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Wireless Sensor Networks for fall incident
detection: a smart wearable approach using

Kalman Filter and k-NN with LoRa WAN,
Node Red, and Telegram integration
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Abstract—Falls are a common problem in many environments
and affect people of all ages. Although some people fall to be minor
incidents, they can have serious consequences, especially for
vulnerable groups like the elderly and stroke survivors. This study
aimed to develop a system for detecting falls in patients using
sensor fusion and machine learning methods to accurately identify
the positions of the falls. The system combines data from
accelerometers and gyroscopes using the Kalman filter to
categorize falls into four types: supine, prone, left, and right. The
system uses the k-Nearest Neighbors (k-NN) algorithm for
threshold fall motion detection to reduce false detections. A fall
detection triggers the system to send the position data via
LoRaWAN communication, making the data accessible through
Node-RED and Telegram. The system performance was evaluated
through several tests: MPU6050 sensor measurement to calibrate
and respond to the Euler accelerometer and gyroscope sensor,
kalman filter measurement, threshold fall detection with the k-NN
algorithm  measurement, and performance LoRaWAN
communication. The results showed that calibrating the MPU6050
sensor effectively minimized sensor drift and noise. The
implementation of the kalman filter successfully reduced noise in
the sensor readings, the k-NN algorithm provided optimal system
values and performance, and data transmission via LoORaWAN to
Node Red and Telegram was effective.

Keywords—WSN; Fall Incident; Kalman Filter;
LoRAWAN; IMU sensor; Node Red; Telegram
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I. INTRODUCTION

HE rapid advancement of technology in the field of

wireless sensor networks (WSNs) has significantly
enhanced health monitoring systems, particularly for fall
detection among the elderly. WSNs consist of numerous low-
cost, low-power sensor nodes that communicate wirelessly to
monitor various health parameters, making them ideal for
applications in elder care. These networks facilitate real-time
data collection and analysis, which is crucial for timely
intervention in health-related emergencies, such as falls[1]-[7].
One of the primary advantages of WSNs in health monitoring is
their ability to provide continuous surveillance without the need
for invasive procedures. For instance, wireless body area
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networks (WBANS) utilize small, wearable sensors to monitor
physiological parameters such as heart rate, movement, and
body temperatur [8]-[10]. These sensors can detect anomalies in
a person's movement patterns, which is particularly useful for
fall detection. The integration of advanced algorithms allows
these systems to differentiate between normal activities and
potential falls, thereby alerting caregivers or medical personnel
when necessary [11], [12]. Moreover, the deployment of WSNs
in health monitoring systems reduces the complexity and cost
associated with traditional wired systems. The wireless nature
of these networks eliminates the need for extensive cabling,
which not only simplifies installation but also minimizes
maintenance costs [13]. This is particularly beneficial in elder
care facilities, where mobility and ease of access are paramount.
The ability to monitor patients remotely also enhances the
quality of care, as healthcare providers can receive real -time
updates and respond promptly to any critical changes in a
patient's condition[14]. The advancements in micro-
manufacturing and wireless communication technologies have
enabled the development of sophisticated sensor nodes that can
operate in various environments, including those that are hostile
or inaccessible to humans [15]. This capability is essential for
monitoring the elderly, who may live independently and require
constant surveillance to ensure their safety. Furthermore, the
energy-efficient design of these sensor networks prolongs their
operational life, allowing for sustained monitoring without
frequent battery replacements procedures. For instance, wireless
body area networks (WBANS) utilize small, wearable sensors
to monitor.

This research purpose to integration of wireless sensor
networks into health monitoring systems represents a significant
leap forward in elder care. These technologies not only enhance
the ability to detect falls and other health emergencies but also
improve the overall quality of life for elderly individuals by
providing them with a sense of security and independence. As
technology continues to evolve, the potential applications of
WSNs in health monitoring will likely expand, offering even
more innovative solutions for elder care.
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II. LITERATURE REVIEW

This section discusses several research topics, such as
hardware  development, software  development and
communication, increasing accuracy, and determining device
positions.

In recent years, the integration of advanced technologies for
fall detection and monitoring of the elderly has gained
significant attention. This literature review synthesizes various
research studies focusing on hardware platforms, software
development, machine learning algorithms, communication
technologies, and the importance of accurate device positioning
in enhancing fall detection systems.

Hardware development such as Arduino, Raspberry Pi, and
ESP devices have emerged as popular platforms for developing
fall detection systems. For instance, Raspberry Pi has been
utilized in various applications due to its processing capabilities
and flexibility. demonstrated that multithreading can
significantly enhance detection performance on Raspberry Pi,
achieving improved accuracy in monitoring applications [16].
Furthermore, developed an embedded system for human
detection using Raspberry Pi, which integrates camera and
sensor technologies to monitor movements effectively [17]. The
versatility of these platforms allows for the integration of
multiple sensors and communication modules, making them
suitable for real-time monitoring of elderly individuals.

Software frameworks such as Node-RED and MQTT have
been instrumental in developing efficient monitoring systems.
proposed a cane-cased transmitter node that utilizes MQTT to
send data regarding the elderly's position and health status,
demonstrating the effectiveness of this protocol in real-time
applications [18], [19]. Additionally, the integration of Node-
RED allows for the visual programming of IoT applications,
facilitating the development of user-friendly interfaces for
monitoring systems. The combination of these software tools
enhances the capability to process and visualize data, which is
crucial for timely interventions in case of falls.

Machine learning techniques play a pivotal role in improving
the accuracy of fall detection systems[20]-[24]. Algorithms
such as k-nearest neighbors (KNN), random forests, and support
vector machines (SVM) have been explored for their
effectiveness in classifying fall events. For example, KNN has
been successfully applied in various domains, including health
monitoring, to classify events based on sensor data [25] The use
of SVM in conjunction with Raspberry Pi has shown promising
results in optimizing detection performance, as highlighted,
These algorithms can be trained on diverse datasets to enhance
their predictive accuracy, making them suitable for real-time fall
detection.

Communication  Technologies Low-power wide-area
network (LPWAN) technologies such as LoRa[26]-[30],
BLE[31], and Zigbee are critical for ensuring reliable
communication in fall detection systems. emphasized the
importance of LoRa technology in monitoring the health and
residence conditions of elderly individuals, particularly in
remote areas where traditional mobile networks may be
inadequate [28] The ability of LoRa to transmit data over long
distances with low power consumption makes it an ideal choice
for continuous monitoring applications. Moreover, the
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integration of MQTT with LoRa enhances the system's
responsiveness to fall events, allowing for immediate alerts to
caregivers.

Accurate device positioning is essential for improving the
effectiveness of fall detection systems. The placement of
sensors and devices can significantly influence the system's
ability to detect falls accurately. Research indicates that
optimizing sensor placement and utilizing multiple sensors can
enhance detection rates and reduce false positives [32].
Additionally, the use of advanced algorithms for data fusion
from multiple sensors can further improve the accuracy of fall
detection systems, ensuring that elderly individuals receive
timely assistance when needed.

In conclusion, the integration of various hardware platforms,
software  development frameworks, machine learning
algorithms, and communication technologies is crucial for
advancing fall detection systems for the elderly. The ongoing
research in these areas promises to enhance the safety and well-
being of elderly individuals, particularly in smart -city
environments where technology can play a vital role in
monitoring and care.

III. MATERIALS AND METHODS

This study focused on developing a Smart Wearable
Approach Using Kalman Filter and k-NN techniques with
LoRAWAN, Node Red, and Telegram Integration. As shown in
Fig. 1.
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Fig 1. System Architecture Design.

A. Design Hardware and Materials

The mechanical design involves creating a casing and
optimizing the layout of the electronic boards. This design aims
to enhance the overall esthetics by crafting a protective case and
efficiently arranging the electronic boards. The resulting
mechanical design is expected to provide both structural
integrity for the components and an organized configuration for
enhanced electronic performance, as shown in Fig. 2.
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Fig 2. Design Hardware and Materials

The materials used in the Fig. 2 as follows:

. Arduino Uno R4 Minima Microcontroller
. GPS Neo 6M Module Sensor

. Shield LoRa Module

. MPU6050 Sensor Module

. Passive Buzzer Module

. Antenna GPS

. Antenna LoRa

. Battery 5 V DC.
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B. Orientation Estimation Computing Alogarithm

The design of oreientation estimation to measureing
position of object from data from the MPU6050 sensor,
including the accelerometer and gyroscope data, involved
several steps: reading the accelerometer and gyroscope data and
applying the Kalman filter method, as shown in Fig. 3.
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Fig 3. Design Method Kalman Filter.

Fig 3. illustrates the process of determining orientation
angles (pitch and roll) using an MPU6050 sensor. The
process begins with the MPU6050, which integrates a 3-axis
gyroscope and a 3-axis accelerometer. The gyroscope
measures the rotational speed around three axes in degrees
per second, and this data is then calibrated to correct any
biases. Simultaneously, the accelerometer measures
acceleration along the three axes in units of gravitational
force (QG), and this data is also calibrated for accuracy. After
calibration, the gyroscope data is used to calculate the Euler
angles: roll, pitch, and yaw. Concurrently, the accelerometer
provides direct estimates of the roll and pitch angles. To
enhance accuracy, the system estimates the noise in the
sensor data. The core of the process involves the Kalman
Filter, which combines the gyroscope and accelerometer data.
The filter uses the predicted orientation from the gyroscope
and the actual measured orientation from the accelerometer
to minimize noise and errors. This filtering process ensures
that the final calculated angles are both accurate and stable.
Finally, the output of the Kalman Filter provides the refined
orientation angles: pitch and roll, which are crucial for
orientation estimation.

C. Embedded K-Nearest Neighbors (K-NN) on
Microcontroller

Designing of K-Nearest Neighbors (K-NN) machine
learning algorithm involves a series of steps to comprehend and
implement this method in the context of data analysis. The steps
include data selection, preprocessing, training data, and
evaluation. as shown in Fig. 4.
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Fig 4. Design Processing K-NN.

Fig. 4 illustrates the process of transforming raw data into
valuable knowledge through a series of structured steps. It
begins with Data Selection, where relevant data is identified and
chosen from various sources. This selected data becomes the
Target Data. The next phase is Preprocessing, where the target
data is cleaned and organized to remove any inconsistencies or
errors, resulting in Preprocessed Data. Following this is the
Transformation step, where the preprocessed data is
transformed or normalized into a format suitable for analysis,
producing Transformed Data. The transformed data is then
subjected to Data Mining, where advanced techniques are
applied to extract patterns and insights, yielding Patterns.
Finally, in the Evaluation stage, these patterns are assessed to
determine their usefulness, leading to the creation of Knowledge
that can be used for decision-making and further application.
This process is essential in data-driven environments for
extracting meaningful insights from raw data.

D. LoRaWAN Parameter

For the design of LoRa WAN communication, parameter
values are determined based on the literature. The steps
involved in designing LoRa WAN communication include
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designing LoRa parameters and designing WAN parameters. In
communication design, the communication variables are set up
to transmit payload data to the LoRa WAN Gateway. Therefore,
the node containing sensors sets the values of the variables to be
used in the following Table I.

TABLE L
SETUP PARAMETER LORA
Parameter Value
Frequency 922.2 MHz
Spreading Factor 12
Bandwidth 12500 Hz
Coding Rate 4/5
Sync. Word 0x34
Preamble Length 8

The parameters for transmitting data using LoRa WAN
communication play a vital role in determining the transmission
performance and efficiency. In this scenario, the chosen
frequency is 922.2 MHz, which is the operational frequency of
LoRa WAN networks. A spreading factor of 12 indicates the
level of spectrum spreading used by the LoRa module, which
affects the transmission range and sensitivity. A bandwidth of
12500 Hz indicates the width of the band used for data
transmission, which affects the data transfer rate. In addition, a
coding rate of 4/5 represents the ratio between the data sent and
the total number of sent data, which indicates the level of
redundancy during transmission. The Sync Word with a value
of 0x34 is the pattern used for synchronization between the
transmitter and receiver to ensure accurate data reception. A
preamble length of 8§ indicates the initial signal length used for
preparation and synchronization. The combination of these
parameters is essential to achieve a balance between
transmission range, data transfer rate, and power efficiency
when delivering data using LoRa WAN technology. With the
appropriate configuration, the system can provide optimal
performance according to the application requirements and
environmental conditions. The WAN configuration is
implemented with the aim of establishing an internet connection
for the backend/server application. This step is critical for
ensuring Internet connectivity in the LoRa WAN
communication system. The WAN setup is designed to facilitate
seamless integration with the backend/server application,
thereby enabling data exchange and communication over the
internet. This configuration is essential for achieving the desired
performance and aligning with specific application
requirements.

E.  Node Red and Telegram Interface

The software design phase includes planning for the creation
of Node Red flows and the development of a bot, as well as
setting up a Telegram channel. The design and creation of a
Node-Red flow are performed to monitor GPS readings and
patient position measurements. The following is the display of
the created Node-Red flow, as shown in Fig. 5.
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Fig 5. Design Flow Software.

IV. RESULTS AND DISCUSSION

A smart wearable prototype using Kalman Filter and k-NN
with LoRaWAN, Node-RED, and Telegram integration was
designed and developed to measure the orientation and GPS
location of a patient. The development process for the
MPU6050 sensor involves several critical stages to ensure
optimal performance. Initially, the sensor is tested to measure
its accuracy in providing Euler angles. This process involves
monitoring the sensor's ability to deliver pitch, roll, and yaw
values corresponding to the orientation of the object or device.
Subsequently, calibration testing is conducted to correct any
inaccuracies that may arise during measurements. The
calibration process involves calculating offsets that are then
applied to the sensor data to obtain more accurate angle
readings, as shown in Fig. 6.

o

koo

Fig 6. Position calibration device

The scenario involves applying a Kalman filter to the sensor
data. This evaluates the Kalman filter's ability to suppress noise
and disturbances in the sensor data, ultimately producing stable
and accurate estimate orientation.

1. MPU6050 Measurement

The experiment sensor was conducted on the MPU6050
sensor with a focus on four aspects: calibration gyroscope, and
accelerometer.

In quiet conditions, during the engineering process, the
expectation is that the sensor provides a stable and consistent
output close to zero. However, in practice, the sensor output
may not always precisely approach zero under idle conditions.
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Various factors, such as offset and drift, can cause deviations
from the expected values. Therefore, the calibration process is
crucial for ensuring that the sensor delivers outputs in line with
actual conditions. Calibration values are established when the
device is first powered on, and the device must remain
stationary for the first 2 s. During this period, the program
records sensor values that serve as references for forming
calibration data. This testing compares data from the sensor
without calibration with those that have undergone calibration.
The test results revealed significant differences between the two
datasets, with the calibrated data exhibiting better stability. This
confirms that the calibration process successfully corrected the
offset, thereby enhancing the sensor accuracy for subsequent
data processing. This is evident in the following Fig.7

MPUG6050
Accelerometer without calibration

accelero (m/s2)
N OB O RN

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57
time (s)

X — —7
Fig 7. Accelerometer without calibration

Displaying the output of the accelerometer sensor on three
axes (X, Y, and Z) before undergoing the calibration process. In
this graph, it is evident that the Z-axis line from the
accelerometer data is far from the value 0. The absence of
proximity to O in this line indicates an offset or deviation that
must be addressed.
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Fig 8. Accelerometer calibration

Fig. 8 illustrates the output of the calibrated accelerometer
sensor. Note that after calibration, the lines of the accelerometer
data on all three axes were closer to a value of 0. This outcome
indicates that the calibration process successfully corrected the
offset or deviation in the previous accelerometer data.
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Fig 9. Gyroscope without calibration

Fig.9 Displays the output of the gyroscope sensor on three
axes (X, Y, and Z) before calibration. In this graph, all curves
are far from 0, indicating the presence of offsets or deviations
that may affect the accuracy of the sensor data.

MPU6050
Gyroscope with calibration

rotation (°/s)
AN O N B

0 3 6 9 12 1518 21 24 27 30 33 36 39 42 45 48 51 54 57
time (s)

X —  o—

Fig 10. Gyroscope with calibration

Fig. 10 shows the output results from the gyroscope sensor
after the calibration process. Post-calibration, it is noticeable
that the gyroscope data curves on each axis approached the
value of 0 significantly. This change indicates the successful
calibration of the gyroscope sensor.

2.  Kalman filter measurements

Kalman filter testing examines the sensor’s ability to
combine data from the accelerometer and gyroscope to produce
more accurate orientation information.

A. Noise reduction by the Kalman filter

Noise reduction testing was conducted at the roll and pitch
angles when the device was stationary and in motion. The main
objective of this testing was to evaluate the effectiveness of the
Kalman Filter in reducing noise or fluctuations that may occur
when the device is either stationary or in motion. During the
testing phase, the device is worn by the user, who is then
instructed to sit still for 2 minutes, followed by standing still for
another 2 min.

Noise Reduction

angle (*)

0 20 40 60 80 100 120 140 160 180 200 220

time (s)

——AnglePitch = AnglePitch (noise reduction)

. Angle Pitch Before and After Noise Reduction

Noise Reduction

80 100 120 140 160 180 200 220

time (s)
e fingleRol ]

== AngleRall (noise reduction)

Fig 12. Angle Roll Before and After Noise Reduction



Fig.11 and 12 show the roll and pitch-angle graphs before and
after the Noise Reduction process. In the time range of 0-2
minutes, it indicates the sitting position, while in the time range
of 2-4 minutes, it indicates the standing position. It is
noteworthy that the very high fluctuations that occur during
position changes are effectively mitigated by the
implementation of the Kalman Filter. If left unmitigated, these
fluctuations would compromise the accuracy of the
classification process. Therefore, the application of noise
reduction techniques, such as the Kalman filter, is crucial to
ensure the accuracy and reliability of sensor data.

3. KNN Classification Algorithm
Testing the KNN classification algorithm was conducted to
assess the algorithm's capability in classifying user positions.
Testing all k-NN parameters based on the results obtained from
the parameter testing above revealed the following data: the
optimal value for the k parameter is 3, the optimal number of
data is 300, and the weighting method used is without
weighting.

TABLE II.
TABEL CONFUSION MATRIX

Confusion Matrix

Actual \
Predicti
on
Non_
Fall
Semi_
Fall
Falling_
Right
Falling_
Left 0
Falling_
Supine
Falling_
Prone

Non
Fall

Falling
Left

Falling
Supine

Falling
Prone

Actual=Prediction 5358

Count Data 6000

Accuray 89.30%

Table II the confusion matrix provided offers a detailed
evaluation of a classification model's performance in predicting
various types of fall and non-fall events. The matrix consists of
rows representing the actual events and columns representing
the predicted events, including categories such as "Non-Fall,"
"Semi-Fall," "Falling Right," "Falling Left," "Falling Supine,"
and "Falling Prone." The green cells along the diagonal indicate
correct predictions made by the model, such as 998 Non-Fall
events accurately predicted as Non-Fall, 1000 Semi-Fall events
correctly identified as Semi-Fall, and so on. However, the red
cells highlight areas where the model misclassified events, such
as predicting 33 Falling Supine events as Non-Fall and 606
Falling Prone events also as Non-Fall. Overall, the model
correctly predicted 5358 out of 6000 events, resulting in an
accuracy of 89.30%. While this indicates a generally strong
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performance, the misclassifications, particularly in the "Falling
Supine" and "Falling Prone" categories, suggest areas where the
model could be improved for better accuracy.

4. LoRaWAN Experiment
In communication testing, the aim is to evaluate
predetermined settings of the device designed to assess LoRa
communication performance. Communication testing is divided
into several stages: frequency testing, RSSI value testing, and air
testing.
A. Frequency Device Measurement
In frequency testing, it was determined that the device
configuration aligned with the programed settings, transmitting
LoRa signals at a frequency of 922.2 MHz, as confirmed by
measurements conducted using a spectrum analyzer. as shown
in the Fig.13 below.

Fig 13. Testing Frequency using Spectrum Analyzer

B.  RSSI Measurement

Measurement of RSSI (Received Signal Strength
Indication) values against elevation is conducted with the aim
of understanding how the received signal strength may change
with variations in the elevation angle from the signal source or
transmitting device.

RSSI Data
95 T T

o RS51 Data

RSSI

0 20 A0 Gl B0

Sample
Fig 14. Graphic RSSI Data

From Fig.14 An analysis of the effect of altitude on LoRa
RSSI values revealed changes in RSSI values, indicating that
changes in node altitude significantly affect received signal
quality. Increasing altitude tends to increase RSSI values
because physical obstacles, such as buildings or terrain surfaces,
can block or dampen the signal decrease. During testing, the
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RSSI values stabilized around 115 dBm. This phenomenon
occurs because the lack of obstacles allows LoRa signals to
reach the antenna more effectively and with minimal
attenuation. However, it should be noted that the impact of
altitude is not always linear, and other factors, such as signal
propagation and interference, can still affect RSSI variability.
Therefore, when designing or optimizing LoRa networks,
careful field evaluation and testing are necessary to thoroughly
understand how altitude can be optimized to achieve optimal
communication performance. Strategic implementations, such
as repeater and gateway placements, should also be considered
to ensure maximum coverage and improved signal quality under
various altitude conditions.

5. User Interface Node Red and Telegram

User Interface display for the Fall Detection Movement
monitoring system using a website. This interface provides real-
time tracking and alerts for any detected fall movements. Users
can easily access and interpret the data, facilitating efficient
monitoring of patient safety and well being. as shown in the
fig.15

Montonng Ax Quabty, Vitsl Sgry Movement Patent

- Falling to Right]1] Latitue : -.145842 Longitude © 106661514

Fig 15. User Interface

The Telegram bot is used for monitoring and informing
physicians and nurses and the patient’s family when the
measurement parameters exceed or fall below predefined
threshold values. This bot system consists of a single channel,
namely the “Monitoring of Air Quality, Vital Signs, and Patient
Movement” channel. The creation of a Telegram bot involves
using the bot creation service BotFather provided by Telegram.
To create a new bot, the command’/newbot’ is sent to BotFather,
followed by entering the desired bot name and creating a
username for the bot ending with the word ‘bot’ to obtain a
token. The token generated by BotFather is as follows. as shown
in the Fig.16
e g

Monitoring of Air Quality, Vital Signs, Movement Patient |
FALL DETECTION !I!

{
"Posisi": "Jatuh Terlentang!ll",
“Latitude™ -6.33084,
"Longitude": 106.639603,

6°19'51.0"S 106°38'22.6"E
Find local businesses, view maps and get driving |
directions in Google Maps. . |

Fig 16. Telegram interface

V. CONCLUSION

This study explores the development of a patient movement
detection system using an optimized Kalman filter method to
reduce false detections, supplemented by a machine learning
approach using the k-nearest neighbor (k-NN) algorithm to
determine patient positions and orientations. Data
communication uses LoRaWAN technology, providing an
efficient framework. System testing included MPU6050 sensor
calibration, Euler accelerometer and gyroscope testing, and
patient fall position determination using MPU6050 IMU sensor
fusion and Kalman filter techniques. The k-NN testing resulted
in an accuracy of 89.30% with the optimal parameters of k = 3
and no weighting method. LoRaWAN communication
parameter testing revealed that a frequency of 922.2 MHz,
Spreading Factor 7, and bandwidth yielded the best results with
an RSSI stabilization of approximately 115 dBm and ToA
around 1-2s. Overall, the integration of Kalman filtering,
machine learning, and LoRaWAN communication provides a
solid foundation for a reliable patient movement detection
system with significant potential to enhance monitoring and
response to critical medical events.
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