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An improved human pose estimation using
Deep Neural Network for the optimization of
human-robot interactions

Ravi Raj, and Andrzej Kos

Abstract—Research shows that mobile support robots are
becoming increasingly valuable in various situations, such as
monitoring daily activities, providing medical services, and
supporting elderly people. For interpreting human conduct and
intention, these robots largely depend on human activity
recognition (HAR). However, previous awareness of human
appearance (human recognition) and recognition of humans for
monitoring (human surveillance) are necessary to enable HAR to
work with assistance robots. Al-so However, multimodal human
behavior recognition is constrained by costly hardware and a
rigorous setting, making it challenging to effectively balance
inference accuracy and system expense. Naturally, a key problem
in human pose or behavior detection is the ability to extract
additional purposeful interpretations from easily accessible live
videos. In this paper, we employ human pose detection to address
the problem and provide well-crafted assessment measures to show
demonstrate the effectiveness of our approach, which utilizes deep
neural networks (DNNs) This article proposes a human intention
detection system that anticipates human intentions in human- and
robot-centered scenarios by utilizing the incorporation of visual
information as well as input features, including human positions,
head orientations, and critical skeletal key points. Our goal is to aid
human-robot interactions by helping mobile robots through real-
time human pose prediction using the recognition of 18 distinct key
points in the body's structure. The effectiveness of this strategy is
demonstrated by the suggested study using Python, and the results
of simulations verify the reliability and accuracy of this method.

Keywords—Deep Learning (DL); Deep Neural Network (DNN);
Human-Robot Interaction (HRI); Human Pose Estimation; Key
Points; Machine Learning (ML)

I. INTRODUCTION

RENDS in society are making more and more surveillance

systems necessary. Particularly, applications, including the
identification of questionable human behavior and efficient
merchandise display arrangements in stores, are anticipated to
result from the incorporation of cognitive processing
capabilities to the surveillance of photographs. Methods for
identifying people in photos, their faces, and their body postures
are needed for these activities. The term "human pose estimation
methods" refers to all of these. This research investigates an
information-based human pose estimation method for
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individual-specific human-robot interaction (HRI). The
multidisciplinary area of HRI studies the creation, use, and
analysis of robots that communicate with people various of
settings [1]. Fundamentally, HRI wants to build robots that can
interact, cooperate, and live alongside people in shared spaces.
These encounters might range from basic task-oriented
exchanges to intricate social and emotional exchanges. As
humans become more accustomed to working with mobile
robots, their incorporation into daily life is becoming more
widespread [2]. Providing a mobile robot with the ability to do
standard manipulating tasks is an essential precondition to
achieving this [3], [4].

There is a tremendous opportunity for autonomous assistive
robots to benefit caregivers and relatives who are responsible
for patients attending medical facilities. Additionally, a benefit
of ambient supported living is automated caregivers who
monitor the well-being of elderly or handicapped individuals in
a range of settings, including homes, eldercare centers, and
hospitals. Techniques for recognizing human actions are
necessary to allow robotics to comprehend human conduct and
respond accordingly [S]. Robots can deduce information about
a person's goals, actions, and situations by employing human
activity recognition (HAR) systems. This information can be
utilized anywhere from understanding everyday chores to aiding
in an emergency. But before aid robots are able to have such
features built, certain criteria need to be achieved.

The subject of human pose estimation, described as the
identification of human body joints, has received a lot of interest
in the image processing field [6]. Predicting human pose is
significant because it allows robots to interact with human
beings by recognizing the human being's poses, actions, and
behaviors [7]. Real-time human pose estimation is a crucial
endeavor in computer vision, focused on swiftly determining the
spatiotemporal configuration of human key points, including the
head, arms, shoulders, and limbs, from videos or image frames
and afterwards inferring their poses, including rotating,
stretching, or bending [8].

In this work, we adopt a comprehensive approach to human
pose estimation. We leverage the latest DL breakthroughs and
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offer a unique DNN-based approach. DNNs have demonstrated
remarkable success in the recognition of images [9] and,
recently, in detecting objects [10]. In this study, we aim to shed
some insight on this subject by presenting a simple but effective
approach to comprehensive human pose estimation using DNN.
We model the estimation of human pose via a joint regression
issue and demonstrate how to implement the issue properly into
DNN scenarios. Figure 1 shows the basic structure of a DNN
that contains an input layer, a hidden layer, and an output layer.
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Fig. 1. Basic structure of deep neural network.

Robots can now more easily interpret and grasp human
intentions and actions due to a significant technological
advancement: the capacity to determine posture in video clips.
This increases the possibility of human-robot interaction.
Robots can recognize complex movements like walking, sitting,
standing up straight, waving, and handling objects by analyzing
individual frames of a film [11]. Some crucial steps need to be
executed for the purpose of making it easier for people and
robots to work collaboratively. These consist of gathering data,
preprocessing it, extracting pertinent characteristics, using
machine learning (ML) methods, categorizing actions, and
establishing efficient human-robot interaction. Pre-processing
methods are used to reduce noise, normalize frames, and
optimize lighting settings, while data collection involves a
sizable dataset made up of labeled videos [12]. Figure 2
illustrates the process of human activity or behavior recognition.
Finding and extracting relevant characteristics from each frame
or segment is the method of feature extraction. These features
are then used as data for ML algorithms. To allow robots to
modify their actions and conduct accordingly, activity
segmentation is the procedure of classifying actions based on
real-time footage that generates other novel information. When
it comes to HRI, recognizing behaviors has several uses in
public places, medical facilities, manufacturing facilities, and
personal assistance.
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Fig. 2. Process of human activity or behavior estimation.

The focus of robotics society has consistently been on HRI.
The robotics society has expanded thanks to the Industry 4.0
project, allowing for more flexible interactions between robots
and their surroundings [13]. The application of robotics was
greatly constrained in the past by the fact that most of them
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could only do basic repetitive activities inside a limited working
space. The concept of HRI advances the concept that robots can
exist alongside people in environments including houses,
restaurants, and healthcare facilities, helping the elderly, blind,
and physically disabled with a variety of work [14]. Human
requirements for both work and life might be met by robots with
successful HRI, releasing humans from risky, monotonous
duties and enabling individuals to focus on more complex tasks.
Moreover, the global pattern of aging populations has made the
demand for assistance robots imperative. Despite this, robotic
assistants currently under development have not yet reached the
level of functionality required to operate effectively in our
homes and workplaces. HRI is defined in various ways, from
collaborative physical tasks [15], [16] to cognitive functions
[17]. Physical cooperation for older assistance Robots
concentrates on giving robotic devices the tools required to
fulfill different senior citizen demands in the real world.
However, cognitive features focus more on factors like intention
recognition, pose estimation, HAR, interpersonal interaction,
and HRI that affect how robots and older people interact [18].

HRI procedures are essential to robots, and they are rapidly
becoming more multimodal and genuine in response. It is
thought that visual-based interactions provide a more logical
and instinctive kind of communication. An essential component
of efficient HRI is human pose estimation [19]. Robotic
platforms intended to provide aid and rehabilitation must
possess accurate sensory systems facilitating HRI. Thus, robots
are required to be capable of recognizing human postures or
expressions for the purpose of enhancing the effectiveness and
security of human-robot cooperation [20]. The skeleton-based
technique is one of the pose recognition systems that has drawn
the most attention because of its resilience against background
variability and compact design [21]. This article presents an
efficient technique for human pose estimation using a skeleton-
based approach for optimizing HRI. Robots are better able to
interpret and react to human movements, intentions, and
gestures whenever they are capable of accurately recognizing
human postures. Techniques that identify a human pose from
images captured with a webcam have several advantages for
pose estimation, which is very useful for HRI and below are
some other methods of major types of human movement
techniques for HRI:

A. Human Activity Recognition

Robots for assistive work are able to comprehend human
behavior by regularly observing human actions. Artificial
intelligence (AI) allows assistive robots to anticipate human
needs and provide appropriate assistance [22]. Perhaps when
someone makes a demand, an automated system might be able
to determine that they are searching for something and provide
it to them. HAR is essential for the creation of cognitive and
adaptive automated systems that can recognize, interact with,
and assist humans in a range of scenarios [23]. The standard of
user communication and its uses in HRI is going to improve
with HAR, or human pose estimation technologies. HAR is
necessary for optimal HRI because it allows intelligent
machines to understand human behavior and respond to it
instantly.



AN IMPROVED HUMAN POSE ESTIMATION USING DEEP NEURAL NETWORK ...

B. Human Gesture Recognition

The pose assessment technique enables intelligent machines
to recognize and analyze human actions. Human gesture
recognition is very useful when speaking with someone who
could have speech challenges or in circumstances where verbal
engagement is prohibited or unwanted, including noisy
environments, dumbness and deafness, and many more [24].
Precise human pose estimation techniques help humans and
robotic devices to interact more intelligently and quickly. The
capacity of an autonomous system to mimic or respond to
human gestures enhances collaboration and engagement in the
form of HRI [25]. Pose estimation is often used to create
dynamic patterns that adapt based on human movement and the
posture of their bodies. Human pose estimation is used to
optimize the intelligent robot’s capacity to better awareness of
human behavior and HRI.

C. Robotics Assistance

Robotics can follow and assist humans with accurate
motions or exercises in settings including hospitals or
psychological rehabilitation centers due to human pose
estimation. Human pose estimation also helps to ensure secure
relationships among humans and robotic devices in cooperative
environments, including hospitals, rehabilitation facilities,
offices, companies, and many more [26]. By continuously
observing human poses, automated systems can assist in
mitigating incidents by sensing and reacting to possibly
dangerous movements or collisions. By enabling intelligent
machines to assist people more strategically and receptively
across a range of fields, the estimation of human poses enhances
safety, performance, and interpersonal interaction in HRI
scenarios.

The Further advances in HRI systems are essential for robots,
which will focus on making them natural, fast-response, and
multifunctional. However, the shortcomings of the interaction
approaches used now are as follows: delayed reaction of
generalized pose-recognizing algorithms, particularly in the
early stages; inadequate ability to extract and fuse features from
spatial and temporal data; and inadequate human pose
recognition framework in HRI. We suggest a fast-responding
deep neural network (DNN) in this paper, which is used for
human pose detection, to be able to get over such challenges. In
this research, we study how to estimate the human 2D location
and orientation by measuring the 2D location of a human body's
joints using a wide-field-of-view RGB camera. Our suggested
approach solves all the problems that previously had not been
solved since they use RGB pictures.

The human pose estimation in this paper has been performed
by OpenPose [27], which relies upon a DNN and can identify
human poses in a picture, video, or live webcam. It enables a
mobile robot to identify a human pose whenever it is integrated
with the mobile robot when it is in motion and to identify its
stance in relation to its surroundings. The robot can create a
social connection with its users and an appropriate navigation
route towards them using this approach. This study can
encourage multidisciplinary cooperation, develop human pose
estimation approaches, and create more secure, diverse, and
natural-feeling HRIs.
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The proposed approach provides an important advancement
in the field of human pose estimation, specifically focusing on
its application for improving human-robot interactions. The key
contributions are as follows:

e The proposed model is designed to improve the accuracy
and real-time performance of human pose detection, even in
diverse environments. It incorporates advanced techniques
in computer vision and machine learning, making it capable
of more accurately detecting the positions and movements
of human bodies in various poses.

e The research demonstrates how improved pose estimation
can be directly applied to the optimization of human-robot
interactions. By accurately understanding human gestures,
movements, and postures, robots can better interpret and
respond to human actions. This results in more intuitive and
efficient collaboration between humans and robots in tasks
such as assistance, guidance, and shared operations.

e The paper highlights the model’s robustness in dealing with
different lighting conditions, occlusions, and varying human
postures. This ensures that the approach can be widely
applied in practical, real-world scenarios where human-
robot interaction is crucial, such as healthcare,
manufacturing, and service industries.

e Through the use of deep learning methods, the authors
emphasize that their system achieves high accuracy in pose
estimation and operates efficiently, which is essential for
real-time applications. This is particularly beneficial in
dynamic environments where robots must react promptly to
human actions.

e This paper lays the foundation for further improvements in
human pose estimation techniques, which are crucial for
optimizing the effectiveness and safety of human-robot
interactions, particularly in complex and real-world
environments.

We further explain this paper in five sections, as follows:
Section 2 provides a literature survey related to this work;
Section 3 explains background information about the
methodology of human pose estimation; Section 4 discusses the
simulation and experimental analysis, and section 5 describes
conclusion and future re-search perspectives.

II. LITERATURE SURVEY

Significant advancements have been achieved in predicting
human body positions, especially those related to estimating
how people move, by using various deep learning (DL)
methods, such as graph convolutional networks (GCNs) and
recurrent neural networks (RNNs). Estimating human poses is
the primary objective, and it is specified in predetermined time
frames that simulate a preset camera recording speed. Recently,
many researchers have focused on developing an effective
human pose estimation technique for efficient HRI.

Cao et al. [28] present 6IMPOSE, a unique framework for 6D
pose prediction and the creation of sim-to-real data. There are
four sections in 6IMPOSE: Initially, a process for generating
data is used, which uses the 3D software package Blender to
generate data from synthesized RGBD images with 6D pose
labels. Secondly, we used the recommended process to create an
augmented RGBD dataset featuring five typical household
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products. Thirdly, a simplified, real-time variant of the 6D

posture prediction method PVN3D that is tailored for robotics
uses a limited time frame and an object detector, YOLO-V4.
Lastly, a codebase was created to make it easier to include the
visual system in a task involving robotic grasping. This method
achieves a total success rate of about 87% in capturing five
distinct everyday items from congested backgrounds in varied
conditions of light. It also shows how to efficiently generate
many RGBD pictures and successfully transfer the trained
inferred designs to robot grasping studies.

Huo et al. [29] present a graph convolutional network (GCN)
and transformer-transformers that are frequently utilized in
natural language processing to create a human pose estimation
system for videos using a 2D lift to 3D method. More precise
3D pose coordinates might be obtained by using transformers in
the proposed method for obtaining sequential features and
convolution of graphs to collect information between local
joints. The suggested 3D pose estimation system is utilized to
create animated figure movements, follow robot motion, and
develop HRI application systems. The Human3.6M dataset is
used for testing the presented 3D human pose estimation
system, which operates better than the most advanced systems.

Bhuiyan et al. [30] provide a knowledge-driven strategy for
HRI using a visual-based pose estimation method. The system
begins with a facial identification and pose identification
strategy utilizing subdomain PCA-based pattern-matching
algorithms. This relies on a visual representation of the face via
connected element assessment of human skin color division of
photos in the HSV color system. The subdomain technique
performs better for facial pose segmentation than the usual PCA
technique, according to experimental data. The method's
application to communicate with AIBO robots in HRI has
served as a demonstration of the technology.

Amorim et al. [31] suggested a combination system that
combines a collection of inertial measurement units (IMUs)
installed in human limbs to perform pose assessment with the
human monitoring abilities of a 3D vision sensor. The IMUs
maintain monitoring consistency by making up for the gaps in
obscured regions. An ongoing live computation of the offset
value is done in this study for the purpose of lessening the
remaining impact on the IMU offset. The outcomes illustrate
that this technique can accurately determine a person's location,
such as their forearm, within millimeters and is resistant to
occlusions.

Lombardi et al. [32] provide a learning-based system that
autonomously recognizes instances of eye contact when
interacting with human partners virtually. This paper
implements a system for evaluating gaze orientation, paying
special attention to simultaneous gaze, which is a crucial
behavioral signal in interactions with one another. The
suggested approach achieved excellent efficiency both in silico
and in real-world situations. It is anticipated that this study will
serve as a foundation for attentive architecture that can support
situations where robots are viewed as social companions.

Saadatnejad et al. [33] create an open-source human pose
prediction library that supports numerous datasets, incorporates
various scenarios, and uses defined evaluation standards with
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the goal of advancing studies and the development of a single,
consistent assessment system. To improve performance and
develop deeper confidence, two different forms of uncertainty
are explored in the problem. First, it provides a way to
incorporate information regarding the unknown distribution into
an algorithmic, unknown framework by using unknown
assumptions. Second, it provides a unique method for assessing
the complexity of a model's responsibilities and grouping them
to measure its cognitive uncertainty.

Fan et al. [34] seek to address the problem of joint hand-
object posture prediction in a cooperative human-robot
disassembling situation. This approach has applications in
practice in several other close-range HRI scenarios. This
research presents a method that can determine the hand's and
object's 3D posture simultaneously in a unified model. The
comparison trials indicate that the suggested method works
better than many current hand-object estimation methods.

Yang et al. [35] provide an in-hand tactile-based perception
of objects method that is reinforced with a sim-to-real strategy
for a data-efficient learning procedure. Two vision-based
sensory devices captured high-fidelity sensory data, which was
interpreted as a single-point cloud tinterpreting itclassification
and pose estimation. The framework was initially trained using
a dependable simulation approach using tactile input, and it was
then refined using actual tactile data. A re-grasping technique is
presented in this work using the conditional gathering of
category distributions of probabilities, drawing reference from
human actions. By using the suggested method, robots might be
able to perceive irregular surroundings with haptic exploration
abilities like those of humans.

Salimi et al. [36] present a novel approach to human fall
detection that depends upon the Rapid Pose Estimation
technique. Human falls are a problem that raises significant
issues, particularly for elderly people. Fall events might be
detected with the finest precision using machine learning and
computer vision techniques. These imaging-based technologies
serve as a valuable substitute for body-worn ones. The method
classifies the data retrieved from frames of photos using the
One-Dimensional Convolutional Neural Network (1D-CNN)
and Time-Distributed Convolutional Long Short-Term Memory
(TD-CNN-LSTM) models, achieving substantial accuracy
rates.

III. BACKGROUND INFORMATION

The continuous digitalization of science, technology, and
humanity is changing the methods of all areas of research. The
prospect of automated tasks has frequently inspired human
interest. During automated activities, human pose recognition
represents one of the most important components [37]. A branch
of computer vision called "pose predictions" looks at past poses
to estimate the potential position of the joints of the human body
[38]. It covers not only the movement and direction of the
human body but also the estimation of joint locations. Human
pose estimation is crucial in numerous fields, including
navigation, sports activity correction, HRI, healthcare
assistance, and several more. Wellness and athlete trainers
might use such tools to create more individualized plans for
training and make better changes to workouts and athletics by
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gaining greater knowledge of the athletic actions and routines
that drive their trainees [39]. With the goal of improving the
security and precision of HRI, robot navigation, athletic
instruction, health care, monitoring, and several other uses, this
proposed research intends to build an improved Al approach to
human pose estimation.

The human pose estimation method enhances the
transformation process in many important ways and could help
predict patterns in situations involving people. Powerful
dynamic models are particularly essential when there are many
people around since they allow for narrower search zones,
which drastically lowers the difficulty of data processing. Our
goal is to quickly and reliably identify human behaviors using
the robot's integrated sensors, allowing for more seamless, safe,
inherent, and anticipatory navigation. We provide human pose
estimation that leverages various data sources, including the
previous position of every individual and vision-based detail,
such as the head's alignment or the key points of the skeleton
when available. Additionally, the simulation is not dependent
on the number of individuals within every frame, allowing for a
fully attention-based approach. This sug-gests that the system
might dynamically accept several types of human populations at
different time intervals during estimation.

A. Input data

The robot's recognized latest T + 1 intervals can be processed
as operating attributes and image data. An image frame at that
exact phase or an initial cloud of points can make up visual
information, which is made up of information given by every
agent in proximity. Agent properties include things like each
agent's median position and vision-based features like head
position and skeletal key points. Using both external and
internal camera evaluations, patches of pictures representing
each agent's identified 2D boundary lines are first formed across
the 360-degree vision to extract critical vision-based features
from the raw data. To acquire skeletal key points by using such
patches, one can choose from a variety of publicly accessible
skeleton key point extraction tools from photographs.
Conversely, data extraction often produces critical points in a
2D image reference system. We produce 2D key points
leveraging the methods derived by Grishchenko et al. [41]
where utilizing an existing trained system for identifying 2D
crucial points using images. After an informative human-shaped
framework is fitted to the provided 2D key points, the optimized
equation (1) [42] might be solved, yielding the 2D labeling
necessary for pre-training under supervision.

argmin; (”r(k) —k, ||2 + AH(k)) D

Where key points of a 2D skeleton are abbreviated as k, the
function known as re-projection, which employs camera
assessments to display 2D key points as 2D images, is indicated
by, 7: R33%3 - R33%2 and the arrangement for a human pose
can be determined by H (k).

B. Framework details

Many The present research uses OpenPose, a popular system
for estimating human pose. It recognizes and locates important
features of the human skeleton, including joints and other
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components, in pictures or videos using deep learning methods
[43]. Using a multiple-phase convolutional neural network
(CNN), OpenPose can concurrently identify key points on the
human body, hand, and face. It operates by first employing a
sequence of convolutional layers to identify the human body
components, then utilizing an improved network to fine-tune the
key point's placements. A transformation level is the primary
architectural component inside a structure. It is composed of a
multi-head consciousness level and many thick and
normalization layers [44]. The transformation level receives
three vectors: key point (K), variable (V),and query (Q).
Although this, each tensor can handle many inputs; hence, we
characterize the self-aware activity via a transformation level
having resources K, O, and ¥ being a unique tensor: the tensor
transfers information across different ways while acting on its
own.

The independently transferred agent attributes are combined
in a trained attention search. For an entire self-awareness
function, every human timestep sign is expected to have
accessibility to every additional human timestep sign, time, and
human assessment. When an agent's feature is absent for a given
timestep, we mask those timesteps using 0. This provides a
quick way for data to be shared. This method requires that every
agent or robotat every timestep possess the ability to
communicate with each other at every timestep as well as with
the extra agents during that duration. One of the key findings of
the study is that, based on how the agent is now implemented
utilizing the same previous qualities, its prospects might be
predicted substantially. Before using a dense layer to the project
per modalities features, the learned modalities recognition is
adjusted by using agent-timestep signs, that transformation
levels, once again using total self-awareness. To naturally
combine many information flows, the query pays attention to
extra data from a separate tensor. Figure 3 shows an illustration
of human pose estimation using deep neural network by
detecting 18 distinct key points.

SV |

i Input Hidden Hidden Output |
| layers layers 1 lopers 2 layers ;

Deep Neural Network

Fig. 3. Framework of human pose estimation using deep neural network.

C. Multi-model Pattern Distributions

Our methodology can forecast many plausible possibilities
for a given situation. This is accomplished by multiplying the
agent-time step indicators with the total quantity of possible
modes (M) within the multi-model patterns propagation, which
results in a pattern expression [4, H, M, h]. Where the quantity
of agents over 7+ current and previous time steps is denoted
by A, H= T+1+F, and the token's size is /. F represents each
agent's subsequent steps. To facilitate mode differentiation, it is
combined with an acquired mode-identifier vector [/, I, 4, k].
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Every potential outcome P,,: m € 1,2, ... M. The human pose
estimation systems for the exemptions of the median location of
the ith robot for every phase t using the 2D Gaussian hybrid
system in equation (2) [42] are used when combining variables
(a, B) for forecasting per mode based on the probable mode B,
obtained using the multi-modal induction.

M
Q5 (%10(,.-.0(t = 1)) = > Wy AY, B i) ()
m=1

Where m is the mth future mode. The position of an agent
during a particular period is expressed above using a Gaussian
hybrid system with combined weights w comparable to the
variance of probability for projected patterns.

IV. SIMULATION AND EXPERIMENTAL ANALYSIS

In everyday uses including self-driving cars, social distance
supervision, medical assistance to elderly people, HRI, military
surveillance, and sports performance tracking, human
pose estimation is more vital for gesture recognition. Our
research methodology is designed to augment our contributions:
first, we demonstrate analytically and statistically that our
approach anticipates human pose estimation with high accuracy.
We demonstrate how a pose estimation might be applied to
constant HRI simulation in several possible contexts. Finally,
we demonstrate how vision-based features might be leveraged
by human pose estimation to improve forecasting precision in
human-centered environments, especially in situations where
errors in prediction are large, and history is limited. Predictive
systems relying completely on previous position information
persist in scenarios when the framework has no or little prior
information regarding human orientation. To prevent people
from colliding with robots when they are exploring their
surroundings, all robots need to be equipped with a
pose estimation system built for situations like these [45]. The
set of hyperparameters and the descriptions used in this research
are shown in Table I.

TABLE I
LIST OF HYPERPARAMETERS

System Configuration Descriptions

Python version 2.8.1

NumPy version 1.21.5

TensorFlow version 29.1

Optimizer Adam

Learning rate 0.001

RAM 8GB

Processor Intel(R) core (TM) i3-4005U

Practical applications of human pose estimation are a difficult
issue. We assessed how well the proposed pose estimation
systems performed when it came to recognizing both static and
dynamic activity patterns done by humans in realistic
observation situations. The elderly living independently within
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the home might want a mobile robot that tracks and identifies
their positions autonomously since they run the danger of
slipping and hurting themselves [46]. Even though deep
learning techniques are still in their infancy, they are not yet
capable of accurately estimating poses which are uncommon or
nonexistent in training datasets. Globally, the number of elderly
people is constantly increasing because of advancements in
health care and healthy eating.
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Fig. 4. Illustration of different key points for human pose estimation.

A mobile robot that walks throughout the household snaps
images of senior citizens in suitable poses, and then
autonomously assesses their present activities or stance to notify
the right parties when a potentially hazardous scenario or issue
emerges might be highly helpful [47]. This study improves the
quality of HRI by implementing accurate human pose
estimation. The main domains of interest for this study are
detecting movement and recognizing image systems to estimate
human poses. Using a camera lens, real-time photos are taken
for the purpose of recognizing and distinguishing between body
gestures. Our focus is on identifying human poses, where each
action that is recorded signifies a directive in a human-centered
environment. Figure 4 shows the human image with 18-
different key points, which are used to identify human poses. In
this study, the essential points of significance for a human's pose
have been identified by considering 18 distinct human
body parts.

We processed and recognized images and videos using the
OpenCV functions in Python for the algorithm's execution. We
provide pre-action evaluation using machine learning (ML) and
image identification for whole-body motions, collecting user
movement behaviors by utilizing the Open Pose modeling
technique. These recorded gestures are then included in the
creation of dynamic recognition applications, including HRI
and medical assistance for physically disabled people. A
multiple-threaded strategy was used to provide a smooth
connection among the simulated executions in HRI, leading to
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the construction of two different processing frames on the
interfaces. The first is devoted to displaying real-time findings
of human movement detection, whereas the last one determines
when computer simulations respond properly and
synchronously to human behavior orders inside the HRI
environment. The video capture tool using the OpenCV unit is
used in the framework to record user-initiated activities while
real-time footage is captured from the perspective of the lens.
To accurately assess if the wuser's completed activities
correspond with the prescribed in-HRI, like providing medical
aid to a physically handicapped individual, this method involves
human pose estimation. Fig. 5 presents the general flowchart for
the proposed human pose estimation. Since the model-based
pose estimation essentially depends on the subject's bone length
details, our method verifies the input data.

Connector size
assessment

Acquisition of image
frame with camera

I

Extraction of 18 key
points from the image

!

Plot estimated 2D
human pose

Human pose estimation

Yes

Fig. 5. The framework of the proposed human pose estimation technique.

The procedure for assessing connection size operates as
follows: the subject presents with their arms extended, pictures
are taken for at least ten frames, and the usual distance among
the position of the bone's end connections at every picture is
used to determine the size of every bone connection if the
present setup does not contain connection size information for
the present subject. Images are acquired from an RGB camera
using the laptop webcam's image grabber module. The next step
involves extracting 18 key points from the captured image.
Thereafter, plot the approximate poses in two dimensions based
on the context of applicability. Lastly, the estimation of poses
must be terminated if an end-user requirement is satisfied or if
this is the final picture frame. Anticipating human actions in
dynamic environments such as homes and offices is crucial for
reliable and efficient assistance robot navigation. The
recommended model is trained to perform pose estimation tasks
using a deep neural network (DNN). We specifically focus on
demonstrating the use of probabilistic human skeletal data
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obtained from on-the-ground human pose estimation. We
present an estimating system that integrates and evaluates, in an
adaptive manner, exact vision-based behavioral characteristics,
including head position and main skeletal spots.

Fig. 6. Simulation output for static human poses with skeleton key points.

Anticipating human actions in dynamic environments such as
homes, businesses, hospitals, and senior living facilities is
crucial to ensuring safe and effective robot movement and
improved HRI. These locations remain challenging since
individuals tend not to abide by the regulations when navigating
them, as well as because there are sometimes multiple doors and
other hidden paths of access that increase the risk of
unintentional collisions. The main reason is that visual footage
frequently makes it difficult to recognize human behavior. It is
possible to completely remove deceptive backdrops by
eliminating poses from their surroundings. To illustrate the
efficacy of the proposed approach, this section of research looks
at how well our methodologies perform in various input
datasets, including videos, images, and real-time live-streaming
inspection. The outline of human skeleton key points generated
for a collection of static activities by humans is shown in Fig. 6.

Here, we offer a Transformer-based methodology for
estimating human patterns in human-oriented scenarios using
input parameters including head orientations, person spots, and
skeleton key points using incorporated inside-the-wild sensor
information.  Skeletal-based techniques have potential
applications in real-time human behavior interpretation. We
examined three different kinds of input datasets: live webcam,
video, and picture. These input data are either type of dynamic
or static in nature. The resulting system achieves optimal
accuracy on widely used estimation standards and uses a human
tracking dataset that was captured using a camera that was
adjusted specifically for the estimation task. Additionally, it
needs to take note of the inherent errors of later human pattern
estimation. Human-focused assistance When robots are used for
autonomous work situations, they might reach average
precision in estimation by simply using humans for their
location situation. To summarize, the instantaneous pose
estimation duties for the fully autonomous navigation data
transmission, analysis: and storing method are completed by the
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vision and DL-based concurrent processors. A unified
computing structure and an HRI make it possible to provide
results related to human activity monitoring. The outline of
human skeleton key points generated for a collection of dynamic
activities by humans is displayed in Fig. 7.

. .
L] H !
'] ® . ¢ jo® 4
L
[} [ ] [} [ ]
Pose 5 Pose 6 Pose 7 Pose 8

Fig. 7. Simulation output for dynamic human poses with skeleton key points.

To estimate the efficiency and effectiveness of the approach,
we used metrics like accuracy score, F1 score, precision score,
and recall score. These parameters are successively defined by
the following equations: 3, 4, 5, and 6.

TP+ TN

Accuracy = ——m 3
y TP+TN +FP +FN’ &)
.. TP
Precision = , 4
TP+ FP
TP
Recall = , 5)
TP + FN
2 XRecall XPrecision
Fl=——""—7-—"— (6)

Recall + Precision

Where TP, TN, FP, and FN stand for true positive, true
negative, false positive, and false negative, respectively.

A qualitative assessment was carried out using image samples
exhibiting various forms of activities. The qualitative
assessment is presented in Figs. 4 and 5, in which each first row
represents a distinct scenario problem, including glowing and
low light indoors, high and poor light outside, shadows, and
static and dynamic stances. The key point identification
outcome without the human image of the proposed pose
estimator is depicted in the second row of Figures. 6 and 7. The
primary focus of the work is to utilize advanced human
pose estimation  approaches for picture-based activity
identification and identifying falls. The comparative experiment

R.RAJ, A. KOS

findings are displayed in Figures. 6 and 7 for different types of
activities. The following analysis is done on the numerical
outcomes: First, compared to the static-view technique, the
dynamic-view technique's inference accuracy is lower. This is
why the quality of pose detection is fully determined by the
DNN model's capabilities in static scenes, while the dynamic-
scene settings have missed various key points of the human
skeleton because of occultation in input data. High background
semantics seriously impair the estimation strategy's
functionality. The optimum inference accuracy is obtained for
the static pose process's use of an intention semantic inducer,
which extracts the best possible number of key points for the
human skeleton. Ultimately, the estimation strategy accuracy
falls further when the dynamic-view and static-view approaches
are applied in tandem with the concurrent rise in ambient and
intentionality semantics.

No. of detected key points

Rate of accuracy = x 100 (7)

Total key points

The rate of accuracy of output for each human pose can be
calculated by using equations (7), which are depicted in Figure
8. The rate of accuracy for every visible key point that is
exclusively gathered by the webcam is 100%; that means if the
human body is completely in the frame of the webcam, then the
rate of accuracy is highest. The rate of accuracy for pose 4 is
just 44.44% because only half a human body is visible to the
camera sensor in this scenario. Thus, it is clear that the overall
rate of accuracy of the proposed approach is 100% in the case
of no blind spots, and the rate of effectiveness of the proposed
approach depends upon the human body's exposure in front of
the camera sensor. OpenPose, utilizing OpenCV, is a prominent
human pose estimate method that uniquely identifies numerous
key points concurrently and associates them to construct
skeletons for persons within an image. Techniques such as Mask
R-CNN or AlphaPose, although effective, typically employ a
two-step methodology: initially identifying persons and
subsequently calculating their poses, which might be
computationally complicated and less efficient in dense
environments. Conversely, OpenPose employs an evolutionary
methodology, directly forecasting body segments and their
interrelations, hence enhancing its scalability for real-time
applications. Although it may encounter difficulties with
occlusions or intricate postures in comparison to top-down
approaches such as HRNet, which enhance pose estimation
using higher-resolution feature maps. OpenPose effectively
balances accuracy and efficiency, especially in multi-person
contexts; however, emerging techniques are advancing the
limits of accuracy and resilience.

Rate of accuracy

100%

80%

60%

40%

20% I
0%

Pose 1 Pose 2 Pose 3 Pose 4 Pose 5 Pose 6 Pose 7 Pose 8

Fig. 8. Accuracy of different human poses in different scenarios.
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V. CONCLUSION

In the realm of human-centered assistance robots, this work
addressed the problem of human pose estimation instances with
the goal of improving efficient HRI. This work demonstrated
whether the relative closeness of individuals under these
scenarios might be utilized to intentionally add vision-based
human traits and improve prediction precision. The proposed
study provides an outstanding basic methodology for human
pose estimation using the OpenPose technique with OpenCV.
Based on widely accepted prediction criteria and human
observation information captured with a laptop webcam
specially designed for work estimation, the resulting model
achieves optimized accuracy. It also considers the inherent
unpredictability of future human intentions. The proposed
approach combines real-time flexibility and significant
dependable properties; it can also realize notions of HRI,
perform effectively, and self-adjust in response to input from
users. Multiple whole-body activities, a risky falling workout,
and sitting-to-standing activities were all recorded on camera
for the suggested system test, and each image was sent into the
system. The findings demonstrate that the lateral motions of the
elbow, knee, hip, and shoulder joints vary rapidly and
dramatically, offering a wealth of details for activity detection.

The suggested pose estimation technique might be used in
subsequent years to track dementia and Parkinson's discase
patients as well as evaluate building workers' movements with
the aim of compiling a record of joint positions for human
activities in specific locations. The goal of subsequent studies in
human pose estimation for HRI is probably to improve the
system's resilience and versatility in a range of settings. The task
involves developing algorithms that can deal with occlusions,
changing lighting, and a wide range of human body types.
Additionally, there is increasing interest in enhancing precision
and reliability by utilizing multifunctional monitoring
approaches, including wearable gadgets and proximity sensors.
To get a deeper understanding of the basic mechanisms of
human motion for optimized HRI, combining DL with models
based on physics can be an additional line of study in the future.
Furthermore, research endeavors can prioritize optimizing real-
time performance to facilitate smooth communication between
humans and robotic devices in variable settings.
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