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Enhancing hyperparameters of LSTM network
models through Genetic Algorithm for Virtual
Learning Environment prediction
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Abstract—In today's technology-driven era, innovative methods
for predicting behaviors and patterns are crucial. Virtual Learning
Environments (VLEs) represent a rich domain for exploration due
to their abundant data and potential for enhancing learning
experiences. Long Short-Term Memory (LSTM) models, while
proficient with sequential data, face challenges such as overfitting
and gradient issues. This study investigates the optimization of
LSTM parameters and hyperparameters for VLE prediction.
Adaptive gradient-based algorithms, including ADAM, NADAM,
ADADELTA, ADAGRAD, and ADAMAX, exhibited superior
performance. The LSTM model with ADADELTA achieved 91%
accuracy for BBB course data, while ADAGRAD LSTM models
attained average accuracies of 80% and 85% for DDD and FFF
courses, respectively. Genetic algorithms for hyperparameter
optimization significantly contributed, with the GA + LSTM +
ADAGRAD model achieving 88% and 87% accuracy in the 7th
and 9th models for BBB course data. The GA + LSTM +
ADADELTA model produced average accuracy rates of 80% and
84% in DDD and FFF course data, with the highest accuracy rates
of 86% and 93%, as well. These findings highlight the effectiveness
of adaptive and genetic algorithms in enhancing LSTM model
performance for VLE prediction, offering valuable insights for
educational technology advancement.

Keywords—long short-term memory; genetic algorithm;
adaptive gradient-based; hyperparameter optimization; virtual
learning environment

I. INTRODUCTION

N this ever-evolving era of information technology, which

deftly steers various facets of life, changes including in
behaviors and patterns unfold seamlessly as time passes.
Navigating these temporal changes require innovative and
efficient approaches to predicting myriad essential patterns and
classes is highly desirable. One intriguing predictive-based
research field for exploration is virtual learning environments,
where critical academic performance patterns can be generated
and analyzed to enhance the learning experience [1]. This study
utilizes LSTM (Long Short-Term Memory) to optimize
predictions within virtual learning environments. For modeling
sequential data, such as the order of events in virtual learning
environments (VLE), LSTM is an effective tool [2]. While
LSTM generally handles sequential data well, the model is
susceptible to overfitting, especially when exposed to complex
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data [3]. Moreover, the problems of decreasing gradient and
bursting gradient often affect LSTM. The issue of vanishing
gradients arises when the neural network's gradient multiplied
by its weight gets extremely small, resulting in sluggish or
unstable learning [4]. On the other hand, the exploding gradient
problem arises when the gradient grows exponentially, which
can also disrupt the learning process and make it unstable [5].

Therefore, optimizing LSTM becomes crucial to address these
various issues. Through LSTM optimization, we can lower the
likelihood of overfitting, increase learning speed and stability,
and improve the capability of the design to recognize complex
designs in sequential data. This will enable more effective and
efficient use of LSTM in various applications, including
predictions in virtual learning environments and other fields that
leverage sequential data. This study employs two optimization
strategies—parameter optimization with an adaptive gradient-
based algorithm and hyperparameter optimization with a genetic
algorithm—to enhance LSTM performance.

Optimizing LSTM parameters with adaptive gradient-based
schemes offers efficient learning [6]. These algorithms
dynamically adjust learning rates for each parameter, ensuring
stable learning even with complex data [7]. These algorithms
facilitate faster convergence and prevent gradient-related issues,
such as vanishing or exploding gradients [8]. Their adaptability
allows LSTM models to dynamically adjust to data variations
[9]. Likewise, genetic algorithms provide an effective global
solution search for LSTM hyperparameter optimization while
maintaining parameter space diversity [10]. The algorithm is
adaptive, scalable, and flexible, and it keeps getting better at
solving problems [11]. With the use of this algorithm, it is
possible to determine the ideal set of hyperparameters,
producing an LSTM model for sequential data prediction that is
more precise and effective.

The purpose of this research is to evaluate two theories about
the optimization of hyperparameters and parameters in LSTM
network models for virtual learning environment prediction.
Firstly, the hypothesis suggests that the use of adaptive gradient-
based algorithms will result in LSTM models that are more
stable, converge faster, and can overcome gradient issues like
vanishing or exploding gradients [12]. With the adaptability of
these algorithms, it is anticipated that LSTM models optimized
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with this approach will perform better in predicting behaviors
and patterns within virtual learning environments. Secondly,
another hypothesis posits that utilizing genetic algorithms to
optimize LSTM hyperparameters will yield more optimal and
adaptive configurations. Considering the complexity and
variability of data within virtual learning environments [13],
genetic algorithms can discover better combinations of
hyperparameters. Consequently, LSTM models optimized with
genetic algorithms are expected to provide more accurate and
responsive predictions to changes in the learning environment.
Through this research, it is expected to gain a better
understanding of effective approaches in optimizing LSTM
models for predicting virtual learning environments, thus
contributing to the advancement of digital learning technology.

A. Related Work

We reviewed the literature on subjects relevant to our
research. Finding advancements in prediction models for deep
learning-based online learning, particularly about greatly
accessible distance education (MOOCs) or virtual classrooms
(VLEs), is the aim of the literature review. As a result, the
findings of the literature review can be used to contrast or
compare our research with other studies.

In her research,[14] proposes the ANN-LSTM, a popular
multi-class model that uses ANN (Artificial Networks) and
LSTM (Short-term Memory) to predict the achievement of
students. The findings show that the ANN-LSTM model is
superior to the baseline models in terms of effectiveness. ANN-
LSTM achieves an accuracy of roughly 70%. In [15], a
suggested approach is a customized recommendation system
based on the MOOC system. Some corresponding strategies are
presented in [1] to improve the recommendation method's
accuracy, which is by the encoder with two-channel illustrations
from the Transformers (BERT) model. The results of the
experiment demonstrate that the suggested model produces
recommendation results with the same level of effectiveness as
alternative approaches. In this work, [16] uses a range of
automatic learning methods on open datasets, such as different
kinds of Artificial Neural Networks (ANN) and tree-based
models, to investigate the elements that impact the learning
process in VLE platforms. Another course recommendation
system using deep neural network algorithms has also been
designed using the neural collaborative filtering (NCF)
approach [17]. It is reported that the NCF model outperforms
the cooperative filtering (CF) model by 57.7% in terms of the
RMSE achievement recorded.

In [18], an adversarial network called the Sequential
Conditional Generative Adversarial Network (SC-GAN) was
used. It summarises each student's prior behavior. The
corresponding results have indicated that the proposed SCGAN
outperformed the standard up-sampling methods. Specifically,
compared to Random Over-sampling, the SCGAN
demonstrated an improved AUC of 7.07%. Based on the
information about student behaviors, [19] has offered a strategy
for predicting school dropout rates that use a pipeline model
known as CLSA. Local features are extracted by the CLSA
model using LSTM and CNN. 87.6% accuracy was attained by
the model in tests conducted on the KDD 2015 data set. Other
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predictive models such as in [20] and [21] have employed

The KDD 2015 dataset, which are trained and tested with
CNN and LSTM models incorporated with bagging techniques
to attain average accuracy values of around 91%. In another
paper, [16], an innovative method is suggested that makes use
of a hyper-model called CONV-LSTM, which blends a CNN
and LSTM to come in instinctively compile features from
MOOC raw data and forecast whether or not each student will
finish the course. Regarding performance outcomes, the
suggested model is superior to the standard approach. With an
accuracy of 84.57%, the LSTM has the highest predictive power
when it comes to differentiating between students who pass and
those who fail when compared to all other options [22].

In [5], students' cognitive states are classified using a novel
GA-CNN (Graph-based conventional attention neural
networks) architecture. Compared to alternative approaches,
classification accuracy has been increased dramatically to
around 87%. This study looks at the brain Chabot’s signals and
interactions to develop a new model for predicting how students
will behave in online courses [23]. The techniques for extracting
features are CNN and RB-RNN (Radian Basis-Recurrent Neural
Networks). When compared to the basic method, the accuracy
results demonstrate a significant improvement. To simulate and
forecast student dropout behavior, [18] suggests using the
PMCT stands for Parallel Multiscale Convolutional Temporal
architecture. The outcomes of the experiment demonstrate that
the suggested model has improved its prediction accuracy than
the baseline method using two sizable datasets. Another LSTM-
based scheme, [21], has been proposed to predict the time of
subsequent interactions as well as the user's experience of those
interactions. According to the study, the model's performance
can be significantly increased by accounting for the correlation
between an action taken by a user and when it happens.
Additionally, the prediction results can be used to examine
online learning behaviors and dropout rates.

The use of a DL (Deep learning) model, specifically the
LSTM algorithm, is the commonality between the research to
be done and earlier studies. The LSTM performs well in time
series data prediction in earlier research. This study differs from
others in that it uses genetic algorithms (GA) and adaptive
gradient-based algorithms to optimize parameters and
hyperparameters, something that was not done in earlier studies.

II. METHODOLOGY

We provide a framework for forecasting academic
achievement to address the aforementioned issues by combining
knowledge-based data with behavioral and learning data. The
objective is to offer more accurate forecasts, particularly for
online learning, in order to reduce student failure.

In order to do this, we use course data from students, which
we can access from the time they enroll in classes until they
graduate, enabling us to observe how they learn. The
perspective domain is also used to cluster the knowledge-based
data and add them to the forecasting procedure.

A. Data Pre-processing

During the data preparation stage, the prediction-related
features were extracted from the OULA data [8], [4]. The data
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for OULA courses is shown in Fig. 1. Presentation codes BBB,
DDD, and FFF were used in this study since these three courses
have complete data up until the end of the lecture. The dataset
is preprocessed to select features that will be used to train and
test the model. The features that have been chosen and will be
put to use are the module code, presentation code, student ID,
clicks, assignment assessment, average assignment assessment,

and final results.
Student Distribution
ARA BBB cce DDD EEE FFF GGG

Student count

Fig. 1. Course information.

There are two presentation codes or semester codes in the
BBB, DDD, and FFF courses: "B" begins in February, while "J"
begins in October. The BBB, DDD, and FFF courses will be
divided into sixty percent of the data for instruction, twenty
percent for verification, and twenty percent for evaluation.

B. The LSTM's Architecture

An ANN (Artificial Neural Network) algorithm known as
LSTM was created to address the "enduring memory" issue. The
shortcomings of the RNN (Recurrent Neural Networks)
algorithm are addressed by LSTM [13]. One area where RNNs
struggle is remembering details in lengthy data sequences.
Because of their distinctive memory unit design, LSTMs can
handle this problem more successfully [3]. Fig. 2 displays the
proposed LSTM architectural model from this study.

INPUT
PARAMETERS

LSTM Layer o

Input Layer

Output Layer

Predict the outcome

ouTRUT

Fig. 2. The proposed LSTM architecture model.

One crucial stage in the development of an LSTM model that
greatly affects the success and performance of the model is
hyperparameter optimization [2]. Optimizing hyperparameters
is a crucial stage in creating robust and efficient machine-
learning models. This enables the model to achieve better
performance, minimize overfitting risk, and optimize computer
memory utilization, resulting in better results across various
tasks and applications [24]. The LSTM architecture has several
hyperparameters that affect its performance, including LSTM
units in total (neurons), number of LSTM layers, learning rate,
batch size, sequencing parameters, dropout rate, L2 or L1
regularisation, activation function, optimizer, weight
initialization, gate usage (gates), loss function, epochs, and early
stopping [25]. The following equations describe the functions of
a LSTM cell:

Forget the Entrance:
— ht—1
fo= oo [+ b (1)

A gate for input:

I=o (wi o [h)t(—tl] + bi) Q)
Cell State:
Ce = tanh(w, . [he_1, %] + be) 3)

Update Cell State:

Co= fr * Cooq + ip* C~t 4
Output Gate:
0= 0 W, [he—, x: 1+ by) Q)

Hidden State:
h; = O, * tanh (C},) (6)

The LSTM formulas represent the mathematical operations
that occur within an LSTM cell, which is utilized in neural
networks to understand and model sequential data. The key
components within these formulas include the disregard
gate(f;), input gate(i,), condition of the cell(C,), update of the
cell, output gate(o;), and concealed state(h;). The memory gate
regulates the amount of information which is disregarded based
on the earlier cell state. The amount of new data added to the
input gates determines the state of the cell. The actual cell state
at a given time is the outcome of mixing the earlier state of cells
with information filtered through the disregard gate and the
estimated new cell state (C,) filtered through the input gate. The
gate for output ascertains the cell state's quantity that is utilized
to create the concealed state, which is frequently output or used
in particular sequential modeling tasks. These formulas
illustrate how an LSTM cell processes information from one
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time step to the next within a sequence, with a specific ability to
handle issues with vanishing gradients and preserve long-term
retention in sequential information.

C. Adaptive Gradient-based (AGb) Algorithms

The AGb algorithm is an optimization method used to find the
optimal value in mathematical optimization problems [20]. This
algorithm's primary feature is its capacity to automatically
modify the learning rate while it is optimizing [26]. This
adaptive gradient-based algorithm helps the optimization
process to better converge when dealing with complex problems
that have large parameter spaces [11]. The weights (parameters)
in a model can be changed using an adaptive gradient-based
algorithm, which permits the model to learn from data and
generate more precise predictions [27]. Several well-known
algorithms based on adaptive gradients are Adam, Nadam,
Adagrad, Adadelta, and Adamax [26]. In this study, five
Adaptive Gradient-based algorithms are used to optimize the
parameters of the LSTM architecture. The five Adaptive
Gradient-based algorithms' formulas are as follows:

Adam algorithm formulas [26]:

Momentum update:

my = By * Me_q) + A-=p)* g¢ @)
Variance momentum update:

Ve = By + (1= B3) % (gr)? (®)

First-moment bias correction:

M= g ©)
Second-moment bias correction:

b= (10)
Parameter update:

0, =60, — Jﬁf?'mt (11
Nadam algorithm formulas [26]:

Momentum update:

my = By * Me_qy + A=pB1)* g (12)
Variance momentum update:

Ve = Boveoq + (1= ) * (ge)? (13)
First-moment bias correction:

he = (14)

E. ISMANTO, ET AL.

Second-moment bias correction:

D= &
1B

(15)

Nesterov Parameter Update:

a

- \/m -(ﬂl-ﬁ\lt+ (1_ ﬁl)-gt)

(16)

Adagrad algorithm formulas [19]:
Gradient accumulation update:

Gy = Gpq + g? (17)

Parameter update:

0y = 0,4 (18)

a
- VGt € ' gt
Adadelta algorithm formulas [26]:

The mean of squared gradients exponentially:

elg®l: = p.elg® -1 + (1= p).g? (19)

Delta parameter (update on the parameter):

JelAB2];_1+ €

A=~ T raae 9

(20)

Parameter update:

Ht = 9{:_1 + Agt (21)

Adamax algorithm formulas [26]:
Variance momentum update:

vy = max(f; . Ve_y,|gel) (22)

Parameter update:

0= 0y =\ -0t (23)

Adam, Nadam, Adagrad, Adadelta, and Adamax are
optimization algorithms used in ML (Machine learning). In the
context of these algorithms, common symbols include m, for
the first moment of the gradient, §; and 3, for adjustment factors,
g.for the gradient at a given iteration, v, for the second moment
of the gradient,  for the learning rate, € for a modest amount
to avoid division by zero, and additional terms specific to each
algorithm. For example, Nadam incorporates Nesterov
acceleration, while Adagrad accumulates gradients over time.

Adadelta utilizes exponentially moving averages, and Adamax
calculates the second moment based on the gradient's absolute
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value. By modifying the learning rate and monitoring gradient
information to enhance convergence, these algorithms aid in the
optimization of model parameters during training.

D. Genetics Algorithms (GA)

The GA are computational techniques inspired by natural
selection and evolution in genetics [25]. Natural selection,
crossover, mutation, and reproduction are evolutionary
processes that genetic algorithms (GAs) are modeled after [28].
GA can handle complex search space problems, find global
solutions, be flexible and parallel, tolerate noisy data, have a
wide range of applications, and be capable of exploration and
exploitation [15]. The genetic algorithm pseudocode used to
optimize the LSTM model is shown in Table I.

TABLE I
GA-LSTM PSEUDOCODE

Algorithm 1: Pseudocode LSTM with Genetic Algorithm

0: START

1 Input:

2: Dataset: Xtrainv Y;:rainv Xtestv ytest
3 Initial Hyperparameters:

units, weights, bias, dropout, learning,q;e,
batch_size, epochs, loss, metrics

4: Optimizers:['adam’, 'nadam’,'adadelta’,'adagrad’,’adamax']
S: i: Integer; fitness: Real; Population: Population;
Best Individual: Individual;
6: Process:
7: SetLength(Pop, Size);
8 fori:=0to Size- 1 do
9: begin
10: Pop[i].units := Random(100) + 1;
11: Pop[i].dropout := Random;
12: Popl[i].learning_rate := Random;
13: Popl[i].batch_size := Random(100) + 1;
14: Popli].epochs := Random(100) + I;
15: Pop[i].optimizer:=
‘adam’, 'nadam’,'adadelta’,'adagrad’, adamax']";
16:
17: Output:
18: Function Evaluate LSTM(Indiv: Individual): Real;
19: Best Individual := Select Best Individual (Population);
20: END
III. EXPERIMENTS
A. Dataset

The experiment's student data came from OULA Data, which
is sourced from the UK's Open University. The dataset consists
of details on 32.593 students enrolled in 22 classes, evaluation
outcomes, and recordings of their discussions with the Virtual
Learning Environment (VLE), summarized daily by clicking
counts (10.655.280 entries). The VLE information makes it
possible to examine course design from the perspective of
learning, and the data itself can be used to assess how much of
an impact VLE has on learning objectives.

B. Model Evaluation

In this study, the Genetic algorithm and the adaptive gradient-
based algorithm were utilized to optimize the LSTM model's
parameters and hyperparameters to forecast student

performance using OULA data. The LSTM model predicts
whether a student will pass or fail each semester. Furthermore,
we evaluate the effectiveness of every optimization algorithm
on OULA data by dividing it into 10 deciles using three different
course datasets.

Using an 80:20 ratio, test, and training data were extracted
from each dataset for the forecasting process. The LSTM model
developed for predicting student performance uses 3 (three)
input layers, 2 (two) output layers with 1 node and a sigmoid
activation function, 1 (one) hidden layer with 16 nodes, and a
hyperbolic tangent activation function, which is used to solve
the function non-linear. For the activation of the input layer, use
a value of 0, and for the standard deviation use a value of 1. The
LSTM model is then enhanced by a dropout layer, which is set
to 50 % in each training step to prevent overfitting. The LSTM
model was trained using batch size 32, a learning rate of 10%,
and epoch 50 with the back-propagation method.

In this study, four distinct metrics were employed. The
primary metric used to assess the prediction models'
performance was accuracy. Given that the binary classification
method is used by the model to predict, the accuracy can be
described as follows [29]: True Positive (TP): The quantity of
positive samples that the model accurately classifies as positive.
True Negative (TN): The quantity of negative samples that the
model accurately classifies as negative. False Positive (FP):
The quantity of negative samples that the model mistakenly
classifies as positive. False Negative (FN): The quantity of
positive samples that the model misclassifies as negative. The
following formula is used to determine the accuracy [30]:

N—(TP+TN)
N (Total number of observations)

Accuracy = (24)

In Equation 24, TP representsTrue Positive, TN
representsTrue Negative, FP representsFalse Positive, and
FN representsFalse Negative. Using additional metrics, like
F-score, recall, and preciseness, the model's efficacy was
evaluated, which is elaborated upon below.

The Precision is calculated using the formula [30]:

True Positive

Precision = — — (25)
True Positive+False Positive

The Recall is calculated using the formula:

Recall = True Positive (26)

True Positive+False Negative

In Equation 25, True Positive represents how many positive
samples were accurately classified, and False Positive shows
the amount of adverse samples that were incorrectly identified
as positive. In Equation 26, True Positive represents the
number of properly identified samples with positive
classification, and False Negative represents the quantity of
positive samples that were mistakenly labeled as negative. The
F1 Score is calculated using the equation below [30]:

2 x Precision x Recall

F1 Score = 27)

Precision x Recall

In Equation 27, Precision and Recall are calculated using the
formulas given in Equations 25 and 26.



IV. RESULTS AND DISCUSSION

Algorithm models for LSTM were put to the test, and their
performance was evaluated. Three factors are taken into account
to determine whether a student will pass or fail the course: How
many times the virtual learning environment has been clicked,
the number of assessments submitted, and the average
assessment grade. The length of each course varies, so the
course data is divided into eleven deciles. Table II displays the
information that was employed to assess and instruct the
models.

TABLE I
DATA FOR TRAINING AND TESTING
Training data Total data Testing data Total data
BBB data 3.858 BBB data 1.521
DDD data 2.830 DDD data 1.150
FFF data 3.818 FFF data 1.503

A. Performance Results for the LSTM Model Using the
Adaptive Gradient-Based Optimization

To create a more accurate model, the LSTM model is trained
and tested using the Adaptive Gradient-Based Optimization
algorithm. The Adaptive Gradient-Based Optimization
algorithm is used to optimize the model parameters to fit the
training data by determining the minimum (or maximum) value
of a cost or loss function. Model parameters are weights and
biases that are adjusted in a machine learning model during
training to reduce the cost function or loss function. The
Adaptive Gradient-Based Optimization algorithm is a process
that takes place during the backpropagation phase. The most
popular Adaptive Gradient-Based Optimization algorithms are
ADAM, NADAM, ADADELTA, ADAGRAD, and
ADAMAX. This algorithm will be used to modify the LSTM
model's parameters in order to achieve the best predictive model
performance.

Table III displays the outcomes of applying Adaptive
Gradient-based algorithms to optimize the LSTM model
parameters for the BBB Course data. Table III displays the
accuracy and recall performance that were caused by the LSTM

model.
TABLE III
THE LSTM MODEL’S PERFORMANCE AFTER PARAMETER OPTIMIZATION
WITH AN ADAPTIVE GRADIENT-BASED ALGORITHM ON THE BBB COURSE

Combining the LSTM Model and AGB (Adaptive Gradient-based)

Algorithms
Accuracy
Models ADAM NADAM __ ADADELTA __ ADAGRAD ADAMAX

0 0.75 0.75 0.75 0.75 0.75
1 0.60 0.59 0.75 0.58 0.59
2 0.69 0.65 0.78 0.69 0.60
3 0.58 0.69 0.79 0.57 0.73
4 0.78 0.73 0.80 0.73 0.76
5 0.79 0.83 0.84 0.78 0.74
6 0.87 0.87 0.85 0.79 0.87
7 0.87 0.89 0.87 0.85 0.83
8 0.87 0.71 0.78 0.64 0.69
9 0.91 0.87 0.90 0.92 091
10 091 091 0.91 0.92 091

Average 0.78 0.77 0.82 0.75 0.76
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The accuracy and recall values of the LSTM model in the
BBB Course significantly improved after parameter
optimization using Five Adaptive Gradient-based algorithms:
ADAM, NADAM, ADADELTA, ADAGRAD, and
ADAMAX. To see how well the Five Adaptive Gradient-based
algorithms performed on the BBB course data, the average
accuracy and recall of each decile/model are computed. The
LSTM model with ADADELTA optimization produced the best
model accuracy and recall values on the BBB course data, with
an average model accuracy value of 82%. The results of
optimizing the LSTM model parameters for the DDD Course
data using the AGB (Adaptive Gradient-based) algorithms are

shown in Table I'V.
TABLE IV
THE LSTM MODEL’S PERFORMANCE AFTER PARAMETER OPTIMIZATION
WITH AN ADAPTIVE GRADIENT-BASED ALGORITHM ON THE DDD COURSE

Combining the LSTM Model and AGB (Adaptive Gradient-based) Algorithms

Accuracy

Models ADAM NADAM ADADELTA ADAGRAD ADAMAX
0 0.69 0.69 0.68 0.69 0.69
1 0.74 0.74 0.71 0.73 0.75
2 0.76 0.77 0.72 0.77 0.78
3 0.77 0.78 0.76 0.80 0.79
4 0.78 0.77 0.76 0.79 0.77
5 0.81 0.80 0.75 0.81 0.80
6 0.80 0.80 0.77 0.83 0.83
7 0.81 0.80 0.80 0.83 0.81
8 0.85 0.85 0.81 0.84 0.84
9 0.85 0.85 0.84 0.87 0.86
10 0.86 0.86 0.85 0.86 0.86

Average 0.79 0.79 0.77 0.80 0.80

The accuracy and recall values of the LSTM model in the
DDD Course significantly improved after parameter
optimization using Five Adaptive Gradient-based algorithms:
ADAM, NADAM, ADADELTA, ADAGRAD, and
ADAMAX. To see how well the Five AGB (Adaptive Gradient-
based) algorithms performed on the DDD course data, the
average accuracy and recall of each decile/model are computed.
The LSTM model with ADAGRAD and ADAMAX
optimization produced the best model accuracy and recall
values on the DDD course data, with an average model accuracy
value of 80%. The results of optimizing the LSTM model
parameters for the FFF Course data using the Adaptive
Gradient-based algorithms are shown in Table V. Table V
displays the accuracy and recall performance that were caused
by the LSTM model.

The accuracy and recall values of the LSTM model in the
FFF Course significantly improved after parameter optimization
using Five Adaptive Gradient-based algorithms: ADAM,
NADAM, ADADELTA, ADAGRAD, and ADAMAX. To see
how well the Five Adaptive Gradient-based algorithms
performed on the FFF course data, the average accuracy and
recall of each decile/model are computed. The LSTM model
with  ADAGRAD optimization produced the best model
accuracy and recall values on the FFF course data, with an
average model accuracy value of 85%.
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TABLE V
THE LSTM MODEL’S PERFORMANCE AFTER PARAMETER OPTIMIZATION
WITH AN ADAPTIVE GRADIENT-BASED ALGORITHM ON THE FFF COURSE

Combining the LSTM Model and AGB (Adaptive Gradient-based) Algorithms

Accuracy

Models ADAM NADAM ADADELTA ADAGRAD ADAMAX
0 0.73 0.72 0.74 0.73 0.72
1 0.76 0.75 0.76 0.75 0.76
2 0.79 0.79 0.76 0.79 0.78
3 0.83 0.83 0.79 0.83 0.82
4 0.83 0.84 0.82 0.84 0.84
5 0.85 0.85 0.83 0.86 0.86
6 0.88 0.88 0.87 0.89 0.88
7 0.88 0.87 0.87 0.89 0.87
8 0.88 0.88 0.86 0.88 0.88
9 0.91 0.90 0.90 0.91 091
10 0.93 0.93 0.93 0.94 0.94

Average 0.84 0.84 0.83 0.85 0.84

A. Performance Results for the LSTM Model Using the
Genetic Optimizations Algorithm

Three LSTM models, LSTM + ADADELTA, LSTM +
ADAGRAD, and LSTM + ADAMAX, will be trained and
tested at this point by attempting to modify the model
hyperparameters. Hyper-parameters are the parameters that are
set before training a model and are not learned from the data.
They are external to the model and affect its behavior and
performance. Hyper-parameters control various aspects of the
learning process, such as the model's capacity, regularization,
optimization algorithm, and convergence criteria. The selection
of appropriate hyper-parameters is crucial as it can greatly
impact the model's performance and generalization capabilities.
The LSTM-ADADELTA, LSTM-ADAGRAD, and LSTM-
ADAMAX models were subjected to hyper-parameter
optimization using the Genetic Algorithm. The results of
optimizing the LSTM model hyper-parameters for the BBB
Course data using the Genetic Algorithms are shown in Table
VI. Table VI displays the accuracy and recall performance that
were caused by the LSTM model.

TABLE VI
THE LSTM MODEL’S PERFORMANCE AFTER HYPER-PARAMETER
OPTIMIZATION WITH GENETIC ALGORITHMS ON THE BBB COURSE

in the 9th model or decile and 88% in the 7th model or decile,
respectively. The GA + LSTM + ADAGRAD model's average
recall value is 78%, and its average accuracy value is 77%. The
results of optimizing the LSTM model hyper-parameters for the
DDD Course data using the Genetic Algorithms are shown in
Table VII. Table VII displays the accuracy and recall
performance that were caused by the LSTM model.

TABLE VII
THE LSTM MODEL’S PERFORMANCE AFTER HYPER-PARAMETER
OPTIMIZATION WITH GENETIC ALGORITHMS ON THE DDD COURSE

Genetic Optimization Algorithm

Accuracy Recall
Models LSTM + GA LSTM + GA
ADADELTA  ADAGRAD  ADAMAX  ADADELTA  ADAGRAD  ADAMAX

0 0.70 0.71 0.68 0.70 0.71 0.69
1 0.74 0.69 0.68 0.74 0.70 0.69
2 0.77 0.76 0.68 0.77 0.76 0.69
3 0.78 0.77 0.68 0.78 0.78 0.69
4 0.79 0.79 0.68 0.80 0.79 0.69
5 0.81 0.76 0.68 0.81 0.77 0.69
6 0.81 0.78 0.68 0.82 0.79 0.69
7 0.83 0.81 0.68 0.84 0.82 0.69
8 0.84 0.84 0.68 0.84 0.84 0.69
9 0.85 0.83 0.68 0.86 0.83 0.69
10 0.86 0.85 0.68 0.87 0.86 0.69

Average 0.80 0.78 0.68 0.80 0.79 0.69

Genetic Optimization Algorithm

Accuracy Recall
Models LSTM + GA LSTM + GA
ADADELTA ADAGRAD ADAMAX ADADELTA ADAGRAD  ADAMAX

0 0.75 0.75 0.75 0.76 0.76 0.76
1 0.57 0.73 0.75 0.57 0.74 0.76
2 0.60 0.55 0.75 0.60 0.55 0.76
3 0.57 0.66 0.60 0.58 0.67 0.60
4 0.60 0.77 0.75 0.61 0.77 0.76
5 0.74 0.83 0.75 0.74 0.83 0.76
6 0.76 0.85 0.54 0.76 0.86 0.55
7 0.80 0.88 0.75 0.81 0.88 0.76
8 0.63 0.83 0.75 0.63 0.84 0.76
9 0.85 0.87 0.75 0.85 0.87 0.76
10 0.77 0.78 0.75 0.77 0.78 0.76

Average 0.69 0.77 0.72 0.70 0.78 0.73

Based on the results of parameter optimization using
ADADELTA, ADAGRAD, and ADAMAX, parameter training
and testing on BBB course data using the LSTM model, and
hyperparameter optimization using GA, the best model was
found in the GA + LSTM + ADAGRAD model. The accuracy
values are highest in the 7th and 9th models or deciles, at 87%

Based on the results of parameter optimization using
ADADELTA, ADAGRAD, and ADAMAX, parameter training
and testing on DDD course data using the LSTM algorithm's
subsequent hyperparameter refinement using GA, the best
model was found in the GA + LSTM + ADADELTA model.
The mean accuracy value of the GA + LSTM + ADADELTA
model is 80%, and the mean recall value is 80%. The results of
optimizing the LSTM model hyper-parameters for the FFF
Course data using the Genetic Algorithms are shown in Table
VIII. Table VIII displays the accuracy and recall performance
that were caused by the LSTM model.

TABLE VIII
THE LSTM MODEL’S PERFORMANCE AFTER HYPER-PARAMETER
OPTIMIZATION WITH GENETIC ALGORITHMS ON THE FFF COURSE

Genetic Optimization Algorithm

Accuracy Recall
Models LSTM + GA LSTM + GA
ADADELTA  ADAGRAD  ADAMAX  ADADELTA  ADAGRAD  ADAMAX

0 0.71 0.72 0.74 0.71 0.72 0.74
1 0.73 0.75 0.75 0.73 0.75 0.75
2 0.80 0.79 0.74 0.80 0.79 0.74
3 0.83 0.79 0.74 0.83 0.79 0.74
4 0.83 0.82 0.74 0.84 0.82 0.74
5 0.86 0.84 0.74 0.87 0.85 0,74
6 0.88 0.86 0.74 0.88 0.86 0.74
7 0.89 0.87 0.74 0.89 0.88 0.74
8 0.87 0.86 0.74 0.87 0.86 0.74
9 0.91 0.90 0.74 0.91 0.90 0.74
10 0.93 0.92 0.74 0.94 0.92 0.74

Average 0.84 0.83 0.74 0.84 0.83 0.74

Based on the results of parameter optimization using
ADADELTA, ADAGRAD, and ADAMAX, parameter training
and testing on FFF course data using the LSTM model's
subsequent hyperparameter refinement using GA, the best
model was found in the GA + LSTM + ADADELTA model.
The mean accuracy worth of the GA + LSTM + ADADELTA
model is 84%, and the recall value on average is 84%. In the
model or the 10th decile, this FFF model's highest accuracy
result is 93%.



The LSTM model has been used to test BBB, DDD, and FFF
data; the first test of the LSTM architecture parameter
optimization only used Adaptive Gradient-based algorithms; the
second test of the LSTM model's parameter optimization also
included hyperparameter optimization using a genetic
algorithm. The results of LSTM model testing on BBB data after
parameter and hyperparameter optimization show that the GA +
LSTM + ADAGRAD model is the best. Table IX displays the
results of LSTM model testing using BBB data. The LSTM +
ADAGRAD model does not undergo hyperparameter
optimization, whereas the GA + LSTM + ADAGRAD model
does.

TABLE IX

COMPARISON OF LSTM MODELS WITH HYPERPARAMETER OPTIMIZATION AND
THOSE WITHOUT HYPERPARAMETER OPTIMIZATION ON BBB COURSE DATA

E. ISMANTO, ET AL.

In light of Table X. When LSTM + ADADELTA and GA +
LSTM + ADADELTA models are compared, the accuracy and
recall results of the GA + LSTM + ADADELTA model, whose
hyperparameters have been optimized, significantly improve.
The obtained accuracy rate was 80% on average. The results of
LSTM model testing on FFF data after parameter and
hyperparameter optimization show that the GA + LSTM +
ADADELTA model is the best. Table XI displays the results of
LSTM model testing using FFF data. The LSTM +
ADADELTA model does not undergo hyperparameter
optimization, whereas the GA + LSTM + ADADELTA model
does.

TABLE XI

COMPARISON OF LSTM MODELS WITH HYPERPARAMETER OPTIMIZATION
AND THOSE WITHOUT HYPERPARAMETER OPTIMIZATION ON FFF COURSE DATA

Comparison of Genetic Algorithms and Adaptive Gradient-based Algorithms for
LSTM Model Optimization

Accuracy Recall
Models LSTM + GA +LSTM + LSTM + GA +LSTM +
ADAGRAD ADAGRAD ADAGRAD ADAGRAD
0 0.75 0.75 0.76 0.76
1 0.58 0.73 0.58 0.74
2 0.69 0.55 0.70 0.55
3 0.57 0.66 0.58 0.67
4 0.73 0.77 0.73 0.77
5 0.78 0.83 0.79 0.83
6 0.79 0.85 0.79 0.86
7 0.85 0.88 0.85 0.88
8 0.64 0.83 0.64 0.84
9 0.92 0.87 0.92 0.87
10 0.92 0.78 0.93 0.78
Average 0.75 0.77 0.75 0.78

In light of Table VIII. When LSTM + ADAGRAD and GA
+ LSTM + ADAGRAD models are compared, the accuracy and
recall results of the GA + LSTM + ADAGRAD model, whose
hyperparameters have been optimized, significantly improve in
Deciles 1, 3, 4, 5, 6, 7, and 8. The obtained accuracy rate was
77% on average. The results of LSTM model testing on DDD
data after parameter and hyperparameter optimization show that
the GA + LSTM + ADADELTA model is the best. Table X
displays the results of LSTM model testing using DDD data.
The LSTM + ADADELTA model does not undergo
hyperparameter optimization, whereas the GA + LSTM +
ADADELTA model does.

TABLE X
COMPARISON OF LSTM MODELS WITH HYPERPARAMETER OPTIMIZATION
AND THOSE WITHOUT HYPERPARAMETER OPTIMIZATION ON DDD COURSE
DATA

Comparison of Genetic Algorithms and Adaptive Gradient-based Algorithms for
LSTM Model Optimization

Accuracy Recall

Models LSTM + GA + LSTM + LSTM + GA +LSTM +

ADADELTA ADADELTA ADADELTA ADADELTA
0 0.68 0.70 0.69 0.70
1 0.71 0.74 0.71 0.74
2 0.72 0.77 0.73 0.77
3 0.76 0.78 0.76 0.78
4 0.76 0.79 0.76 0.80
5 0.75 0.81 0.76 0.81
6 0.77 0.81 0.78 0.82
7 0.80 0.83 0.80 0.84
8 0.81 0.84 0.81 0.84
9 0.84 0.85 0.85 0.86
10 0.85 0.86 0.86 0.87

Average 0.77 0.80 0.77 0.80

Comparison of Genetic Algorithms and Adaptive Gradient-based Algorithms for
LSTM Model Optimization

Accuracy Recall

Models LSTM + GA +LSTM + LSTM + GA +LSTM +
ADADELTA ADADELTA ADADELTA ADADELTA

0 0.74 0.71 0.74 0.71

1 0.76 0.73 0.76 0.73

2 0.76 0.80 0.77 0.80

3 0.79 0.83 0.79 0.83

4 0.82 0.83 0.83 0.84

5 0.83 0.86 0.84 0.87

6 0.87 0.88 0.87 0.88

7 0.87 0.89 0.87 0.89

8 0.86 0.87 0.87 0.87

9 0.90 0.91 0.91 0.91

10 0.93 0.93 0.93 0.94

Average 0.83 0.84 0.83 0.84

In light of Table XI. When LSTM + ADADELTA and GA
+ LSTM + ADADELTA models are compared, the accuracy
and recall results of the GA + LSTM + ADADELTA model,
whose hyperparameters have been optimized, significantly
improve in Deciles 2, 3, 4, 5, 6, 7, 8, and 9. The obtained
accuracy rate was 84% on average.

Using a genetic optimization algorithm, the hyperparameters
of three LSTM models with the ADADELTA, ADAGRAD, and
ADAMAX algorithms were improved. Based on the analysis
and comparison of the LSTM model's performance following
hyperparameter optimization on the BBB course data, it was
determined that the GA + LSTM + ADAGRAD model was the
most effective model. Based on analysis and comparison of the
performance of the LSTM model's subsequent hyperparameter
refinement on DDD course data, it is demonstrated that the GA
+ LSTM + ADADELTA model is the best model. After
hyperparameter optimization, the GA + LSTM + ADADELTA
model also emerged as the top model for the FFF course data.

The expected results of the GA + LSTM + ADAGRAD
model for the BBB course with an accuracy of 88% are
displayed in Fig. 3. The forecast's outcome of the GA + LSTM
+ ADADELTA model for the DDD course with an accuracy of
86% are displayed in Fig. 4. The forecast's outcome of the GA
+ LSTM + ADADELTA model for the FFF course with an
accuracy of 92% are displayed in Fig. 5.
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Fig. 3. The BBB course prediction outcomes of the GA +
LSTM + ADAGRAD model.
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Fig. 4. Prediction outcomes of the GA + LSTM + ADADELTA model on
DDD course.
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Fig. 5. Prediction outcomes of the GA + LSTM + ADADELTA model on the
FFF course.

According to this study's decisions, it can be said that
hyperparameters significantly affect how well DL models
perform. A similar improvement in performance is brought
about by the optimization of model parameters. After
optimizing the hyperparameters with a GA algorithm, the
accuracy of the LSTM model in this study saw a better
improvement.

V. CONCLUSION

This study aimed to explore two hypotheses regarding the
optimization of parameters and hyperparameters in LSTM
models for predicting virtual learning environments (VLE).
Firstly, the hypothesis suggested that utilizing adaptive
gradient-based algorithms, such as ADAM, NADAM,
ADADELTA, ADAGRAD, and ADAMAX, would lead to
improved stability, faster convergence, and better handling of

gradient issues like vanishing or exploding gradients in LSTM
models. Secondly, it hypothesized that employing a genetic
optimization algorithm for hyperparameter optimization in
LSTM models would result in more optimal and adaptive
configurations, considering the complexity and variability of
data in VLEs. The results revealed that the adaptive gradient-
based algorithms, especially when applied to LSTM models
with ADAM, NADAM, ADADELTA, ADAGRAD, and
ADAMAX, yielded the most accurate prediction of VLEs. For
the BBB course data, the LSTM model with ADADELTA
attained the best accuracy of 91%, while for the DDD and FFF
course data, the LSTM models with ADAGRAD achieved the
best performance with average accuracies of 8§0% and 85%,
respectively. Furthermore, using a genetic algorithm for
hyperparameter optimization in LSTM models contributed
significantly. The GA + LSTM + ADAGRAD model achieved
the highest accuracy of 88% and 87% in the 7th and 9th models,
respectively, for the BBB course data, with average recall and
accuracy rates of 78% and 77%. Similar trends were observed
in the DDD and FFF course data, where the GA + LSTM +
ADADELTA model demonstrated the best performance with
average accuracies of 80% and 84%, respectively, and achieved
the highest accuracy rates of 86% and 93%, respectively. These
results shed light on how well adaptive and genetic algorithms
work to improve the performance of LSTM models in virtual
learning environment prediction. Future research may need to
test optimizing LSTM using various metaheuristic algorithms to
see how well they perform. Consider incorporating additional
features, like data on economic conditions and demographics.
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