l(nSZfl i), s.tohi(xg) = sy, ;Sl =0. (16)
The SALA augmented Lagrangian is:
N
Ly(x,5,\) = Z [fi(zi) + AT (hi(z;) — s4)
i=1
+ Ll = sili?] - an
with updates:
(z*+1, s* 1) = arg min L,(xz,s, Y, (18)
"
N = \F 4 N ; hi(z+h), (19)
Pk+1 = Qpk. (20)

Using ADMM principles, SALA enables parallelizable up-
dates while maintaining consistency, making it well-suited for
our application.

III. SOLUTION OF REGULARIZED LINEAR SYSTEMS WITH
AUGMENTED LAGRANGIAN ALGORITHMS

In various fields such as signal processing, machine learn-
ing, numerical optimization, and high-dimensional statistics,
the need to obtain stable and computationally efficient solu-
tions from linear systems has driven the study of regularized
approaches [14], [15]. Consider a general linear system of the
form Az = b, where A €¢ R™*" z ¢ R™, b € R™, and
m, n are the number of samples and features respectively.
Regardless of whether the system is underdetermined, overde-
termined, or exactly determined, practical considerations often
necessitate regularizing the solution to enhance stability, pre-
vent overfitting, or deal with ill-conditioning in the data [16],
[17].

Among the most widely used strategies is /-regularization,
introduced in the context of ridge regression by Hoerl and
Kennard [ 18], which discourages large solution norms and im-
proves numerical conditioning without necessarily enforcing
sparsity. Unlike the ¢y pseudo-norm or its convex surrogate
¢4, the ¢ norm promotes smoothness and penalizes large co-
efficients, yielding well-behaved solutions that are particularly
attractive in noisy or high-dimensional regimes.

To formalize this, let P C {1,...,n} index the decision
variables and M = {1,...,m} index the constraints. Let
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a; € RIP! denote the feature vector of the i-th observation,
and let y; € R denote the associated response. The regularized
recovery problem can then be expressed as the following
constrained /2-minimization problem:

Hlmin E x?, S.t. E Qi T5 = Yi, Vie M
jeP jeP

ey

Here, x; € R for all j € P are the optimization variables,
and the equality constraints enforce exact satisfaction of the
observed data. The objective function imposes an ¢s-norm
penalty, which encourages solutions with small magnitudes
and improved robustness to noise and multicollinearity. This
formulation underlies classical techniques such as Tikhonov
regularization and ridge regression, and plays a central role in
contemporary optimization-based methods for solving linear
inverse problems.

The problem formulation in (21) lends itself naturally to
decomposition techniques that are well-suited for large-scale
and distributed optimization. This section presents several
decomposition approaches for solving the regularized linear
systems, each grounded in the framework of augmented La-
grangian methods and dual ascent strategies.

The key idea underlying these methods is to exploit the
separability of the objective function and structure of the
constraints to design efficient iterative schemes. In particular,
variants of the classical Lagrangian method are considered,
as well as augmented Lagrangian formulations including
the Multiplier Method, Bertsekas Method, Tatjewski Method,
and the SALA (Separated Augmented Lagrangian Algorithm)
version of the Alternating Direction Method of Multipliers
(ADMM).

These methods enable the decoupling of variables and
facilitate parallel or distributed updates, making them attrac-
tive for high-dimensional optimization problems commonly
encountered in compressed sensing and machine learning.

A. The Lagrangian

The Lagrangian of Problem (21) can be written as

L(I,/\) = Z J?? + Z /\i (aijxj — ‘Z/?z‘)

S €M
=Y Lj(x;,)) (22)
JjEP

where Lj(xj,\) = 23 + 3 ,cpp Mi (aijxj — |y7> At iteration
k+1, with A\; € R and py > 0, the dual variables are updated
according to the following rule:

2f T =minLj(z;, A*), VjeN (23)
T

ML= \F erk(zaijl'?_‘—l *yz‘>7 Vie M
JjeP

(24)

B. The Multiplier Method

The classical augmented Lagrangian method introduces a
quadratic penalty term to improve the convergence properties

of the basic Lagrangian scheme. The augmented Lagrangian
of Problem (21) becomes:

Ly(z,\) = Z 55? + Z )‘z(z QijTj — yi)

jeP ieM jeP
P 2
+3 Z <Z aijTj — yz) (25
€M jEP

At iteration k + 1, with A\; € R, and p; > 0, the dual
variables are updated according to the following rule:

2 = min L, (z, \¥)
xT

)\iﬂ_l = )\iC + Pk ( Z (Iijl‘?-i_l — yi)7 Vie M
jeEP

(26)

C. The Bertsekas Method

The Bertsekas augmented Lagrangian method leverages a
coordinate-wise structure, decoupling the objective further
across variables x;. The resulting formulation is:

LP(IazsaA)
. 2 yl p S 2
= Z {xj + Z)\i(aijfﬂj — ﬁ> + 5(% 75Cj) }
jepP ieM
=Y L, (2,25, )) (27)
JjeEP

Here, x] represents a surrogate or anchor value from the
previous iteration. At iteration k + 1, with \; € R, px > 0,
and ¢ = [0,1) the dual variables are updated according to the
following rule:

x?“ =minL,, (:cj,xjk,)\k), VjeN (28)
T
shtt sk .
xi =Cay +(1-Qat, VjeN (29)
AL Z 2k g ( > ajaktt - y) VieM  (30)

jepP

D. The Tatjewski Method

The Tatjewski method incorporates a more refined surrogate
mechanism by coupling updates of x; with fixed values of the
remaining variables, leading to a partially separable augmented
Lagrangian:

Lp(l‘,JUS,A) = Z {Jf? + Z )\,’ (aija:j - %)

JEP €M
p Yi
+ 5 g\;{ (aija:j - ﬁ + Z aua:f)

= Zij(xj,xj,)\)

jeP

€2y

This technique permits effective iterative refinement and is
particularly useful in parallel implementations. At iteration k4



1, with \; € R, p > 0, and ¢ = [0, 1), the dual variables are
updated according to the following rule:

ot = minLy, (223 N, VjeN (32)
zj

oGl (-0, VjenN (33)

AL = 2F Pk(z aiahtt — yi>7 vie M (34

JjEP

E. The ADMM (SALA Version)

The Separated Augmented Lagrangian Algorithm (SALA)
introduces auxiliary variables s;; to explicitly split the affine
constraints (see equation (21)). The corresponding augmented
Lagrangian is given by:

Lp(x, S,)\) = Z {17? + Z /\z (aij:z:j - |y?7| - Sj,j)

jeEP €M

p Yi 2
“§ 3 (o= o)}
€M
= Z ij(mj,sj,/\)

jeEP

(35)

At iteration k+1, the algorithm proceeds with the following
updates:

x?“ = argmin L, (z;, s§7Ak)7 jePpP (36)
zj
7’?+1 = Z aijxéﬁ'l — Y, 1eM (37)
jep
k+1 kel Y T
spt=aga] T — = ——— jePieM (38)
e A TR
AL 3k Gj' rk e M (39)
Pet1 = py, o=>1 (40)

This method allows efficient decoupling and parallel up-
dates of the variables while maintaining primal feasibility via
residual tracking.

IV. K-MEANS CLUSTERING WITH AUGMENTED
LAGRANGIAN ALGORITHMS

In various fields such as data mining, machine learning,
image analysis, and bioinformatics, the need to uncover inter-
pretable and computationally efficient patterns in large datasets
has driven the study of clustering methods [19]. Among these,
K-means clustering [20], [21] is one of the most widely used
techniques for partitioning data into homogeneous groups. The
primary objective is to identify cluster centers that minimize
intra-cluster variation, yielding a compact data representa-
tion. Recent advances have explored reformulating K-means
clustering using continuous optimization frameworks, where
augmented Lagrangian algorithms provide efficient strategies
for handling the nonconvex constraints inherent in clustering
problems [22], [23].

K-means clustering is a technique to divide a dataset into
n clusters. Given a dataset matrix A = [alq] « containing

samples A; = [a;1, @2, ..., qig),4 = 1,...,m in R, the
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objective is to identify n cluster centers ¢q, @2, ..., ¢,, such
that the total squared distance between each point A; and the
closest cluster center ¢; is minimized. This can be formulated
as:

manZx” ( Z aiqg — Djq) > “4n
i=1 j=1 g=1
subject to:
wy=1, i=1,...,m, (42)
j=1
xijE{O,l}, 1=1,....m, j=1,...,n (43)

where x;; is an indicator whether the i-th sample belongs
to the j-th cluster. The algorithm proceeds iteratively with
two main steps: first, each point A; is assigned to the nearest
cluster, then, the cluster centers ¢; are updated as the mean of
the points assigned to each cluster. This process repeats until
convergence.

However, K-Means can sometimes produce empty or very
small clusters, especially when applied to high-dimensional
datasets. To address this, a constrained version of K-Means
was introduced in [24]. This approach modifies the optimiza-
tion problem by adding constraints that ensure that each cluster
has at least 7; points. The paper also suggested solving (41)-
(43) in x for fixed ¢, then solving (41) in ¢ for fixed =. The
new optimization problem is defined as:

At iteration k + 1:

¢ Cluster Assignment: Let xk be a solution to the follow-

ing problem with d)? fixed.
) (44

win 3 (33 -
g=1

i=1 j=1
subject to:
n
Za:,,:L i=1,...,m, (45)
j=1
Swmpzm, j=1...m, (46)
i=1
zij €{0,1}, i=1,...,m, j=1,....n (47
o Cluster Center Update: The cluster centers are updated
Vi=1,...,n;¢q=1,...,Q, as:
i Zalq oMk
O =1 2 Fn s TRty 0 gy
a0 otherwise
Stop when ¢¥ ! = ¢k for all j, ¢, else increment k by 1 and
go to step 1.

The challenge with the algorithm is that it is impossible
to decompose it due to the coupling constraint, Z 1 Tij =
7;. To overcome this, the Bertsekas Decomposition method
is used. It will be convenient to introduce for every training
example ¢ the admissible set X; resulting from the equations
(45), (47). This set for each training example ¢ will be defined

as:
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n
Xi { Z] 1 Lij = 1 ) } (49)
zi; €{0,1}, j=1,...,n

The constrained K-Means clustering problem, as formulated
in (44)—(47), admits a structure that is well-suited for decom-
position techniques, particularly in the context of large-scale
and distributed optimization. While the objective function is
partially separable across data points, the assignment con-
straints introduce coupling through the cardinality conditions
S, @;; > 7;. This blend of separability and structured
coupling motivates using augmented Lagrangian and dual
decomposition methods to solve the resulting mixed-integer
optimization problem efficiently.

To address the coupling constraints and enable scalable
computation, consider a family of decomposition strategies
rooted in classical and modern dual optimization frameworks.
These include the Multiplier Method, the Bertsekas Decom-
position technique, the Tatjewski formulation and the SALA
(Separated Augmented Lagrangian Algorithm) variant of the
Alternating Direction Method of Multipliers (ADMM). Each
approach introduces dual variables associated with the cluster-
level constraints and iteratively updates the primal variables
x and the cluster centers ¢ while coordinating through dual
ascent or primal-dual updates. The augmented Lagrangian
terms serve both to penalize constraint violations and to
improve convergence stability.

These decomposition techniques are especially attractive
in distributed environments where data points are stored
across multiple compute nodes. By decoupling subproblems,
typically across data samples, they enable parallel updates
of the assignment variables, subject to coordination via dual
variables.

A. The Lagrangian
The Lagrangian of Problem (44)-(47) can be written as

L(z, ¢, 1)

=Y [ o= o (1 )]

iEM jEP “q€eQ

= Z ZLij(xijvgbja/u’j)

i€EM jepP

(50)

where
Lij(wij, b5, 115)
- wa (aiq — ¢Jq) +NJ(|M| x”> G
qeQ
At iteration k + 1, with ,u;? € R, and p > 0,

25 = arg mln Z Li; %J,(b],/ig) (52)
m k+
% it Y el >0
k?+1 o =113
i = ;Cm otherwise (53)
Vie P;qgeQ
pi = max {O,M? + p(T - %)} , VIEP G4
ieM

B. The Multiplier Method

The Augmented Lagrangian of Problem (44)-(47) can be
written as

Ly(x, ¢, 1)
=3 | X X = o)+ (- )
JEP -ieM qeQ 1€EM
2
+gZ(Tj—inj) (55)
jEP ieM
At iteration k + 1,
k+1 _ . I k Kk
T arg _min p(T, 0%, 1) (56)
m k+1
Zi—wlzqu_alm’ if Zz 1xk+1 >0
kJrl o i=1 1
(qu - fq, otherwise (57
VjeEP;qgeQ
§E = max {O,uf + p(T -> x])} , VjeP (58
ieM

C. The Bertsekas Method

The Bertsekas Augmented Lagrangian method for problem
(44)-(47) has this form:

Lp(xa ¢a xs’ ¢s’ ,LL)

- ZZ{ZxU QAiqg — ¢Jq) +M]<|M‘ xij)
€M jeP \ geQ
a7 2 (050~ ”

p
+ 5 [(fﬂzg ”

9€Q
= Z ZL/)ij (xij’d)j?xij’/ﬁ) (59)
i€M jEP
where
Lpzij (Iijv (bj? xfj’ :“j)
2 T
= > wij (aig = biq)” + 1 (M - J/‘z‘j)
9€Q
p s \2
T3 (w35 — 5;) (60)
At iteration k + 1, with zf; € {0,1}, ¢% € R,
k41 _ . N koL .
x; T = arg m{%l)% Z Ly, (w45, qu,xfj ,uj), Vie M
jeEP
(61)
p¢?q+ZZ”1 77+1aiq k+1
. S S it Yo 1% >0
Piq = ;?q, otherwise (62)
VjeP;qeQ
o =Gl +(1-&)altt, VieM;jeP  (63)
+ K . .
=G5, + (1= &), VieM;jeP  (64)

,uf“ max {0,u§ + p(T — Z xw>} , VjeP (65)

€M



D. The Tatjewski Method

The Tatjewski Augmented Lagrangian method for Problem

(44)-(47) has this form

Lp(xa ¢’xs’ /j‘)

=> > { > wij(aig — d5q)" + “j(ITWI N xj)

ieMjeP \ qeQ

2
/ S

lEM, i

=D > Loy (i b5 sy

ieM jeP
where

Lp“ (xija ¢j7 ;’37" Iu’])

_me tiq = bjq)° +/“LJ(‘M| x”)

q€eQ
le M, l#i

At iteration £ + 1,

) (66)
2
sc@) 67)

k+1 _ .
argxrréml ZL/,U x”,gbj,x” ,,uj) Vie M
jepP
(63)
oy aig it xk+1 >0
m zk+1 I i=1
k1l i=1 T4
¢jq - fq, otherwise (69)
Vj eP;qge@
o =gl +(1-&)akt, VieM;jeP  (70)
M;CH = max {O,u? + P(T — Z xlj)} , VjeP (71)
i€M

E. The ADMM (SALA Version)

Adapting ADMM SALA (18)-(20) to solve Problem (44)-

(47), we have,
Lp(x7 ¢7 87 /J“)

-3 | S (o )

iEM jEP “qeQ

+/.t< xi'—Si‘)"f‘B(L—l'i‘—Si')z
J |M‘ J J 2 |M| J J

=D > Loy (g, &5, 15 115)

iEM jEP

where

2
Loy (@i, b, 15 113) = Y g (@ig — bjq)

q€Q

T p
+ 1y M_xij_sij +3

T

[M]

2
— Tij — 3ij> (72)
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At iteration k + 1,

k+1 = arg mnélnl Z L/DU xl]? ¢] ) 87,] ? :LL]) VZ € M (73)
- Hk+1
k+1 _ k41 j . .
Sij —M—mij — P ViePieM (74)
mo okl
= 1]k+llqa if 27, 1 zk-H 0
k41 i=1%ij
¢jq - fq, otherwise (75)
VjeP;qeQ
Mf“ — max {07/4? + p(T — Z aru)} , YjeP (76)
ieM

V. EXPERIMENTS

All implementations and numerical experiments were con-
ducted using Python 3.12.0. The optimization models were
formulated with the Pyomo modeling framework and solved
using the Gurobi optimizer. Computational experiments were
performed on a machine equipped with an AMD Ryzen 5
4600H processor (3.00 GHz, Radeon Graphics), 32 GB of
RAM, and a 512 GB SSD, running a 64-bit Windows 10 Pro
operating system.

The considered four optimization algorithms, ADMM, Bert-
sekas, Tatjewski’s method, and the classical Augmented La-
grangian were implemented with and without variable parti-
tioning. All problems, except for the Augmented Lagrangian,
were implemented using decomposition. The “No Partition”
configuration corresponds to a single-processor (serial) execu-
tion, whereas “12 Partitions” denotes parallelization with 12
processors, one assigned to each partition.

The individual results were first aligned to a unified time
axis to enable consistent comparison across datasets with
potentially different time indices. A comprehensive timeline
was constructed by taking the union of all time points in
the datasets. Each dataset was then merged onto this unified
timeline using nearest-neighbor matching via an as-of merge
(pandas.merge_asof performs a merge by nearest key rather
than exact matches, aligning rows based on the closest pre-
ceding key in a sorted dataset. It is especially useful for time-
series data to join on nearest timestamps without requiring
exact equality), ensuring that for each time point in the refer-
ence axis, the closest available record from each dataset was
selected. This approach preserves temporal coherence while
allowing synchronized evaluation of multiple time series, even
in non-uniform or asynchronous sampling intervals.

A. Regularized Linear Systems

1) Dataset Description: The experiments are conducted on
three linear systems designed to reflect varying data structures
and matrix conditions. Two are derived from an image inpaint-
ing task using randomized diagonal measurement operators,
and the third is based on a biomedical dataset reformulated as
a compressed feature recovery problem. Each dataset adheres
to the standard linear model Az = y, with a known ground
truth z*.
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The first dataset simulates a diagonal sensing problem in
grayscale image recovery. A 16 x 16 grayscale image is
vectorized into z* € R2?%®, and a diagonal measurement
matrix A € R2%6%256 jg constructed with entries drawn
independently from a uniform distribution over [0,1). The
corresponding observation vector is computed as y = Azx*,
resulting in a well-scaled and positive semi-definite system.
This formulation captures moderate conditioning and serves
as a stable reference for evaluating solution quality.

The second dataset uses the same underlying image and
construction but replaces the uniform distribution with a stan-
dard Gaussian distribution for the diagonal entries of A. This
results in a more ill-conditioned system where entries can be
both positive and negative, potentially with large magnitude.
The measurement vector y = Ax*, therefore, reflects a noisier
and more variable scaling of the original image, posing greater
challenges for algorithmic recovery under unstable and zero-
mean multiplicative transformations.

The third dataset is derived from the UCI Breast Cancer
Wisconsin (Diagnostic) dataset [25] and formulated as a
compressed sensing task. After standardizing the data, a single
feature vector z* € R3? is selected from the training partition.
A sensing matrix A € R19%30 j5 generated with independent
standard Gaussian entries scaled by 1/1/10. The measurement
vector y = Ax* thus represents a low-dimensional projection
of the original biomedical profile. This setting is representative
of practical dimensionality reduction problems in clinical data,
where reconstruction must be achieved from limited and noisy
observations.

2) Results and Discussion: Table I summarizes the perfor-
mance of four optimization algorithms, ADMM, Bertsekas,
Tatjewski’s method, and the classical Augmented Lagrangian,
across three datasets with and without variable partitioning.
Across the Gaussian and Uniform datasets, which feature
large and ill-conditioned linear systems, Bertsekas’ method
consistently achieves the best trade-off between convergence
and computational efficiency. It converges in all settings
(Fig. 1) and does so significantly faster when the problem is
decomposed into 12 partitions. ADMM and Tatjewski both fail
to converge within the 5000-second limit in the unpartitioned
setting but improve under decomposition, highlighting the
benefits of problem structure exploitation. The Augmented
Lagrangian method does not converge in time for either of
the datasets and lacks implementation under decomposition.

On the Cancer dataset, which involves a significantly
smaller and better-conditioned system, all algorithms (except
Augmented Lagrangian) converge rapidly in both partitioned
and unpartitioned forms. Here, Bertsekas again records the
lowest runtime, while ADMM and Tatjewski exhibit mod-
estly higher computational cost. The Augmented Lagrangian
method produces a suboptimal objective value and performs
poorly relative to the others.

These results indicate that dual ascent approaches, particu-
larly Bertsekas’ method, are robust across system scales and
benefit markedly from decomposition. In contrast, classical
methods like ADMM and Augmented Lagrangian suffer in
high-dimensional settings without partitioning, with the latter
also being sensitive to problem scaling.

(a) Original

&

(d) Tatjewski

(b) Inpainted

o

(e) ADMM

(c) Augmented
\

(f) Bertsekas

Fig. 1. Image Recovery under Gaussian Additive Noise and no partitions

B. K-Means Clustering

1) Dataset Description: To evaluate the performance and
generalizability of the proposed algorithms, experiments were
conducted on both synthetic and real-world datasets represent-
ing a diverse range of clustering challenges. All datasets were
processed to ensure comparability and reproducibility, with
dimensionality reduction applied where appropriate.

Four synthetic datasets were created using make_blobs
from the Scikit-learn library [26], which generates isotropic
Gaussian clusters commonly used for clustering evaluation.
The datasets vary in the number of samples, features, and
clusters to simulate different levels of complexity as shown
below:

« High-Dimensional Multi-Cluster (Synthetic-HD-MC):

1,000 samples with 100 features grouped into 15 clusters.

o Low-Dimensional Few-Cluster (Synthetic-LD-FC):
5,000 samples with 10 features and 5 clusters.

e 2D Multi-Cluster Visualization Set (Synthetic-2D-
MC): 1,000 samples in 2D space with 15 clusters,
suitable for visual inspection.

o 2D Few-Cluster Visualization Set (Synthetic-2D-FC):
5,000 samples in 2D space with 5 clusters.

These synthetic datasets help assess clustering performance
under controlled distributions, with cluster separability influ-
enced by feature dimensionality and the number of clusters.

Two real-world datasets, ISIC 2019 and MedQuAD, were
also used to test the algorithms in more practical, noisy
scenarios.

The ISIC 2019 dataset [27]-[29], the most widely available
publicly available collection of quality-controlled dermatology
skin images, was used to test clustering models with image
data. The dataset contains 25331 dermoscopic images of skin
lesions, each associated with ground-truth diagnoses (benign,
malignant) and clinical metadata. These standardized images
provided a diverse and high-quality foundation for generating
features customized to clustering tasks in the medical imaging
domain.

To prepare the images for clustering, they were converted to
grayscale to simplify the data while retaining essential visual
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TABLE I
PERFORMANCE COMPARISON OF OPTIMIZATION ALGORITHMS FOR REGULARIZED LINEAR SYSTEMS ACROSS DIFFERENT DATASETS

No Partition 12 Partitions
Dataset Algorithm Objective  Time(s) Status | Objective  Time(s) Status
ADMM 59.01 5001 Time Out 61.4 3396 Converged
Gaussian Ber.tseka‘? 61.41 4880 C(_mverged 61.41 938 Converged
Tatjewski 61.03 5010 Time Out 61.41 2372 Converged
Aug Lagrangian 61.05 5001 Time Out - - -
ADMM 57.04 5000 Time Out 60.67 2916 Converged
Uniform Bertsekas 60.87 3095 Converged 60.87 724 Converged
Tatjewski 59.78 5009 Time Out 60.87 1983 Converged
Aug Lagrangian 59.92 5003 Time Out - - -
ADMM 54.61 150 Converged 54.61 55 Converged
Cancer Bertsekas 54.61 119 Converged 54.61 55 Converged
Tatjewski 54.61 309 Converged 54.61 95 Converged
Aug Lagrangian 54.61 150 Converged - - -

features. Each image was then resized for uniformity, con-
verted into arrays, and flattened into one-dimensional vectors.
These flattened arrays served as the feature set for the clus-
tering models. By preprocessing ISIC 2019 images this way,
the clustering analysis could focus on the underlying patterns
and relationships in the data, enabling a robust comparison of
clustering approaches across this rich medical imaging dataset.

o ISIC Lesion Embeddings (ISIC-PCA10): Derived from
the ISIC 2019 Challenge dataset [27]-[29], a publicly
available collection of quality-controlled dermatology
skin images. 2,000 image feature vectors were selected,
reduced to 10 principal components.

o ISIC Low-Dimensional Variant (ISIC-PCA2): The
same set as above but reduced to 2 PCA components,
creating a more compressed representation to test perfor-
mance under extreme dimensionality reduction.

o MedQuAD QA Representations (MedQA-PCA20):
Based on the MedQuAD dataset [30], which contains
medically relevant question-answer pairs. To generate
the features for the clustering problem, each row of
the “answers” column of the MedQuAD dataset was
processed using BioClinical BERT [31], a pre-trained lan-
guage model explicitly designed for clinical text to create
numerical embeddings. These embeddings, which capture
the semantic essence of the text, were then used as the
feature set for the clustering models. 1,000 instances were
sampled, and PCA was applied to reduce the feature
space to 20 components.

e MedQuAD Minimal Representation (MedQA-PCA2):
A simplified variant with only 2 PCA components to
evaluate performance in a very low-dimensional semantic
space.

The ISIC dataset serves as a representative for medical
image data, while MedQuAD captures structured medical text,
providing a rich testbed for evaluating clustering robustness
across modalities and dimensionalities.

2) Results and Discussion: Tables Il and III summarize
the performance of four optimization algorithms for K-means
clustering on synthetic and real-world datasets, a typical
solution is presented in Fig. 2.

-6
-50 -25 00 25 50 75 100 125 -50 -25 00 25 50 75 100 125
Featuro 1 Feature 1

(a) ADMM (b) Augmented Lagrangian

Feature 2

-50 -25 00 25 50

.......

75 100 125

75 100 125

-6
-50 -25 00 25 50
Feature 1

(d) Tatjewski

Fig. 2. K-means clustering for the Synthetic-LD-FC dataset

Synthetic Datasets: Across all synthetic datasets, the algo-
rithms converged to identical objective values and clustering
scores, confirming the correctness and equivalence of the un-
derlying formulations. However, notable differences emerged
in computational efficiency.

The Bertsekas algorithm achieved the best overall run-
time, converging quickly with low computational cost across
all datasets, and proved effective for both low- and high-
dimensional clustering. ADMM was slightly slower but re-
mained consistent and reliable; partitioning further reduced
runtime (e.g., 43s — 31s on Synthetic-2D-FC). Tatjewski’s
method was slow in the non-partitioned setting but gained
substantial efficiency when partitioned (e.g., 5x speedup on
Synthetic-2D-MC), demonstrating good scalability. In con-
trast, the Augmented Lagrangian approach scaled poorly:
although it converged on small datasets, it often timed out in
partitioned settings due to synchronization overhead, limiting
its practicality.

Real-World Datasets: The findings on real-world data mir-
rored those on synthetic data, though the impact of dimen-



TABLE II
PERFORMANCE COMPARISON OF OPTIMIZATION ALGORITHMS FOR K-MEANS CLUSTERING ON SYNTHETIC DATASETS

PARALLEL AND DISTRIBUTED MACHINE LEARNING ON AUGMENTED LAGRANGIAN ALGORITHMS

No Partition

8 Partitions

Dataset Algorithm Objective ~ Score  Time(s) Status | Objective ~ Score  Time(s) Status
ADMM 24807.09 0.74 29 Converged 24807.09 0.74 25 Converged
Synthetic-LD-FC Bertsekas 24807.09 0.74 26 Converged 24807.09 0.74 21 Converged
Y Tatjewski 24807.09 0.74 797 Converged 24807.09 0.74 197 Converged
Aug Lagrangian 24807.09 0.74 1157 Converged - - - -
ADMM 346173.75 0.55 29 Converged | 346173.75 0.55 23 Converged
Synthetic-HD-MC Bertsekas 346173.75 0.55 64 Converged 346173.75 0.55 44 Converged
¥ Tatjewski 346173.75 0.55 161 Converged | 346173.75 0.55 61 Converged
Aug Lagrangian 346173.75 0.55 109 Converged - - - -
ADMM 1064.55 0.45 38 Converged 1064.55 0.45 28 Converged
Synthetic-2D-MC Bertsekas 1064.55 0.45 20 Converged 1064.55 0.45 19 Converged
y Tatjewski 1064.55 0.45 177 Converged 1064.55 0.45 60 Converged
Aug Lagrangian 1064.55 0.45 512 Converged - - - -
ADMM 4505.94 0.55 43 Converged 4505.94 0.55 31 Converged
Synthetic-2D-FC Bertsekas 4505.94 0.55 27 Converged 4505.94 0.55 21 Converged
Y Tatjewski 4505.94 0.55 978 Converged 4505.94 0.55 297 Converged
Aug Lagrangian 4506.03 0.55 4115 Time Out - - - -
TABLE III

PERFORMANCE COMPARISON OF OPTIMIZATION ALGORITHMS FOR K-MEANS CLUSTERING ON REAL WORLD DATASETS

No Partition

8 Partitions

Dataset Algorithm Objective Score  Time(s) Status |  Objective Score  Time(s) Status
ADMM 234036414.61 0.17 107 Converged | 234036414.61 0.17 50 Converged
ISIC-PCA10 Bertsekas 234036414.61 0.17 88 Converged 234036414.61 0.17 61 Converged
Tatjewski 234036414.61 0.17 1699 Converged 234036414.61 0.17 385 Converged
Aug Lagrangian 237761989.80 0.17 4108 Time Out - - - -
ADMM 80010359.93 0.37 56 Converged 80010359.93 0.37 35 Converged
ISIC-PCA2 Bertsekas 80010359.93 0.37 42 Converged 80010359.93 0.37 25 Converged
Tatjewski 80010359.93 0.37 859 Converged 80010359.93 0.37 200 Converged
Aug Lagrangian 80064769.15 0.37 4060 Time Out - - - -
ADMM 1289.70 0.14 251 Converged 1289.70 0.14 74 Converged
Bertsekas 1289.70 0.14 35 Converged 1289.70 0.14 24 Converged
MedQA-PCA20 | ek 1289.70 0.14 251 Converged 1289.70 0.14 74 Converged
Aug Lagrangian 1289.70 0.14 708 Converged - - - -
ADMM 57.95 0.36 55 Converged 57.95 0.36 33 Converged
Bertsekas 57.95 0.36 36 Converged 57.95 0.36 23 Converged
MedQA-PCAZ | tiewski 57.95 0.36 715 Converged 57.95 0.36 103 Converged
Aug Lagrangian 57.95 0.36 1258 Converged - - - -

sionality reduction (via PCA) made performance distinctions
more pronounced.

Bertsekas’ algorithm again stood out for its speed, com-
pleting MedQA-PCA2 and ISIC-PCA2 in under 25 sec-
onds while preserving optimal objective values and cluster-
ing scores. ADMM remained robust, balancing runtime and
reliability, and scaled well to larger datasets such as ISIC-
PCA10, where partitioning reduced runtime from 107s to
50s. Tatjewski also benefited greatly from partitioning (e.g.,
1699s — 385s on ISIC-PCA10), confirming its usefulness
in distributed settings despite a higher per-iteration cost. In
contrast, the Augmented Lagrangian approach was ineffi-
cient for high-dimensional or partitioned data, often failing
to converge within time limits or offering no advantage over
simpler methods.

Overall, Bertsekas’ method emerged as the most efficient,
delivering fast and reliable convergence across all datasets
and settings. ADMM was a strong second, offering consistent
performance and good scalability. Tatjewski lagged in speed
but benefited markedly from partitioning, making it viable

for parallel environments. In contrast, the Augmented La-
grangian method showed limited utility due to its sensitivity
to problem decomposition and coordination overhead.

VI. CONCLUSIONS

This study has conducted a comprehensive comparative
analysis of four optimisation algorithms: ADMM, Bertsekas’
method, Tatjewski’s method, and the classical Augmented La-
grangian, across a diverse set of problem instances, including
regularised linear systems and K-means clustering, using both
synthetic and empirical datasets.

Among the evaluated methods, Bertsekas’ method consis-
tently demonstrated superior performance. It achieved rapid
convergence, exhibited strong resilience in ill-conditioned set-
tings, and scaled effectively when decomposition was applied.
These attributes render it particularly well suited to large-scale
and distributed optimisation scenarios where coordination ef-
ficiency and robust convergence are essential.

ADMM also showed dependable performance across tasks,
especially under decomposition. While generally slower than



Bertsekas’ method, its convergence behaviour remained stable
and reliable, making it a viable option where decomposition
is supported and computational budgets are less restrictive.

Tatjewski’s method performed less favourably in non-
decomposed settings, but benefited significantly from problem
partitioning, indicating its potential applicability in parallelised
or decentralised optimisation environments.

The classical Augmented Lagrangian method was evalu-
ated in its standard, non-decomposed form, as the algorithm
does not support decomposition by design. Its performance
was comparatively limited, particularly on high-dimensional or
complex problem instances. Notably, a number of trials failed
to reach convergence within the allocated optimisation time.
These cases do not necessarily indicate divergence, but rather
suggest that, within practical time constraints, the method may
be less efficient than alternatives.

These findings highlight the significant benefits of dis-
tributed optimization, particularly in improving the efficiency
of computationally intensive methods like Tatjewski and Aug-
mented Lagrangian. These insights contribute to the broader
understanding of optimization in machine learning and provide
a foundation for future research into adaptive and hybrid
optimization strategies that further enhance efficiency in dis-
tributed environments.
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