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Abstract—Falls are a common problem in many environments 

and affect people of all ages. Although some people fall to be minor 

incidents, they can have serious consequences, especially for 

vulnerable groups like the elderly and stroke survivors. This study 

aimed to develop a system for detecting falls in patients using 

sensor fusion and machine learning methods to accurately identify 

the positions of the falls. The system combines data from 

accelerometers and gyroscopes using the Kalman filter to 

categorize falls into four types: supine, prone, left, and right. The 

system uses the k-Nearest Neighbors (k-NN) algorithm for 

threshold fall motion detection to reduce false detections. A fall 

detection triggers the system to send the position data via 

LoRaWAN communication, making the data accessible through 

Node-RED and Telegram. The system performance was evaluated 

through several tests: MPU6050 sensor measurement to calibrate 

and respond to the Euler accelerometer and gyroscope sensor, 

kalman filter measurement, threshold fall detection with the k-NN 

algorithm measurement, and performance LoRaWAN 

communication. The results showed that calibrating the MPU6050 

sensor effectively minimized sensor drift and noise. The 

implementation of the kalman filter successfully reduced noise in 

the sensor readings, the k-NN algorithm provided optimal system 

values and performance, and data transmission via LoRaWAN to 

Node Red and Telegram was effective. 

 

Keywords—WSN; Fall Incident; Kalman Filter; k-NN; 
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I. INTRODUCTION 

HE rapid advancement of  technology  in  the  field of 

wireless  sensor   networks  (WSNs)   has   significantly 

enhanced health monitoring systems, particularly for fall 

detection among the elderly. WSNs consist of numerous low- 

cost, low-power sensor nodes that communicate wirelessly to 

monitor various health parameters, making them ideal for 

applications in elder care. These networks facilitate real-time 

data collection and analysis, which is crucial for timely 

intervention in health-related emergencies, such as falls[1]-[7]. 

One of the primary advantages of WSNs in health monitoring is 

their ability to provide continuous surveillance without the need 

for invasive procedures. For instance, wireless body area 
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networks (WBANs) utilize small, wearable sensors to monitor 

physiological parameters such as heart rate, movement, and 

body temperatur [8]-[10]. These sensors can detect anomalies in 

a person's movement patterns, which is particularly useful for 

fall detection. The integration of advanced algorithms allows 

these systems to differentiate between normal activities and 

potential falls, thereby alerting caregivers or medical personnel 

when necessary [11], [12]. Moreover, the deployment of WSNs 

in health monitoring systems reduces the complexity and cost 

associated with traditional wired systems. The wireless nature 

of these networks eliminates the need for extensive cabling, 

which not only simplifies installation but also minimizes 

maintenance costs [13]. This is particularly beneficial in elder 

care facilities, where mobility and ease of access are paramount. 

The ability to monitor patients remotely also enhances the 

quality of care, as healthcare providers can receive real -time 

updates and respond promptly to any critical changes in a 

patient's condition[14]. The advancements in micro-

manufacturing and wireless communication technologies have 

enabled the development of sophisticated sensor nodes that can 

operate in various environments, including those that are hostile 

or inaccessible to humans [15]. This capability is essential for 

monitoring the elderly, who may live independently and require 

constant surveillance to ensure their safety. Furthermore, the 

energy-efficient design of these sensor networks prolongs their 

operational life, allowing for sustained monitoring without 

frequent battery replacements procedures. For instance, wireless 

body area networks (WBANs) utilize small, wearable   sensors   

to   monitor. 

This research purpose to integration of wireless sensor 

networks into health monitoring systems represents a significant 

leap forward in elder care. These technologies not only enhance 

the ability to detect falls and other health emergencies but also 

improve the overall quality of life for elderly individuals by 

providing them with a sense of security and independence. As 

technology continues to evolve, the potential applications of 

WSNs in health monitoring will likely expand, offering even 

more innovative solutions for elder care. 
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II. LITERATURE REVIEW 

This section discusses several research topics, such as 

hardware development, software development and 

communication, increasing accuracy, and determining device 

positions.  

In recent years, the integration of advanced technologies for 

fall detection and monitoring of the elderly has gained 

significant attention. This literature review synthesizes various 

research studies focusing on hardware platforms, software 

development, machine learning algorithms, communication 

technologies, and the importance of accurate device positioning 

in enhancing fall detection systems.  

Hardware development such as Arduino, Raspberry Pi, and 

ESP devices have emerged as popular platforms for developing 

fall detection systems. For instance, Raspberry Pi has been 

utilized in various applications due to its processing capabilities 

and flexibility. demonstrated that multithreading can 

significantly enhance detection performance on Raspberry Pi, 

achieving improved accuracy in monitoring applications [16]. 

Furthermore, developed an embedded system for human 

detection using Raspberry Pi, which integrates camera and 

sensor technologies to monitor movements effectively [17]. The 

versatility of these platforms allows for the integration of 

multiple sensors and communication modules, making them 

suitable for real-time monitoring of elderly individuals. 

Software frameworks such as Node-RED and MQTT have 

been instrumental in developing efficient monitoring systems. 

proposed a cane-cased transmitter node that utilizes MQTT to 

send data regarding the elderly's position and health status, 

demonstrating the effectiveness of this protocol in real-time 

applications [18], [19]. Additionally, the integration of Node-

RED allows for the visual programming of IoT applications, 

facilitating the development of user-friendly interfaces for 

monitoring systems. The combination of these software tools 

enhances the capability to process and visualize data, which is 

crucial for timely interventions in case of falls. 

Machine learning techniques play a pivotal role in improving 

the accuracy of fall detection systems[20]-[24]. Algorithms 

such as k-nearest neighbors (KNN), random forests, and support 

vector machines (SVM) have been explored for their 

effectiveness in classifying fall events. For example, KNN has 

been successfully applied in various domains, including health 

monitoring, to classify events based on sensor data [25] The use 

of SVM in conjunction with Raspberry Pi has shown promising 

results in optimizing detection performance, as highlighted, 

These algorithms can be trained on diverse datasets to enhance 

their predictive accuracy, making them suitable for real-time fall 

detection. 

Communication Technologies Low-power wide-area 

network (LPWAN) technologies such as LoRa[26]-[30], 

BLE[31], and Zigbee are critical for ensuring reliable 

communication in fall detection systems. emphasized the 

importance of LoRa technology in monitoring the health and 

residence conditions of elderly individuals, particularly in 

remote areas where traditional mobile networks may be 

inadequate [28] The ability of LoRa to transmit data over long 

distances with low power consumption makes it an ideal choice 

for continuous monitoring applications. Moreover, the 

integration of MQTT with LoRa enhances the system's 

responsiveness to fall events, allowing for immediate alerts to 

caregivers. 

Accurate device positioning is essential for improving the 

effectiveness of fall detection systems. The placement of 

sensors and devices can significantly influence the system's 

ability to detect falls accurately. Research indicates that 

optimizing sensor placement and utilizing multiple sensors can 

enhance detection rates and reduce false positives [32]. 

Additionally, the use of advanced algorithms for data fusion 

from multiple sensors can further improve the accuracy of fall 

detection systems, ensuring that elderly individuals receive 

timely assistance when needed. 

In conclusion, the integration of various hardware platforms, 

software development frameworks, machine learning 

algorithms, and communication technologies is crucial for 

advancing fall detection systems for the elderly. The ongoing 

research in these areas promises to enhance the safety and well-

being of elderly individuals, particularly in smart city 

environments where technology can play a vital role in 

monitoring and care. 

III. MATERIALS AND METHODS 

This study focused on developing a Smart Wearable 

Approach Using Kalman Filter and k-NN techniques with 

LoRAWAN, Node Red, and Telegram Integration. As shown in 

Fig. 1. 

 

Fig 1.  System Architecture Design. 

A. Design Hardware and Materials 

The mechanical design involves creating a casing and 

optimizing the layout of the electronic boards. This design aims 

to enhance the overall esthetics by crafting a protective case and 

efficiently arranging the electronic boards. The resulting 

mechanical design is expected to provide both structural 

integrity for the components and an organized configuration for 

enhanced electronic performance, as shown in Fig. 2. 
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Fig 2.  Design Hardware and Materials 

The materials used in the Fig. 2 as follows:  

1. Arduino Uno R4 Minima Microcontroller 

2. GPS Neo 6M Module Sensor  

3. Shield LoRa Module  

4. MPU6050 Sensor Module 

5. Passive Buzzer Module 

6. Antenna GPS  

7. Antenna LoRa 

8. Battery 5 V DC. 

B. Orientation Estimation Computing Alogarithm 

The design of oreientation estimation to measureing 

position of object from data from the MPU6050 sensor, 

including the accelerometer and gyroscope data, involved 

several steps: reading the accelerometer and gyroscope data and 

applying the Kalman filter method, as shown in Fig. 3. 

 

 

Fig 3.  Design Method Kalman Filter. 

Fig 3. illustrates the process of determining orientation 

angles (pitch and roll) using an MPU6050 sensor. The 

process begins with the MPU6050, which integrates a 3-axis 

gyroscope and a 3-axis accelerometer. The gyroscope 

measures the rotational speed around three axes in degrees 

per second, and this data is then calibrated to correct any 

biases. Simultaneously, the accelerometer measures 

acceleration along the three axes in units of gravitational 

force (G), and this data is also calibrated for accuracy. After 

calibration, the gyroscope data is used to calculate the Euler 

angles: roll, pitch, and yaw. Concurrently, the accelerometer 

provides direct estimates of the roll and pitch angles. To 

enhance accuracy, the system estimates the noise in the 

sensor data. The core of the process involves the Kalman 

Filter, which combines the gyroscope and accelerometer data. 

The filter uses the predicted orientation from the gyroscope 

and the actual measured orientation from the accelerometer 

to minimize noise and errors. This filtering process ensures 

that the final calculated angles are both accurate and stable. 

Finally, the output of the Kalman Filter provides the refined 

orientation angles: pitch and roll, which are crucial for 

orientation estimation. 

C. Embedded K-Nearest Neighbors (K-NN) on 

Microcontroller  

  Designing of K-Nearest Neighbors (K-NN) machine 

learning algorithm involves a series of steps to comprehend and 

implement this method in the context of data analysis. The steps 

include data selection, preprocessing, training data, and 

evaluation. as shown in Fig. 4.  

 

 

Fig 4.  Design Processing K-NN. 

Fig. 4 illustrates the process of transforming raw data into 

valuable knowledge through a series of structured steps. It 

begins with Data Selection, where relevant data is identified and 

chosen from various sources. This selected data becomes the 

Target Data. The next phase is Preprocessing, where the target 

data is cleaned and organized to remove any inconsistencies or 

errors, resulting in Preprocessed Data. Following this is the 

Transformation step, where the preprocessed data is 

transformed or normalized into a format suitable for analysis, 

producing Transformed Data. The transformed data is then 

subjected to Data Mining, where advanced techniques are 

applied to extract patterns and insights, yielding Patterns. 

Finally, in the Evaluation stage, these patterns are assessed to 

determine their usefulness, leading to the creation of Knowledge 

that can be used for decision-making and further application. 

This process is essential in data-driven environments for 

extracting meaningful insights from raw data. 

D. LoRaWAN Parameter 

For the design of LoRa WAN communication, parameter 

values are determined based on the literature. The steps 

involved in designing LoRa WAN communication include 
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designing LoRa parameters and designing WAN parameters. In 

communication design, the communication variables are set up 

to transmit payload data to the LoRa WAN Gateway. Therefore, 

the node containing sensors sets the values of the variables to be 

used in the following Table I. 

TABLE I.   

SETUP PARAMETER LORA 

Parameter Value 

Frequency 922.2 MHz 

Spreading Factor 12 

Bandwidth 12500 Hz 

Coding Rate 4/5 

Sync. Word 0x34 

Preamble Length 8 

 

The parameters for transmitting data using LoRa WAN 

communication play a vital role in determining the transmission 

performance and efficiency. In this scenario, the chosen 

frequency is 922.2 MHz, which is the operational frequency of 

LoRa WAN networks. A spreading factor of 12 indicates the 

level of spectrum spreading used by the LoRa module, which 

affects the transmission range and sensitivity. A bandwidth of 

12500 Hz indicates the width of the band used for data 

transmission, which affects the data transfer rate. In addition, a 

coding rate of 4/5 represents the ratio between the data sent and 

the total number of sent data, which indicates the level of 

redundancy during transmission. The Sync Word with a value 

of 0x34 is the pattern used for synchronization between the 

transmitter and receiver to ensure accurate data reception. A 

preamble length of 8 indicates the initial signal length used for 

preparation and synchronization. The combination of these 

parameters is essential to achieve a balance between 

transmission range, data transfer rate, and power efficiency 

when delivering data using LoRa WAN technology. With the 

appropriate configuration, the system can provide optimal 

performance according to the application requirements and 

environmental conditions. The WAN configuration is 

implemented with the aim of establishing an internet connection 

for the backend/server application. This step is critical for 

ensuring Internet connectivity in the LoRa WAN 

communication system. The WAN setup is designed to facilitate 

seamless integration with the backend/server application, 

thereby enabling data exchange and communication over the 

internet. This configuration is essential for achieving the desired 

performance and aligning with specific application 

requirements. 

E. Node Red and Telegram Interface 

The software design phase includes planning for the creation 

of Node Red flows and the development of a bot, as well as 

setting up a Telegram channel. The design and creation of a 

Node-Red flow are performed to monitor GPS readings and 

patient position measurements. The following is the display of 

the created Node-Red flow, as shown in Fig. 5. 

 

 

Fig 5.  Design Flow Software. 

IV. RESULTS AND DISCUSSION 

A smart wearable prototype using Kalman Filter and k-NN 

with LoRaWAN, Node-RED, and Telegram integration was 

designed and developed to measure the orientation and GPS 

location of a patient. The development process for the 

MPU6050 sensor involves several critical stages to ensure 

optimal performance. Initially, the sensor is tested to measure 

its accuracy in providing Euler angles. This process involves 

monitoring the sensor's ability to deliver pitch, roll, and yaw 

values corresponding to the orientation of the object or device. 

Subsequently, calibration testing is conducted to correct any 

inaccuracies that may arise during measurements. The 

calibration process involves calculating offsets that are then 

applied to the sensor data to obtain more accurate angle 

readings, as shown in Fig. 6. 

 

 

Fig 6.  Position calibration device 

The scenario involves applying a Kalman filter to the sensor 

data. This evaluates the Kalman filter's ability to suppress noise 

and disturbances in the sensor data, ultimately producing stable 

and accurate estimate orientation. 

 

1. MPU6050 Measurement  

The experiment sensor was conducted on the MPU6050 

sensor with a focus on four aspects: calibration gyroscope, and 

accelerometer.  

In quiet conditions, during the engineering process, the 

expectation is that the sensor provides a stable and consistent 

output close to zero. However, in practice, the sensor output 

may not always precisely approach zero under idle conditions. 
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Various factors, such as offset and drift, can cause deviations 

from the expected values. Therefore, the calibration process is 

crucial for ensuring that the sensor delivers outputs in line with 

actual conditions. Calibration values are established when the 

device is first powered on, and the device must remain 

stationary for the first 2 s. During this period, the program 

records sensor values that serve as references for forming 

calibration data. This testing compares data from the sensor 

without calibration with those that have undergone calibration. 

The test results revealed significant differences between the two 

datasets, with the calibrated data exhibiting better stability. This 

confirms that the calibration process successfully corrected the 

offset, thereby enhancing the sensor accuracy for subsequent 

data processing. This is evident in the following Fig.7 

Fig 7.  Accelerometer without calibration 

Displaying the output of the accelerometer sensor on three 

axes (X, Y, and Z) before undergoing the calibration process. In 

this graph, it is evident that the Z-axis line from the 

accelerometer data is far from the value 0. The absence of 

proximity to 0 in this line indicates an offset or deviation that 

must be addressed. 

 

 

Fig 8.  Accelerometer calibration 

Fig. 8 illustrates the output of the calibrated accelerometer 

sensor. Note that after calibration, the lines of the accelerometer 

data on all three axes were closer to a value of 0. This outcome 

indicates that the calibration process successfully corrected the 

offset or deviation in the previous accelerometer data. 

 

 

Fig 9.  Gyroscope without calibration 

Fig.9 Displays the output of the gyroscope sensor on three 

axes (X, Y, and Z) before calibration. In this graph, all curves 

are far from 0, indicating the presence of offsets or deviations 

that may affect the accuracy of the sensor data. 

 

 

Fig 10.  Gyroscope with calibration 

Fig. 10 shows the output results from the gyroscope sensor 

after the calibration process. Post-calibration, it is noticeable 

that the gyroscope data curves on each axis approached the 

value of 0 significantly. This change indicates the successful 

calibration of the gyroscope sensor.  

 

2. Kalman filter measurements 

Kalman filter testing examines the sensor’s ability to 

combine data from the accelerometer and gyroscope to produce 

more accurate orientation information. 

A. Noise reduction by the Kalman filter 

Noise reduction testing was conducted at the roll and pitch 

angles when the device was stationary and in motion. The main 

objective of this testing was to evaluate the effectiveness of the 

Kalman Filter in reducing noise or fluctuations that may occur 

when the device is either stationary or in motion. During the 

testing phase, the device is worn by the user, who is then 

instructed to sit still for 2 minutes, followed by standing still for 

another 2 min. 

Fig 11.  Angle Pitch Before and After Noise Reduction 

Fig 12.  Angle Roll Before and After Noise Reduction 
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Fig.11 and 12 show the roll and pitch-angle graphs before and 

after the Noise Reduction process. In the time range of 0-2 

minutes, it indicates the sitting position, while in the time range 

of 2-4 minutes, it indicates the standing position. It is 

noteworthy that the very high fluctuations that occur during 

position changes are effectively mitigated by the 

implementation of the Kalman Filter. If left unmitigated, these 

fluctuations would compromise the accuracy of the 

classification process. Therefore, the application of noise 

reduction techniques, such as the Kalman filter, is crucial to 

ensure the accuracy and reliability of sensor data. 

3. KNN Classification Algorithm 

Testing the KNN classification algorithm was conducted to 

assess the algorithm's capability in classifying user positions. 

Testing all k-NN parameters based on the results obtained from 

the parameter testing above revealed the following data: the 

optimal value for the k parameter is 3, the optimal number of 

data is 300, and the weighting method used is without 

weighting. 

TABLE II.   

TABEL CONFUSION MATRIX 

   

Confusion Matrix 

Actual \ 

Predicti

on 

Non 
Fall 

Semi 
Fall 

Fallin 
Right 

Falling 
Left 

Falling 
Supine 

Falling 
Prone 

Non_ 
Fall 

998 2 0 0 0 0 

Semi_ 

Fall 
0 1000 0 0 0 0 

Falling_ 
Right 

0 0 1000 0 0 0 

Falling_ 

Left 
0 0 0 1000 0 0 

Falling_ 
Supine 

33 0 0 0 967 0 

Falling_ 

Prone 
0 606 0 0 0 394 

 

Actual=Prediction 5358 

Count Data 6000 

Accuray 89.30% 

 

Table II the confusion matrix provided offers a detailed 

evaluation of a classification model's performance in predicting 

various types of fall and non-fall events. The matrix consists of 

rows representing the actual events and columns representing 

the predicted events, including categories such as "Non-Fall," 

"Semi-Fall," "Falling Right," "Falling Left," "Falling Supine," 

and "Falling Prone." The green cells along the diagonal indicate 

correct predictions made by the model, such as 998 Non-Fall 

events accurately predicted as Non-Fall, 1000 Semi-Fall events 

correctly identified as Semi-Fall, and so on. However, the red 

cells highlight areas where the model misclassified events, such 

as predicting 33 Falling Supine events as Non-Fall and 606 

Falling Prone events also as Non-Fall. Overall, the model 

correctly predicted 5358 out of 6000 events, resulting in an 

accuracy of 89.30%. While this indicates a generally strong 

performance, the misclassifications, particularly in the "Falling 

Supine" and "Falling Prone" categories, suggest areas where the 

model could be improved for better accuracy. 

4. LoRaWAN Experiment  

In communication testing, the aim is to evaluate 

predetermined settings of the device designed to assess LoRa 

communication performance. Communication testing is divided 

into several stages: frequency testing, RSSI value testing, and air 

testing. 

A. Frequency Device Measurement  

In frequency testing, it was determined that the device 

configuration aligned with the programed settings, transmitting 

LoRa signals at a frequency of 922.2 MHz, as confirmed by 

measurements conducted using a spectrum analyzer. as shown 

in the Fig.13 below. 

 

 

Fig 13.  Testing Frequency using Spectrum Analyzer 

B.  RSSI Measurement 

Measurement of RSSI (Received Signal Strength 

Indication) values against elevation is conducted with the aim 

of understanding how the received signal strength may change 

with variations in the elevation angle from the signal source or 

transmitting device. 

 

Fig 14.  Graphic RSSI Data 

From Fig.14 An analysis of the effect of altitude on LoRa 

RSSI values revealed changes in RSSI values, indicating that 

changes in node altitude significantly affect received signal 

quality. Increasing altitude tends to increase RSSI values 

because physical obstacles, such as buildings or terrain surfaces, 

can block or dampen the signal decrease. During testing, the 
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RSSI values stabilized around 115 dBm. This phenomenon 

occurs because the lack of obstacles allows LoRa signals to 

reach the antenna more effectively and with minimal 

attenuation. However, it should be noted that the impact of 

altitude is not always linear, and other factors, such as signal 

propagation and interference, can still affect RSSI variability. 

Therefore, when designing or optimizing LoRa networks, 

careful field evaluation and testing are necessary to thoroughly 

understand how altitude can be optimized to achieve optimal 

communication performance. Strategic implementations, such 

as repeater and gateway placements, should also be considered 

to ensure maximum coverage and improved signal quality under 

various altitude conditions. 

 

5.    User Interface Node Red and Telegram 

User Interface display for the Fall Detection Movement 

monitoring system using a website. This interface provides real-

time tracking and alerts for any detected fall movements. Users 

can easily access and interpret the data, facilitating efficient 

monitoring of patient safety and well being. as shown in the 

fig.15 

 

 

Fig 15.  User Interface 

The Telegram bot is used for monitoring and informing 

physicians and nurses and the patient’s family when the 

measurement parameters exceed or fall below predefined 

threshold values. This bot system consists of a single channel, 

namely the “Monitoring of Air Quality, Vital Signs, and Patient 

Movement” channel. The creation of a Telegram bot involves 

using the bot creation service BotFather provided by Telegram. 

To create a new bot, the command’/newbot’ is sent to BotFather, 

followed by entering the desired bot name and creating a 

username for the bot ending with the word ‘bot’ to obtain a 

token. The token generated by BotFather is as follows. as shown 

in the Fig.16  

 

Fig 16.  Telegram interface 

V. CONCLUSION 

This study explores the development of a patient movement 

detection system using an optimized Kalman filter method to 

reduce false detections, supplemented by a machine learning 

approach using the k-nearest neighbor (k-NN) algorithm to 

determine patient positions and orientations. Data 

communication uses LoRaWAN technology, providing an 

efficient framework. System testing included MPU6050 sensor 

calibration, Euler accelerometer and gyroscope testing, and 

patient fall position determination using MPU6050 IMU sensor 

fusion and Kalman filter techniques. The k-NN testing resulted 

in an accuracy of 89.30% with the optimal parameters of k = 3 

and no weighting method. LoRaWAN communication 

parameter testing revealed that a frequency of 922.2 MHz, 

Spreading Factor 7, and bandwidth yielded the best results with 

an RSSI stabilization of approximately 115 dBm and ToA 

around 1-2s. Overall, the integration of Kalman filtering, 

machine learning, and LoRaWAN communication provides a 

solid foundation for a reliable patient movement detection 

system with significant potential to enhance monitoring and 

response to critical medical events. 
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