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Abstract—In today's technology-driven era, innovative methods 

for predicting behaviors and patterns are crucial. Virtual Learning 

Environments (VLEs) represent a rich domain for exploration due 

to their abundant data and potential for enhancing learning 

experiences. Long Short-Term Memory (LSTM) models, while 

proficient with sequential data, face challenges such as overfitting 

and gradient issues. This study investigates the optimization of 

LSTM parameters and hyperparameters for VLE prediction. 

Adaptive gradient-based algorithms, including ADAM, NADAM, 

ADADELTA, ADAGRAD, and ADAMAX, exhibited superior 

performance. The LSTM model with ADADELTA achieved 91% 

accuracy for BBB course data, while ADAGRAD LSTM models 

attained average accuracies of 80% and 85% for DDD and FFF 

courses, respectively. Genetic algorithms for hyperparameter 

optimization significantly contributed, with the GA + LSTM + 

ADAGRAD model achieving 88% and 87% accuracy in the 7th 

and 9th models for BBB course data. The GA + LSTM + 

ADADELTA model produced average accuracy rates of 80% and 

84% in DDD and FFF course data, with the highest accuracy rates 

of 86% and 93%, as well. These findings highlight the effectiveness 

of adaptive and genetic algorithms in enhancing LSTM model 

performance for VLE prediction, offering valuable insights for 

educational technology advancement. 
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I. INTRODUCTION 

N this ever-evolving era of information technology, which 

deftly steers various facets of life, changes including in 

behaviors and patterns unfold seamlessly as time passes. 

Navigating these temporal changes require innovative and 

efficient approaches to predicting myriad essential patterns and 

classes is highly desirable. One intriguing predictive-based 

research field for exploration is virtual learning environments, 

where critical academic performance patterns can be generated 

and analyzed to enhance the learning experience [1]. This study 

utilizes LSTM (Long Short-Term Memory) to optimize 

predictions within virtual learning environments.  For modeling 

sequential data, such as the order of events in virtual learning 

environments (VLE), LSTM is an effective tool [2]. While 

LSTM generally handles sequential data well, the model is 

susceptible to overfitting, especially when exposed to complex 
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data [3]. Moreover, the problems of decreasing gradient and 

bursting gradient often affect LSTM. The issue of vanishing 

gradients arises when the neural network's gradient multiplied 

by its weight gets extremely small, resulting in sluggish or 

unstable learning [4]. On the other hand, the exploding gradient 

problem arises when the gradient grows exponentially, which 

can also disrupt the learning process and make it unstable [5]. 

Therefore, optimizing LSTM becomes crucial to address these 

various issues. Through LSTM optimization, we can lower the 

likelihood of overfitting, increase learning speed and stability, 

and improve the capability of the design to recognize complex 

designs in sequential data. This will enable more effective and 

efficient use of LSTM in various applications, including 

predictions in virtual learning environments and other fields that 

leverage sequential data. This study employs two optimization 

strategies—parameter optimization with an adaptive gradient-

based algorithm and hyperparameter optimization with a genetic 

algorithm—to enhance LSTM performance. 

Optimizing LSTM parameters with adaptive gradient-based 

schemes offers efficient learning [6]. These algorithms 

dynamically adjust learning rates for each parameter, ensuring 

stable learning even with complex data [7]. These algorithms 

facilitate faster convergence and prevent gradient-related issues, 

such as vanishing or exploding gradients [8]. Their adaptability 

allows LSTM models to dynamically adjust to data variations 

[9]. Likewise, genetic algorithms provide an effective global 

solution search for LSTM hyperparameter optimization while 

maintaining parameter space diversity [10]. The algorithm is 

adaptive, scalable, and flexible, and it keeps getting better at 

solving problems [11]. With the use of this algorithm, it is 

possible to determine the ideal set of hyperparameters, 

producing an LSTM model for sequential data prediction that is 

more precise and effective.  

The purpose of this research is to evaluate two theories about 

the optimization of hyperparameters and parameters in LSTM 

network models for virtual learning environment prediction. 

Firstly, the hypothesis suggests that the use of adaptive gradient-

based algorithms will result in LSTM models that are more 

stable, converge faster, and can overcome gradient issues like 

vanishing or exploding gradients [12]. With the adaptability of 

these algorithms, it is anticipated that LSTM models optimized 
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with this approach will perform better in predicting behaviors 

and patterns within virtual learning environments. Secondly, 

another hypothesis posits that utilizing genetic algorithms to 

optimize LSTM hyperparameters will yield more optimal and 

adaptive configurations. Considering the complexity and 

variability of data within virtual learning environments [13], 

genetic algorithms can discover better combinations of 

hyperparameters. Consequently, LSTM models optimized with 

genetic algorithms are expected to provide more accurate and 

responsive predictions to changes in the learning environment. 

Through this research, it is expected to gain a better 

understanding of effective approaches in optimizing LSTM 

models for predicting virtual learning environments, thus 

contributing to the advancement of digital learning technology. 

A. Related Work 

We reviewed the literature on subjects relevant to our 

research. Finding advancements in prediction models for deep 

learning-based online learning, particularly about greatly 

accessible distance education (MOOCs) or virtual classrooms 

(VLEs), is the aim of the literature review. As a result, the 

findings of the literature review can be used to contrast or 

compare our research with other studies. 

In her research,[14] proposes the ANN-LSTM, a popular 

multi-class model that uses ANN (Artificial Networks) and 

LSTM (Short-term Memory) to predict the achievement of 

students. The findings show that the ANN-LSTM model is 

superior to the baseline models in terms of effectiveness. ANN-

LSTM achieves an accuracy of roughly 70%. In [15], a 

suggested approach is a customized recommendation system 

based on the MOOC system. Some corresponding strategies are 

presented in [1] to improve the recommendation method's 

accuracy, which is by the encoder with two-channel illustrations 

from the Transformers (BERT) model. The results of the 

experiment demonstrate that the suggested model produces 

recommendation results with the same level of effectiveness as 

alternative approaches. In this work, [16] uses a range of 

automatic learning methods on open datasets, such as different 

kinds of Artificial Neural Networks (ANN) and tree-based 

models, to investigate the elements that impact the learning 

process in VLE platforms. Another course recommendation 

system using deep neural network algorithms has also been 

designed using the neural collaborative filtering (NCF) 

approach [17]. It is reported that the NCF model outperforms 

the cooperative filtering (CF) model by 57.7% in terms of the 

RMSE achievement recorded. 

In [18], an adversarial network called the Sequential 

Conditional Generative Adversarial Network (SC-GAN) was 

used. It summarises each student's prior behavior. The 

corresponding results have indicated that the proposed SCGAN 

outperformed the standard up-sampling methods. Specifically, 

compared to Random Over-sampling, the SCGAN 

demonstrated an improved AUC of 7.07%. Based on the 

information about student behaviors, [19] has offered a strategy 

for predicting school dropout rates that use a pipeline model 

known as CLSA. Local features are extracted by the CLSA 

model using LSTM and CNN. 87.6% accuracy was attained by 

the model in tests conducted on the KDD 2015 data set. Other 

predictive models such as in [20] and [21] have employed  

The KDD 2015 dataset, which are trained and tested with 

CNN and LSTM models incorporated with bagging techniques 

to attain average accuracy values of around 91%. In another 

paper, [16], an innovative method is suggested that makes use 

of a hyper-model called CONV-LSTM, which blends a CNN 

and LSTM to come in instinctively compile features from 

MOOC raw data and forecast whether or not each student will 

finish the course. Regarding performance outcomes, the 

suggested model is superior to the standard approach. With an 

accuracy of 84.57%, the LSTM has the highest predictive power 

when it comes to differentiating between students who pass and 

those who fail when compared to all other options [22]. 

In [5], students' cognitive states are classified using a novel 

GA-CNN (Graph-based conventional attention neural 

networks) architecture. Compared to alternative approaches, 

classification accuracy has been increased dramatically to 

around 87%. This study looks at the brain Chabot’s signals and 

interactions to develop a new model for predicting how students 

will behave in online courses [23]. The techniques for extracting 

features are CNN and RB-RNN (Radian Basis-Recurrent Neural 

Networks). When compared to the basic method, the accuracy 

results demonstrate a significant improvement. To simulate and 

forecast student dropout behavior, [18] suggests using the 

PMCT stands for Parallel Multiscale Convolutional Temporal 

architecture. The outcomes of the experiment demonstrate that 

the suggested model has improved its prediction accuracy than 

the baseline method using two sizable datasets. Another LSTM-

based scheme, [21], has been proposed to predict the time of 

subsequent interactions as well as the user's experience of those 

interactions. According to the study, the model's performance 

can be significantly increased by accounting for the correlation 

between an action taken by a user and when it happens. 

Additionally, the prediction results can be used to examine 

online learning behaviors and dropout rates. 

The use of a DL (Deep learning) model, specifically the 

LSTM algorithm, is the commonality between the research to 

be done and earlier studies. The LSTM performs well in time 

series data prediction in earlier research. This study differs from 

others in that it uses genetic algorithms (GA) and adaptive 

gradient-based algorithms to optimize parameters and 

hyperparameters, something that was not done in earlier studies. 

II. METHODOLOGY 

We provide a framework for forecasting academic 

achievement to address the aforementioned issues by combining 

knowledge-based data with behavioral and learning data. The 

objective is to offer more accurate forecasts, particularly for 

online learning, in order to reduce student failure.  

In order to do this, we use course data from students, which 

we can access from the time they enroll in classes until they 

graduate, enabling us to observe how they learn. The 

perspective domain is also used to cluster the knowledge-based 

data and add them to the forecasting procedure. 

A. Data Pre-processing 

During the data preparation stage, the prediction-related 

features were extracted from the OULA data [8], [4]. The data 
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for OULA courses is shown in Fig. 1. Presentation codes BBB, 

DDD, and FFF were used in this study since these three courses 

have complete data up until the end of the lecture. The dataset 

is preprocessed to select features that will be used to train and 

test the model. The features that have been chosen and will be 

put to use are the module code, presentation code, student ID, 

clicks, assignment assessment, average assignment assessment, 

and final results. 

 
Fig. 1. Course information. 

 

There are two presentation codes or semester codes in the 

BBB, DDD, and FFF courses: "B" begins in February, while "J" 

begins in October. The BBB, DDD, and FFF courses will be 

divided into sixty percent of the data for instruction, twenty 

percent for verification, and twenty percent for evaluation. 

B. The LSTM's Architecture 

An ANN (Artificial Neural Network) algorithm known as 

LSTM was created to address the "enduring memory" issue. The 

shortcomings of the RNN (Recurrent Neural Networks) 

algorithm are addressed by LSTM [13]. One area where RNNs 

struggle is remembering details in lengthy data sequences. 

Because of their distinctive memory unit design, LSTMs can 

handle this problem more successfully [3]. Fig. 2 displays the 

proposed LSTM architectural model from this study. 

 

 
 

Fig. 2. The proposed LSTM architecture model. 

 

One crucial stage in the development of an LSTM model that 

greatly affects the success and performance of the model is 

hyperparameter optimization [2]. Optimizing hyperparameters 

is a crucial stage in creating robust and efficient machine-

learning models. This enables the model to achieve better 

performance, minimize overfitting risk, and optimize computer 

memory utilization, resulting in better results across various 

tasks and applications [24]. The LSTM architecture has several 

hyperparameters that affect its performance, including LSTM 

units in total (neurons), number of LSTM layers, learning rate, 

batch size, sequencing parameters, dropout rate, L2 or L1 

regularisation, activation function, optimizer, weight 

initialization, gate usage (gates), loss function, epochs, and early 

stopping [25]. The following equations describe the functions of 

a LSTM cell: 

 

Forget the Entrance: 

 

𝑓𝑡 =  𝜎 (𝑤𝑓  ∘  [ℎ𝑡−1
𝑋𝑡

] + 𝑏𝑓)             (1) 

 

A gate for input: 

 

𝐼𝑡 =  𝜎 (𝑤𝑖  ∘  [ℎ𝑡−1
𝑋𝑡

] +  𝑏𝑖)             (2) 

  

Cell State: 

 

𝐶̃𝑡 = tanh( 𝑤𝑐  . [ℎ𝑡−1 , 𝑥𝑡] +  𝑏𝑐)           (3) 

 

Update Cell State: 

 

𝐶𝑡 =  𝑓𝑡 ∗  𝐶𝑡−1 + 𝑖𝑡 ∗  𝐶̃𝑡             (4) 

 

Output Gate: 

 

𝑜𝑡 =  𝜎 (𝑊𝑜 [ℎ𝑡−1, 𝑥𝑡  ] +  𝑏𝑜  )            (5) 

 

Hidden State: 

 

ℎ𝑡 = 𝑂𝑡 ∗ tanh (𝐶𝑡)                (6) 

 

The LSTM formulas represent the mathematical operations 

that occur within an LSTM cell, which is utilized in neural 

networks to understand and model sequential data. The key 

components within these formulas include the disregard 

gate(𝑓𝑡), input gate(𝑖𝑡), condition of the cell(𝐶𝑡), update of the 

cell, output gate(𝑜𝑡), and concealed state(ℎ𝑡). The memory gate 

regulates the amount of information which is disregarded based 

on the earlier cell state. The amount of new data added to the 

input gates determines the state of the cell. The actual cell state 

at a given time is the outcome of mixing the earlier state of cells 

with information filtered through the disregard gate and the 

estimated new cell state (𝐶𝑡) filtered through the input gate. The 

gate for output ascertains the cell state's quantity that is utilized 

to create the concealed state, which is frequently output or used 

in particular sequential modeling tasks. These formulas 

illustrate how an LSTM cell processes information from one 



4 E. ISMANTO, ET AL. 

 

time step to the next within a sequence, with a specific ability to 

handle issues with vanishing gradients and preserve long-term 

retention in sequential information. 

C. Adaptive Gradient-based (AGb) Algorithms 

The AGb algorithm is an optimization method used to find the 

optimal value in mathematical optimization problems [20]. This 

algorithm's primary feature is its capacity to automatically 

modify the learning rate while it is optimizing [26]. This 

adaptive gradient-based algorithm helps the optimization 

process to better converge when dealing with complex problems 

that have large parameter spaces [11]. The weights (parameters) 

in a model can be changed using an adaptive gradient-based 

algorithm, which permits the model to learn from data and 

generate more precise predictions [27]. Several well-known 

algorithms based on adaptive gradients are Adam, Nadam, 

Adagrad, Adadelta, and Adamax [26]. In this study, five 

Adaptive Gradient-based algorithms are used to optimize the 

parameters of the LSTM architecture. The five Adaptive 

Gradient-based algorithms' formulas are as follows: 
 

Adam algorithm formulas [26]: 

 

Momentum update: 

 

𝑚𝑡 =  𝛽1 ∗  𝑚(𝑡−1) + (1 − 𝛽1) ∗  𝑔𝑡         (7) 

 

Variance momentum update: 

 

𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2 ) ∗ (𝑔𝑡)2          (8) 

 

First-moment bias correction: 

 

𝑚́𝑡 =  
𝑚𝑡

1−𝛽1
𝑡                      (9) 

 

Second-moment bias correction: 

 

𝑣𝑡 =  
𝑣𝑡

1− 𝛽2
𝑡                   (10) 

 

Parameter update: 

 

𝜃𝑡 = 𝜃𝑡−1 − 
𝛼

√𝑣̂𝑡+ 𝜖
 . 𝑚̂𝑡                (11) 

 

Nadam algorithm formulas [26]: 

 

Momentum update: 

 

𝑚𝑡 =  𝛽1 ∗  𝑚(𝑡−1) + (1 − 𝛽1) ∗  𝑔𝑡         (12) 

 

Variance momentum update: 
 

𝑣𝑡 =  𝛽2𝑣𝑡−1 + (1 − 𝛽2 ) ∗ (𝑔𝑡)2          (13) 

 

First-moment bias correction: 
 

𝑚́𝑡 =  
𝑚𝑡

1−𝛽1
𝑡                   (14) 

Second-moment bias correction: 

 

𝑣𝑡 =  
𝑣𝑡

1− 𝛽2
𝑡                   (15) 

 

Nesterov Parameter Update: 

 

𝜃𝑡 = 𝜃𝑡−1 − 
𝛼

√𝑣̂𝑡+ 𝜖
 . (𝛽1 . 𝑚̂𝑡 + (1 −  𝛽1). 𝑔𝑡)     (16) 

 

 

Adagrad algorithm formulas [19]: 

 

Gradient accumulation update: 

 

𝐺𝑡 =  𝐺𝑡−1 +  𝑔𝑡
2                 (17) 

 

Parameter update: 

 

𝜃𝑡 = 𝜃𝑡−1 − 
𝛼

√𝐺𝑡+ 𝜖
 . 𝑔𝑡              (18) 

 

Adadelta algorithm formulas [26]: 

 

The mean of squared gradients exponentially: 

 

𝑒[𝑔2]𝑡 =  𝜌 . 𝑒[𝑔2 ]𝑡−1  + (1 −  𝜌). 𝑔𝑡
2        (19) 

 

Delta parameter (update on the parameter): 

 

∆𝜃𝑡 =  − 
√𝑒[∆𝜃2]𝑡−1+ 𝜖

√𝑒[𝑔2]𝑡+ 𝜖
 . 𝑔𝑡            (20) 

 

Parameter update: 

 

𝜃𝑡 =  𝜃𝑡−1 + ∆𝜃𝑡                (21) 

 

Adamax algorithm formulas [26]: 

 

Variance momentum update: 

 

𝑣𝑡 = max(𝛽2 .  𝑣𝑡−1, |𝑔𝑡|)              (22) 

 

Parameter update: 

 

𝜃𝑡 =  𝜃𝑡−1 − 
𝛼

𝑣𝑡
 . 𝑔𝑡                (23) 

 

Adam, Nadam, Adagrad, Adadelta, and Adamax are 

optimization algorithms used in ML (Machine learning). In the 

context of these algorithms, common symbols include 𝑚𝑡 for 

the first moment of the gradient, 𝛽1and 𝛽2for adjustment factors, 

𝑔𝑡for the gradient at a given iteration, 𝑣𝑡for the second moment 

of the gradient, 𝛼 for the 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒, 𝜖 for a modest amount 

to avoid division by zero, and additional terms specific to each 

algorithm. For example, Nadam incorporates Nesterov 

acceleration, while Adagrad accumulates gradients over time. 

Adadelta utilizes exponentially moving averages, and Adamax 

calculates the second moment based on the gradient's absolute 
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value. By modifying the learning rate and monitoring gradient 

information to enhance convergence, these algorithms aid in the 

optimization of model parameters during training. 

D. Genetics Algorithms (GA) 

The GA are computational techniques inspired by natural 

selection and evolution in genetics [25]. Natural selection, 

crossover, mutation, and reproduction are evolutionary 

processes that genetic algorithms (GAs) are modeled after [28]. 

GA can handle complex search space problems, find global 

solutions, be flexible and parallel, tolerate noisy data, have a 

wide range of applications, and be capable of exploration and 

exploitation [15]. The genetic algorithm pseudocode used to 

optimize the LSTM model is shown in Table I. 
 

TABLE I  

GA-LSTM PSEUDOCODE 

Algorithm 1: Pseudocode LSTM with Genetic Algorithm 

0: START 

1: Input: 

2:          Dataset: 𝑋𝑡𝑟𝑎𝑖𝑛 , 𝑌𝑡𝑟𝑎𝑖𝑛 , 𝑋𝑡𝑒𝑠𝑡, 𝑌𝑡𝑒𝑠𝑡 

3: Initial Hyperparameters: 

𝑢𝑛𝑖𝑡𝑠, 𝑤𝑒𝑖𝑔ℎ𝑡𝑠, 𝑏𝑖𝑎𝑠, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡, 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒,  

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒, 𝑒𝑝𝑜𝑐ℎ𝑠, 𝑙𝑜𝑠𝑠, 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 

4: Optimizers:[′𝑎𝑑𝑎𝑚′, ′𝑛𝑎𝑑𝑎𝑚′, ′𝑎𝑑𝑎𝑑𝑒𝑙𝑡𝑎′, ′𝑎𝑑𝑎𝑔𝑟𝑎𝑑′, ′𝑎𝑑𝑎𝑚𝑎𝑥′] 

5:  i: Integer; fitness: Real; Population: Population;       

Best Individual: Individual; 

6: Process: 

7:          SetLength(Pop, Size); 

8:          for i := 0 to Size - 1 do 

9:    begin 

10:          Pop[i].units := Random(100) + 1; 

11:          Pop[i].dropout := Random; 

12:          Pop[i].learning_rate := Random; 

13:          Pop[i].batch_size := Random(100) + 1; 

14:          Pop[i].epochs := Random(100) + 1; 

15:  Pop[i].optimizer:= 

′𝑎𝑑𝑎𝑚′, ′𝑛𝑎𝑑𝑎𝑚′, ′𝑎𝑑𝑎𝑑𝑒𝑙𝑡𝑎′, ′𝑎𝑑𝑎𝑔𝑟𝑎𝑑′, ′𝑎𝑑𝑎𝑚𝑎𝑥′]'; 

16:  

17: Output: 

18:          Function Evaluate LSTM(Indiv: Individual): Real; 

19:          Best Individual := Select Best Individual (Population); 

20: END 

III. EXPERIMENTS 

A. Dataset 

The experiment's student data came from OULA Data, which 

is sourced from the UK's Open University. The dataset consists 

of details on 32.593 students enrolled in 22 classes, evaluation 

outcomes, and recordings of their discussions with the Virtual 

Learning Environment (VLE), summarized daily by clicking 

counts (10.655.280 entries). The VLE information makes it 

possible to examine course design from the perspective of 

learning, and the data itself can be used to assess how much of 

an impact VLE has on learning objectives. 

B. Model Evaluation 

In this study, the Genetic algorithm and the adaptive gradient-

based algorithm were utilized to optimize the LSTM model's 

parameters and hyperparameters to forecast student 

performance using OULA data. The LSTM model predicts 

whether a student will pass or fail each semester. Furthermore, 

we evaluate the effectiveness of every optimization algorithm 

on OULA data by dividing it into 10 deciles using three different 

course datasets. 

Using an 80:20 ratio, test, and training data were extracted 

from each dataset for the forecasting process. The LSTM model 

developed for predicting student performance uses 3 (three) 

input layers, 2 (two) output layers with 1 node and a sigmoid 

activation function, 1 (one) hidden layer with 16 nodes, and a 

hyperbolic tangent activation function, which is used to solve 

the function non-linear. For the activation of the input layer, use 

a value of 0, and for the standard deviation use a value of 1. The 

LSTM model is then enhanced by a dropout layer, which is set 

to 50 % in each training step to prevent overfitting. The LSTM 

model was trained using batch size 32, a learning rate of 10%, 

and epoch 50 with the back-propagation method. 

In this study, four distinct metrics were employed. The 

primary metric used to assess the prediction models' 

performance was accuracy. Given that the binary classification 

method is used by the model to predict, the accuracy can be 

described as follows [29]: 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (TP): The quantity of 

positive samples that the model accurately classifies as positive. 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (TN): The quantity of negative samples that the 

model accurately classifies as negative. 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (FP): 

The quantity of negative samples that the model mistakenly 

classifies as positive. 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 (FN): The quantity of 

positive samples that the model misclassifies as negative. The 

following formula is used to determine the accuracy [30]: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁−(𝑇𝑃+𝑇𝑁)

𝑁 (𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠)
      (24) 

 

In Equation 24, TP represents𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, TN 

represents𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒, FP represents𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒, and 

FN represents𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒. Using additional metrics, like 

F-score, recall, and preciseness, the model's efficacy was 

evaluated, which is elaborated upon below. 

The Precision is calculated using the formula [30]: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
        (25) 

 

The Recall is calculated using the formula: 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
         (26) 

 

In Equation 25, 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 represents how many positive 

samples were accurately classified, and 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 shows 

the amount of adverse samples that were incorrectly identified 

as positive. In Equation 26, 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 represents the 

number of properly identified samples with positive 

classification, and 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 represents the quantity of 

positive samples that were mistakenly labeled as negative. The 

F1 Score is calculated using the equation below [30]: 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙
           (27) 

 

In Equation 27, Precision and Recall are calculated using the 

formulas given in Equations 25 and 26. 
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IV. RESULTS AND DISCUSSION 

Algorithm models for LSTM were put to the test, and their 

performance was evaluated. Three factors are taken into account 

to determine whether a student will pass or fail the course: How 

many times the virtual learning environment has been clicked, 

the number of assessments submitted, and the average 

assessment grade. The length of each course varies, so the 

course data is divided into eleven deciles. Table II displays the 

information that was employed to assess and instruct the 

models. 
 

TABLE II 

DATA FOR TRAINING AND TESTING 

Training data Total data Testing data Total data 

BBB data 3.858 BBB data 1.521 

DDD data 2.830 DDD data 1.150 

FFF data 3.818 FFF data 1.503 

 

A.  Performance Results for the LSTM Model Using the 

Adaptive Gradient-Based Optimization 

To create a more accurate model, the LSTM model is trained 

and tested using the Adaptive Gradient-Based Optimization 

algorithm. The Adaptive Gradient-Based Optimization 

algorithm is used to optimize the model parameters to fit the 

training data by determining the minimum (or maximum) value 

of a cost or loss function. Model parameters are weights and 

biases that are adjusted in a machine learning model during 

training to reduce the cost function or loss function. The 

Adaptive Gradient-Based Optimization algorithm is a process 

that takes place during the backpropagation phase. The most 

popular Adaptive Gradient-Based Optimization algorithms are 

ADAM, NADAM, ADADELTA, ADAGRAD, and 

ADAMAX. This algorithm will be used to modify the LSTM 

model's parameters in order to achieve the best predictive model 

performance. 

Table III displays the outcomes of applying Adaptive 

Gradient-based algorithms to optimize the LSTM model 

parameters for the BBB Course data. Table III displays the 

accuracy and recall performance that were caused by the LSTM 

model. 
TABLE III 

THE LSTM MODEL’S PERFORMANCE AFTER PARAMETER OPTIMIZATION 

WITH AN ADAPTIVE GRADIENT-BASED ALGORITHM ON THE BBB COURSE 

 

Combining the LSTM Model and AGB (Adaptive Gradient-based)  

Algorithms 

Accuracy 
Models ADAM NADAM ADADELTA ADAGRAD ADAMAX 

0 0.75 0.75 0.75 0.75 0.75 

1 0.60 0.59 0.75 0.58 0.59 

2 0.69 0.65 0.78 0.69 0.60 

3 0.58 0.69 0.79 0.57 0.73 

4 0.78 0.73 0.80 0.73 0.76 

5 0.79 0.83 0.84 0.78 0.74 

6 0.87 0.87 0.85 0.79 0.87 

7 0.87 0.89 0.87 0.85 0.83 

8 0.87 0.71 0.78 0.64 0.69 

9 0.91 0.87 0.90 0.92 0.91 

10 0.91 0.91 0.91 0.92 0.91 

Average 0.78 0.77 0.82 0.75 0.76 

 
 

The accuracy and recall values of the LSTM model in the 

BBB Course significantly improved after parameter 

optimization using Five Adaptive Gradient-based algorithms: 

ADAM, NADAM, ADADELTA, ADAGRAD, and 

ADAMAX. To see how well the Five Adaptive Gradient-based 

algorithms performed on the BBB course data, the average 

accuracy and recall of each decile/model are computed. The 

LSTM model with ADADELTA optimization produced the best 

model accuracy and recall values on the BBB course data, with 

an average model accuracy value of 82%. The results of 

optimizing the LSTM model parameters for the DDD Course 

data using the AGB (Adaptive Gradient-based) algorithms are 

shown in Table IV. 
TABLE IV 

THE LSTM MODEL’S PERFORMANCE AFTER PARAMETER OPTIMIZATION 

WITH AN ADAPTIVE GRADIENT-BASED ALGORITHM ON THE DDD COURSE 

 

Combining the LSTM Model and AGB (Adaptive Gradient-based) Algorithms 

Accuracy 

Models ADAM NADAM ADADELTA ADAGRAD ADAMAX 

0 0.69 0.69 0.68 0.69 0.69 

1 0.74 0.74 0.71 0.73 0.75 

2 0.76 0.77 0.72 0.77 0.78 

3 0.77 0.78 0.76 0.80 0.79 

4 0.78 0.77 0.76 0.79 0.77 

5 0.81 0.80 0.75 0.81 0.80 

6 0.80 0.80 0.77 0.83 0.83 

7 0.81 0.80 0.80 0.83 0.81 

8 0.85 0.85 0.81 0.84 0.84 

9 0.85 0.85 0.84 0.87 0.86 

10 0.86 0.86 0.85 0.86 0.86 

Average 0.79 0.79 0.77 0.80 0.80 

 

The accuracy and recall values of the LSTM model in the 

DDD Course significantly improved after parameter 

optimization using Five Adaptive Gradient-based algorithms: 

ADAM, NADAM, ADADELTA, ADAGRAD, and 

ADAMAX. To see how well the Five AGB (Adaptive Gradient-

based) algorithms performed on the DDD course data, the 

average accuracy and recall of each decile/model are computed. 

The LSTM model with ADAGRAD and ADAMAX 

optimization produced the best model accuracy and recall 

values on the DDD course data, with an average model accuracy 

value of 80%. The results of optimizing the LSTM model 

parameters for the FFF Course data using the Adaptive 

Gradient-based algorithms are shown in Table V. Table V 

displays the accuracy and recall performance that were caused 

by the LSTM model. 

The accuracy and recall values of the LSTM model in the 

FFF Course significantly improved after parameter optimization 

using Five Adaptive Gradient-based algorithms: ADAM, 

NADAM, ADADELTA, ADAGRAD, and ADAMAX. To see 

how well the Five Adaptive Gradient-based algorithms 

performed on the FFF course data, the average accuracy and 

recall of each decile/model are computed. The LSTM model 

with ADAGRAD optimization produced the best model 

accuracy and recall values on the FFF course data, with an 

average model accuracy value of 85%. 
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TABLE V 

THE LSTM MODEL’S PERFORMANCE AFTER PARAMETER OPTIMIZATION 

WITH AN ADAPTIVE GRADIENT-BASED ALGORITHM ON THE FFF COURSE 

 

Combining the LSTM Model and AGB (Adaptive Gradient-based) Algorithms 

Accuracy 

Models ADAM NADAM ADADELTA ADAGRAD ADAMAX 

0 0.73 0.72 0.74 0.73 0.72 

1 0.76 0.75 0.76 0.75 0.76 

2 0.79 0.79 0.76 0.79 0.78 

3 0.83 0.83 0.79 0.83 0.82 

4 0.83 0.84 0.82 0.84 0.84 

5 0.85 0.85 0.83 0.86 0.86 

6 0.88 0.88 0.87 0.89 0.88 

7 0.88 0.87 0.87 0.89 0.87 

8 0.88 0.88 0.86 0.88 0.88 

9 0.91 0.90 0.90 0.91 0.91 

10 0.93 0.93 0.93 0.94 0.94 

Average 0.84 0.84 0.83 0.85 0.84 

 

A.  Performance Results for the LSTM Model Using the 

Genetic Optimizations Algorithm 

Three LSTM models, LSTM + ADADELTA, LSTM + 

ADAGRAD, and LSTM + ADAMAX, will be trained and 

tested at this point by attempting to modify the model 

hyperparameters. Hyper-parameters are the parameters that are 

set before training a model and are not learned from the data. 

They are external to the model and affect its behavior and 

performance. Hyper-parameters control various aspects of the 

learning process, such as the model's capacity, regularization, 

optimization algorithm, and convergence criteria. The selection 

of appropriate hyper-parameters is crucial as it can greatly 

impact the model's performance and generalization capabilities. 

The LSTM-ADADELTA, LSTM-ADAGRAD, and LSTM-

ADAMAX models were subjected to hyper-parameter 

optimization using the Genetic Algorithm. The results of 

optimizing the LSTM model hyper-parameters for the BBB 

Course data using the Genetic Algorithms are shown in Table 

VI. Table VI displays the accuracy and recall performance that 

were caused by the LSTM model. 
 

TABLE VI 

THE LSTM MODEL’S PERFORMANCE AFTER HYPER-PARAMETER 

OPTIMIZATION WITH GENETIC ALGORITHMS ON THE BBB COURSE 
 

Genetic Optimization Algorithm 

 Accuracy Recall 

Models LSTM + GA LSTM + GA 

 ADADELTA ADAGRAD ADAMAX ADADELTA ADAGRAD ADAMAX 

0 0.75 0.75 0.75 0.76 0.76 0.76 

1 0.57 0.73 0.75 0.57 0.74 0.76 

2 0.60 0.55 0.75 0.60 0.55 0.76 

3 0.57 0.66 0.60 0.58 0.67 0.60 

4 0.60 0.77 0.75 0.61 0.77 0.76 

5 0.74 0.83 0.75 0.74 0.83 0.76 

6 0.76 0.85 0.54 0.76 0.86 0.55 

7 0.80 0.88 0.75 0.81 0.88 0.76 

8 0.63 0.83 0.75 0.63 0.84 0.76 

9 0.85 0.87 0.75 0.85 0.87 0.76 

10 0.77 0.78 0.75 0.77 0.78 0.76 

Average 0.69 0.77 0.72 0.70 0.78 0.73 

  

Based on the results of parameter optimization using 

ADADELTA, ADAGRAD, and ADAMAX, parameter training 

and testing on BBB course data using the LSTM model, and 

hyperparameter optimization using GA, the best model was 

found in the GA + LSTM + ADAGRAD model. The accuracy 

values are highest in the 7th and 9th models or deciles, at 87% 

in the 9th model or decile and 88% in the 7th model or decile, 

respectively. The GA + LSTM + ADAGRAD model's average 

recall value is 78%, and its average accuracy value is 77%. The 

results of optimizing the LSTM model hyper-parameters for the 

DDD Course data using the Genetic Algorithms are shown in 

Table VII. Table VII displays the accuracy and recall 

performance that were caused by the LSTM model. 
 

TABLE VII 

THE LSTM MODEL’S PERFORMANCE AFTER HYPER-PARAMETER 

OPTIMIZATION WITH GENETIC ALGORITHMS ON THE DDD COURSE 

 

Genetic Optimization Algorithm 

 Accuracy Recall 

Models LSTM + GA LSTM + GA 

 ADADELTA ADAGRAD ADAMAX ADADELTA ADAGRAD ADAMAX 

0 0.70 0.71 0.68 0.70 0.71 0.69 

1 0.74 0.69 0.68 0.74 0.70 0.69 

2 0.77 0.76 0.68 0.77 0.76 0.69 

3 0.78 0.77 0.68 0.78 0.78 0.69 

4 0.79 0.79 0.68 0.80 0.79 0.69 

5 0.81 0.76 0.68 0.81 0.77 0.69 

6 0.81 0.78 0.68 0.82 0.79 0.69 

7 0.83 0.81 0.68 0.84 0.82 0.69 

8 0.84 0.84 0.68 0.84 0.84 0.69 

9 0.85 0.83 0.68 0.86 0.83 0.69 

10 0.86 0.85 0.68 0.87 0.86 0.69 

Average 0.80 0.78 0.68 0.80 0.79 0.69 

 

Based on the results of parameter optimization using 

ADADELTA, ADAGRAD, and ADAMAX, parameter training 

and testing on DDD course data using the LSTM algorithm's 

subsequent hyperparameter refinement using GA, the best 

model was found in the GA + LSTM + ADADELTA model. 

The mean accuracy value of the GA + LSTM + ADADELTA 

model is 80%, and the mean recall value is 80%. The results of 

optimizing the LSTM model hyper-parameters for the FFF 

Course data using the Genetic Algorithms are shown in Table 

VIII. Table VIII displays the accuracy and recall performance 

that were caused by the LSTM model. 
 

TABLE VIII 

THE LSTM MODEL’S PERFORMANCE AFTER HYPER-PARAMETER 

OPTIMIZATION WITH GENETIC ALGORITHMS ON THE FFF COURSE 
 

Genetic Optimization Algorithm 

 Accuracy Recall 

Models LSTM + GA LSTM + GA 

 ADADELTA ADAGRAD ADAMAX ADADELTA ADAGRAD ADAMAX 

0 0.71 0.72 0.74 0.71 0.72 0.74 

1 0.73 0.75 0.75 0.73 0.75 0.75 

2 0.80 0.79 0.74 0.80 0.79 0.74 

3 0.83 0.79 0.74 0.83 0.79 0.74 

4 0.83 0.82 0.74 0.84 0.82 0.74 

5 0.86 0.84 0.74 0.87 0.85 0,74 

6 0.88 0.86 0.74 0.88 0.86 0.74 

7 0.89 0.87 0.74 0.89 0.88 0.74 

8 0.87 0.86 0.74 0.87 0.86 0.74 

9 0.91 0.90 0.74 0.91 0.90 0.74 

10 0.93 0.92 0.74 0.94 0.92 0.74 

Average 0.84 0.83 0.74 0.84 0.83 0.74 

 

Based on the results of parameter optimization using 

ADADELTA, ADAGRAD, and ADAMAX, parameter training 

and testing on FFF course data using the LSTM model's 

subsequent hyperparameter refinement using GA, the best 

model was found in the GA + LSTM + ADADELTA model. 

The mean accuracy worth of the GA + LSTM + ADADELTA 

model is 84%, and the recall value on average is 84%. In the 

model or the 10th decile, this FFF model's highest accuracy 

result is 93%. 
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The LSTM model has been used to test BBB, DDD, and FFF 

data; the first test of the LSTM architecture parameter 

optimization only used Adaptive Gradient-based algorithms; the 

second test of the LSTM model's parameter optimization also 

included hyperparameter optimization using a genetic 

algorithm. The results of LSTM model testing on BBB data after 

parameter and hyperparameter optimization show that the GA + 

LSTM + ADAGRAD model is the best. Table IX displays the 

results of LSTM model testing using BBB data. The LSTM + 

ADAGRAD model does not undergo hyperparameter 

optimization, whereas the GA + LSTM + ADAGRAD model 

does. 
 

TABLE IX 

COMPARISON OF LSTM MODELS WITH HYPERPARAMETER OPTIMIZATION AND 

THOSE WITHOUT HYPERPARAMETER OPTIMIZATION ON BBB COURSE DATA 
 

Comparison of Genetic Algorithms and Adaptive Gradient-based Algorithms for 

LSTM Model Optimization 

 Accuracy Recall 
Models LSTM + 

ADAGRAD 

GA + LSTM + 

ADAGRAD 

LSTM + 

ADAGRAD 

GA + LSTM + 

ADAGRAD 

0 0.75 0.75 0.76 0.76 

1 0.58 0.73 0.58 0.74 

2 0.69 0.55 0.70 0.55 

3 0.57 0.66 0.58 0.67 

4 0.73 0.77 0.73 0.77 

5 0.78 0.83 0.79 0.83 

6 0.79 0.85 0.79 0.86 

7 0.85 0.88 0.85 0.88 

8 0.64 0.83 0.64 0.84 

9 0.92 0.87 0.92 0.87 

10 0.92 0.78 0.93 0.78 

Average 0.75 0.77 0.75 0.78 

 

 

In light of Table VIII. When LSTM + ADAGRAD and GA 

+ LSTM + ADAGRAD models are compared, the accuracy and 

recall results of the GA + LSTM + ADAGRAD model, whose 

hyperparameters have been optimized, significantly improve in 

Deciles 1, 3, 4, 5, 6, 7, and 8. The obtained accuracy rate was 

77% on average. The results of LSTM model testing on DDD 

data after parameter and hyperparameter optimization show that 

the GA + LSTM + ADADELTA model is the best. Table X 

displays the results of LSTM model testing using DDD data. 

The LSTM + ADADELTA model does not undergo 

hyperparameter optimization, whereas the GA + LSTM + 

ADADELTA model does. 
 

TABLE X 

COMPARISON OF LSTM MODELS WITH HYPERPARAMETER OPTIMIZATION 

AND THOSE WITHOUT HYPERPARAMETER OPTIMIZATION ON DDD COURSE 

DATA 
 

Comparison of Genetic Algorithms and Adaptive Gradient-based Algorithms for 

LSTM Model Optimization 

 Accuracy Recall 
Models LSTM + 

ADADELTA 

GA + LSTM + 

ADADELTA 

LSTM + 

ADADELTA 

GA + LSTM + 

ADADELTA 

0 0.68 0.70 0.69 0.70 

1 0.71 0.74 0.71 0.74 

2 0.72 0.77 0.73 0.77 

3 0.76 0.78 0.76 0.78 

4 0.76 0.79 0.76 0.80 

5 0.75 0.81 0.76 0.81 

6 0.77 0.81 0.78 0.82 

7 0.80 0.83 0.80 0.84 

8 0.81 0.84 0.81 0.84 

9 0.84 0.85 0.85 0.86 

10 0.85 0.86 0.86 0.87 

Average 0.77 0.80 0.77 0.80 

 

In light of Table X. When LSTM + ADADELTA and GA + 

LSTM + ADADELTA models are compared, the accuracy and 

recall results of the GA + LSTM + ADADELTA model, whose 

hyperparameters have been optimized, significantly improve. 

The obtained accuracy rate was 80% on average. The results of 

LSTM model testing on FFF data after parameter and 

hyperparameter optimization show that the GA + LSTM + 

ADADELTA model is the best. Table XI displays the results of 

LSTM model testing using FFF data. The LSTM + 

ADADELTA model does not undergo hyperparameter 

optimization, whereas the GA + LSTM + ADADELTA model 

does. 
 

TABLE XI 

COMPARISON OF LSTM MODELS WITH HYPERPARAMETER OPTIMIZATION 

AND THOSE WITHOUT HYPERPARAMETER OPTIMIZATION ON FFF COURSE DATA 
 

Comparison of Genetic Algorithms and Adaptive Gradient-based Algorithms for 

LSTM Model Optimization 

 Accuracy Recall 
Models LSTM + 

ADADELTA 

GA + LSTM + 

ADADELTA 

LSTM + 

ADADELTA 

GA + LSTM + 

ADADELTA 

0 0.74 0.71 0.74 0.71 

1 0.76 0.73 0.76 0.73 

2 0.76 0.80 0.77 0.80 

3 0.79 0.83 0.79 0.83 

4 0.82 0.83 0.83 0.84 

5 0.83 0.86 0.84 0.87 

6 0.87 0.88 0.87 0.88 

7 0.87 0.89 0.87 0.89 

8 0.86 0.87 0.87 0.87 

9 0.90 0.91 0.91 0.91 

10 0.93 0.93 0.93 0.94 

Average 0.83 0.84 0.83 0.84 

 

 

In light of Table XI. When LSTM + ADADELTA and GA 

+ LSTM + ADADELTA models are compared, the accuracy 

and recall results of the GA + LSTM + ADADELTA model, 

whose hyperparameters have been optimized, significantly 

improve in Deciles 2, 3, 4, 5, 6, 7, 8, and 9. The obtained 

accuracy rate was 84% on average. 

Using a genetic optimization algorithm, the hyperparameters 

of three LSTM models with the ADADELTA, ADAGRAD, and 

ADAMAX algorithms were improved. Based on the analysis 

and comparison of the LSTM model's performance following 

hyperparameter optimization on the BBB course data, it was 

determined that the GA + LSTM + ADAGRAD model was the 

most effective model. Based on analysis and comparison of the 

performance of the LSTM model's subsequent hyperparameter 

refinement on DDD course data, it is demonstrated that the GA 

+ LSTM + ADADELTA model is the best model. After 

hyperparameter optimization, the GA + LSTM + ADADELTA 

model also emerged as the top model for the FFF course data. 

The expected results of the GA + LSTM + ADAGRAD 

model for the BBB course with an accuracy of 88% are 

displayed in Fig. 3. The forecast's outcome of the GA + LSTM 

+ ADADELTA model for the DDD course with an accuracy of 

86% are displayed in Fig. 4. The forecast's outcome of the GA 

+ LSTM + ADADELTA model for the FFF course with an 

accuracy of 92% are displayed in Fig. 5. 
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Fig. 3. The BBB course prediction outcomes of the GA + 

LSTM + ADAGRAD model. 

 

 
 

Fig. 4. Prediction outcomes of the GA + LSTM + ADADELTA model on 

DDD course. 

 

 
Fig. 5. Prediction outcomes of the GA + LSTM + ADADELTA model on the 

FFF course. 

 

According to this study's decisions, it can be said that 

hyperparameters significantly affect how well DL models 

perform. A similar improvement in performance is brought 

about by the optimization of model parameters. After 

optimizing the hyperparameters with a GA algorithm, the 

accuracy of the LSTM model in this study saw a better 

improvement. 

V. CONCLUSION 

This study aimed to explore two hypotheses regarding the 

optimization of parameters and hyperparameters in LSTM 

models for predicting virtual learning environments (VLE). 

Firstly, the hypothesis suggested that utilizing adaptive 

gradient-based algorithms, such as ADAM, NADAM, 

ADADELTA, ADAGRAD, and ADAMAX, would lead to 

improved stability, faster convergence, and better handling of 

gradient issues like vanishing or exploding gradients in LSTM 

models. Secondly, it hypothesized that employing a genetic 

optimization algorithm for hyperparameter optimization in 

LSTM models would result in more optimal and adaptive 

configurations, considering the complexity and variability of 

data in VLEs. The results revealed that the adaptive gradient-

based algorithms, especially when applied to LSTM models 

with ADAM, NADAM, ADADELTA, ADAGRAD, and 

ADAMAX, yielded the most accurate prediction of VLEs. For 

the BBB course data, the LSTM model with ADADELTA 

attained the best accuracy of 91%, while for the DDD and FFF 

course data, the LSTM models with ADAGRAD achieved the 

best performance with average accuracies of 80% and 85%, 

respectively. Furthermore, using a genetic algorithm for 

hyperparameter optimization in LSTM models contributed 

significantly. The GA + LSTM + ADAGRAD model achieved 

the highest accuracy of 88% and 87% in the 7th and 9th models, 

respectively, for the BBB course data, with average recall and 

accuracy rates of 78% and 77%. Similar trends were observed 

in the DDD and FFF course data, where the GA + LSTM + 

ADADELTA model demonstrated the best performance with 

average accuracies of 80% and 84%, respectively, and achieved 

the highest accuracy rates of 86% and 93%, respectively. These 

results shed light on how well adaptive and genetic algorithms 

work to improve the performance of LSTM models in virtual 

learning environment prediction. Future research may need to 

test optimizing LSTM using various metaheuristic algorithms to 

see how well they perform. Consider incorporating additional 

features, like data on economic conditions and demographics. 
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