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Multi-criteria MILP model for
geo-distributed cloud configuration with
advanced client preference integration

Izabela Zoltowska, and Kacper Kozerski

Abstract—This paper addresses the problem of selecting a
cloud infrastructure configuration for a geo-distributed enter-
prise. It extends the well-known virtual machine (VM) placement
problem to consider multiple datacenters so they can serve a
distribution of end-users in their geographic locations in an
optimal way in terms of low end-user latency, and accept-
able costs. We approach this problem by formulating a multi-
criteria mixed integer linear program (MILP) that integrates an
aspiration/reservation-based modeling of the client’s preferences.
A newly proposed model supports the selection of virtual in-
stances across cloud regions, ensuring flexible trade-offs among
QoS objectives: total infrastructure cost, user distance, and edge-
to-central latency. Case study results based on Google datacenters
in Europe demonstrate the flexibility of our method in providing
Pareto-optimal solutions aligned with varied preferences. The
approach contributes to the growing preference-aware cloud re-
source allocation field and offers a scalable solution to the service
composition problem in heterogeneous cloud environments.

Keywords—cloud computing; IaaS; QoS; Virtual Machine
Placement; Aspiration/Reservation Reference Point Method

I. INTRODUCTION

CLOUD configuration refers to the process of select-
ing and organizing on-demand computing resources

such as hardware, operating systems, storages, networks,
databases, etc., in a network-based system to meet specific
user or application requirements [1]. It is enabled through the
Infrastructure-as-a-Service (IaaS) cloud paradigm.

According to the review paper [2], the main challenges of
that process are how to compose complex cloud infrastructures
that satisfy diverse and often conflicting requirements, includ-
ing non-functional Quality of Service (QoS) related criteria
such as costs, availability, etc. This led researchers to incor-
porate the QoS parameters when considering the distributed
application structure and deployment, leading to the so-called
QoS-aware cloud service composition problem [3].

When services start growing in size, they might want to
cater to a larger and more geographically distributed clientele.
One example of such a geo-distributed enterprise operation
is the provisioning of distributed resources such as virtual
machines (VM) [4]. However, in recent years, the connection
between QoS and the aforementioned spatial distribution was
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Fig. 1. Considered cloud architecture with three layers, where
the top layer is a central, high-performance data center, and
the lower layers are edge servers and users.

made apparent, i.e., placement of VMs far from the data
center leading to latency issues [5], [6]. High access latency
is an important issue in geo-distributed cloud environments,
undertaken by cloud providers to prevent decreasing revenue
caused by degradation of user satisfaction. The significance
of geo-based allocation was further demonstrated by inclusion
in the list of cloud architecture archetypes, e.g., DNS Load
Balancing with Geo-Mapping Multi-Region archetype [7].

The issues stemming from geolocation are further exacer-
bated when we consider a tree-like cloud architecture with
three layers, where the top layer is a central, high-performance
data center, and the lower layers are edge servers and users, as
illustrated in Figure 1. Here, there are 2 dimensions of spatial
distribution influence on the whole system – the distances
between clients and regional data centers, and between central
and regional centers. Building the architecture in the cloud
in such a case involves purchasing resources in the specified
locations. It can be a challenging task so enterprises often
decide to rely on auto-scaling solutions offered by cloud
providers, which can lead to unnecessarily high costs [8].
On the other hand, multi-region deployments within a cloud
provider’s network configured by the clients themselves (or
by the broker representing the client) allows for substantial
benefits.

Challenges associated with configuring cloud architectures
are often approached from the cloud providers point of view,
where focus is on the energy usage minimization, profit
maximization, resources utilization, etc. as reviewed in [9].
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Multi-criteria optimization is a natural way of handling the
VM placement problem, where Mixed Integer Programming
(MILP) model is formulated to provide optimal solution with
exact algorithms. According to review paper [6], the problem
is often reduced to a single objective with constraints imposed
on other, less important criteria. However, to achieve trade-
off solutions all criteria should be optimized simultaneously
and in such a case most existing models use weighted sum
approach [6]. Such a simple approach has several drawbacks,
as discussed later. Moreover, current models give little con-
sideration to user-oriented goals. When they do, these goals
are often simplified into fixed performance constraints, such
as Service Level Agreements (SLAs), see e.g, [10]. Obviously,
the goals of service provider and client are often conflicting,
e.g., allocation of the edge units closer to clients might lower
the latency, but also lower the utilization rates, which might
in turn raise the provider’s costs. One of the approaches to
reconcile the conflicts is to incorporate the client’s preferences
into the model, as suggested in the survey [11]. Previous
papers aiming in incorporating SLAs considered on-demand
user requests from individual location, see e.g. [12] where
multi-objective evolutionary NSGA-II algorithm is used to
develop method to suggest the best datacenter, based on the
user’s request and SLAs.

The most common approaches to express preference models
ultimately lead also to weight creation and optimization using
the weighted sum [13]. This formulation, while easy to analyze
at first, suffers from certain issues, like the inability to explore
the whole Pareto front or the tendency to select more extreme
solutions. Other common problem is choosing the proper
weight vector, especially difficult when objectives represent
different physical units. Therefore, application of alternative
methods might be recommended. One such method is the
Reference Point Method, which expresses the preference using
aspiration/reservation-based modeling [14], enabling flexible
trade-offs between objectives. This approach enables interac-
tive exploration of Pareto non-dominated solutions, as success-
fully demonstrated in problems from energy markets domain,
see e.g. [15], [16].

The goal of this paper is to provide an optimization
model that supports the decision of selecting the distributed
resource allocation plan, along with a flexible and easy-to-
use preference modeling. To our best knowledge, previous
works do not incorporate geo-distributed clients’ preferences
toward QoS in cloud allocation models. The resource planning
and provisioning configuration problem is considered for the
reservation model, which establishes base infrastructure of
continuously working VMs that may be further supplemented
with additional on-demand, auto-scaling tools [17].

We strive to achieve it by formulating it as a multi-criteria
MILP model that integrates the reference point-based pref-
erence modeling to select trade-offs among QoS objectives:
total infrastructure cost, user-to-distance, and edge-to-central
latency. The modeled situation is the aforementioned tree
architecture, where the top layer is a central, high-performance
data center, and the lower layers are edge servers and users, as
illustrated in Figure 1. This can be seen as a version of DNS
Load Balancing with Geo-Mapping Multi-Region archetype

[7] where additional high-performance central unit, is used,
for instance, for processing data collected from all regions.

This contributes directly to the research directions high-
lighted in the survey by Alashaikh et al. [11], addressing the
integration of client preferences in virtual machine placement
within edge-central cloud architectures. Our method enables
the selection of infrastructure configurations that are Pareto-
optimal and sensitive to diverse, incommensurable criteria
such as cost, latency, and geographic distance. This approach
not only aligns with the survey’s call for richer preference
modeling but also introduces a practical decision-support tool
that directly attaches the client’s preferred values for QoS
criteria, thus advancing the state-of-the-art in preference-aware
Virtual Machines placement.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Problem formulation

We consider a static decision-making problem faced by an
enterprise client seeking the IaaS service to deploy a globally
accessible distributed web application. With an estimated num-
ber of client’s end users Wu located in different geographic
regions u ∈ U , the requirement is to reserve a possibly low-
cost infrastructure consisting of basic resources r ∈ R (CPU,
memory, storage, etc.), guaranteeing a possibly low latency.
That is why, when considering the set of possible VM instance
allocation regions, two layers should be established:

• Edge layer: A subset of regional edge components
e ∈ Re that handle latency-sensitive application modules,
such as user interfaces or real-time data processing. Re-
sources located at these regions are limited, and specific
configurations of VMs are available.

• Central layer: A single data center node responsible for
aggregating and processing data from all edge locations.
This component can be assigned to one of the central
nodes c ∈ Rc. It demands high computational capacity
and low-latency connections to the edge layer.

Client requirements. The client aims to rent cloud infras-
tructure from a provider, selecting specific VM types and de-
ployment regions in the considered period of reservation. The
client should specify the hardware configuration of requested
VMs, such as required processor speed, memory size, disk
space, etc. [6]. The VMs will be created accordingly, and run
in chosen regions on the cloud provider’s infrastructure. Thus,
data that are the basis for the decision include the following:
distances Du,e in kilometers from each end user region u
to each acceptable edge location e, and minimum aggregated
resource type r requirement Pmin

r per number of users.
Cloud specification. The resources that constitute IaaS are

described by the set of VM types t ∈ T e available at location
e, where each type has its own capacity Ptr regarding a
specific quantity of resources r. Each edge location has a
maximum number V max

te of VMs of type t. Additionally, the
latency in milliseconds Lec between each edge region e and its
connected central nodes c is provided. All considered deploy-
ment options c for central unit fulfill the client’s requirements.
Costs of renting each instance type t in edge region e are given
as Cte; they scale linearly with usage time. Cost Fc of renting
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the central unit in location c is fixed. All costs are expressed
in $/h.

The solution to this problem is to select an optimal con-
figuration set of instance types and deployment regions such
that:

• All resource requirements and capacities constraints are
satisfied;

• The total cost of leasing instances is minimized;
• Maximum latency between edge nodes and the central

node is minimized;
• Maximum distance between end users and their assigned

edge nodes is minimized.
Client preferences over these diversified, competing ob-

jectives are integrated into a multi-criteria integer program-
ming model using an advanced aspiration/reservation-based
scalarization technique [14]. In this approach the client pro-
vides preferences toward criteria by declaring reservation and
aspiration levels, which are provided in exact quantities of
criteria – reservation is the minimum acceptable performance
of consecutive criteria, while aspiration states their preferable
values. It is intuitive and straightforward way, in contrast to
weight parameters used e.g. in [10], where a machine learning
model is used to determine normalized weights used further in
the multi-criteria model. Moreover, the aspiration/reservation-
based framework guarantees to achieve Pareto solution most
close to user’s preferences, while weighted sum may be
unable to achieve some efficient solutions [13]. The approach
transforms the multicriteria problem to the maximization of
the minimum partial achievement problem [14], [16].

B. Model formulation
The problem is formulated as a multi-criteria mixed in-

teger linear programming (MILP) model that integrates an
aspiration/reservation-based modeling of client preferences.

Formally, the notation is stated as follows:
Sets:
r ∈ R – types of resources, i.e., CPU, memory, storage
e ∈ Re – possible edge allocation regions,
t ∈ T e – types of instances (virtual machines) available in

region e,
c ∈ Rc – possible central unit allocation regions,
u ∈ U – set of end users located in different geographical

regions.
Parameters:
Cte – cost of renting an instance of type t in edge region

e,
Fc – cost of renting the central unit in region c,
Due – distance in kilometers between user u and edge

region e,
Lec – latency in milliseconds between edge regions e

and central region c,
Ptr – quantity of resources of type r available in VM

of type t,
Wu – estimated number of users in region u,
Pmin
r – minimum quantity of resource type r required

per user supported in edge instances,
V max
te – maximum number of VM of type t available in

edge region e.

Decision Variables:
xte – number of edge instances of type t ∈ T allocated

in region e,
yc – binary variable indicating whether a central unit

is located in region c,
ve – binary variable indicating whether edge region e

is used for connection with thecentral region
zue – binary variable indicating whether end users in

region u are connected to the edge e.
Criteria-related Variables and Parameters:
q1 – minimized cost of utilized infrastructure,
q2 – minimized largest distance between end users and

edge infrastructure,
q3 – minimized largest latency between edge node and

central unit,
ai – partial achievement measure of the criterion

qi, i = {1, 2, 3}, with respect to the corre-
sponding aspiration and reservation levels (qai and
qri , respectively); free variable,

a – the worst partial achievement among all ai; free
variable,

qai – aspiration target value of criterion qi, i =
{1, 2, 3}; parameter representing client’s prefer-
ence,

qri – reservation target value of criterion qi, i =
{1, 2, 3}; parameter representing client’s prefer-
ence.

The optimization model consists of the following objective
functions and constraints:

q1 =
∑
e∈Re

∑
t∈T e

Ctexte +
∑
c∈Rc

Fcyc, (1)

q2 ≥ Duezue, ∀u ∈ U, e ∈ Re, (2)
q3 ≥ Lec(−1 + ve + yc), ∀e ∈ Re, c ∈ Rc, (3)
ai ≤ γ(qri − qi)/(q

r
i − qai ), ∀i = 1, . . . , 3, (4)

ai ≤ (qri − qi)/(q
r
i − qai ), ∀i = 1, . . . , 3, (5)

ai ≤ α(qai − qi)/(q
r
i − qai ) + 1, ∀i = 1, . . . , 3, (6)

ai ≥ a, ∀i = 1, . . . , 3, (7)∑
t∈T e

Ptrxte ≥ Pmin
r

∑
u∈U

zueWu, ∀e ∈ Re, r ∈ R, (8)∑
e∈Re

zue = 1, ∀u ∈ U, (9)∑
u∈U

zue ≤ |U |ve, ∀e ∈ Re, (10)∑
c∈Rc

yc = 1, (11)

xte ≤ V max
te ve, ∀e ∈ Re, t ∈ T e.

(12)

Constraints (1)-(3) determine values of consecutive opti-
mization criteria: total cost, maximum distance from edge,
and maximum latency between edge nodes and central unit,
respectively. All three criteria are minimized by maximizing
the achievement functions that show normalized satisfaction of
the client when the value qi of specific i criterium reaches a
level below aspiration, i.e., when qi ≤ qai , or above reservation,
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i.e., when qi ≥ qri . Specifically, the linear constraints (4)-(6)
are stated, where α and γ are parameters 0 < α < 1 < γ
representing additional satisfaction/dissatisfaction. Finally, the
constraint (7) determines the worst achievement a, maximized
in the following objective:

objective function = lexmax
(
a,

∑
i

ai
)

(13)

and its practical, approximate formulation:

objective function =max a+ ε
∑
i

ai (14)

The second term in (13) is used for regularization, introduced
to guarantee the solution efficiency in a non-unique optimal
solution. Such an approach to multi-criteria optimization was
introduced in [14], and applied in several areas, see e.g.,
[15]. The so-called reference-point method offers significant
advantages in multi-criteria optimization, particularly over
the weighted sum approach, as it guarantees Pareto-optimal
solutions and is inherently well-suited for handling incompa-
rable criteria expressed in different physical units – such as
cost, geographic distance, and latency in our case – without
requiring artificial normalization, see [11].

Following constraints are directly related to infrastructure
placement decisions. Constraints (8) ensure the required ca-
pacity of resource types (i.e., computational and memory
resources) at the edge are fulfilled. Constraint (9) ensures
each user location is connected to exactly one edge region.
Constraint (10) guarantees that any edge region serving users
is also connected to the central unit. Constraint (11) ensures
the selection of exactly one central region.

Constraint (12) ensures that edge instances are only allo-
cated in regions connected to user locations without exceeding
their capacities.

III. CASE STUDY

In this section, we show effectiveness of our approach on
a case study assuming geographically dispersed enterprise
that considers provisioning VMs from Google Cloud. We
analyze three problem instances by varying the user prefer-
ences. Different solutions obtained allow to compare trade-
offs and performance gains. The newly proposed model was
implemented in the AMPL software and solved using CPLEX
22.1.1.

Five user locations were assumed – Athens, Lisbon, Oslo,
Rome, and Warsaw – with appropriate predicted user counts,
which can be found in Table I. It was assumed that each user
requires at a minimum 1 vCPU and 3GiB of RAM.

TABLE I
ESTIMATED USER COUNTS AT GIVEN LOCATIONS

User location User count
Athens 50
Lisbon 100
Oslo 30
Rome 10

Warsaw 100

Data on latency was found on the website [18]. As the
latency datasheet didn’t include information about all of the
available European servers, only the locations in the Nether-
lands, Belgium, Frankfurt, London, and Zurich were selected
for possible central and edge sites. The exact data on latencies
can be found in Table II. For simplicity, it was assumed
that the same locations would have 0 latency. The distances
between locations are in the Table III (where only a country
was specified, the capital city was assumed). The technical
parameters and prices were scraped from the Google Cloud
Platform website [19]. For the central server, the strongest C4
high-CPU machine was required. In the case of edge locations,
the 3 weakest C4 standard machine types were selected -
the appropriate prices and parameters can be found in Table
IV, Table V. As the case study was small, upper limits on
resources weren’t taken into account.

TABLE II
LATENCIES BETWEEN SITES [MS]

Edge

C
en

tr
al

Belgium London Frankfurt Netherlands Zurich

Belgium 0.000 6.966 7.417 7.098 16.461
London 6.843 0.000 13.851 10.566 19.911

Frankfurt 7.422 13.926 0.000 7.471 10.182
Netherlands 7.209 10.66 7.568 0.000 14.024

Zurich 16.252 19.941 7.832 14.071 0.000

TABLE III
ROUNDED DISTANCES BETWEEN SITES [KM]

User

E
dg

e

Belgium London Frankfurt Netherlands Zurich

Athens 2092 2395 1803 2168 1620
Lisbon 1715 1588 1893 1867 1725
Oslo 1086 1154 1099 913 1403
Rome 1175 1436 960 1299 685

Warsaw 1161 1450 891 1095 1044

TABLE IV
PRICING OF TECHNOLOGIES AT SITES [$/H]

Site

Te
ch

.

Central vm1 vm2 vm3

Netherlands 8.57324160 0.10170930 0.20755350 0.41510700
Belgium 8.99047373 0.10665916 0.21765446 0.43530892
Frankfurt 9.63469056 0.11430188 0.23325060 0.23325060
London 9.30809088 0.11042724 0.22534380 0.45068760
Zurich 11.42200627 0.13550584 0.27652054 0.55304108

We present results assuming three different preference
cases:

TABLE V
TECHNOLOGY SPECIFICATIONS

Technology CPU [no] RAM [GiB]
central 192 384
vm1 2 7
vm2 4 15
vm3 8 30
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• Case 1 – most emphasis is put on distances from edge in-
stances expressed in quite tight reservation and aspiration
points;

• Case 2 – low-cost solution is preferred by providing
aspiration at zero cost;

• Case 3 – lowest possible latency is required, expressed
as aspiration at zero latency.

Results, depending on different aspirations and reservations in
each case, are shown in Tables VI and VII.

In the first case, we set a tight aspiration for maximal
distance and left other criteria within satisfiable bounds. Visu-
alization of the relation between aspiration/reservation values
and obtained solution of criteria is provided in Figures 2. To
facilitate demonstration we reduced the criterion space to two
dimensions, examining relations between each pair of criteria.
One can observe that despite completely different measures of
criteria, the solution was correctly determined. In the second
case, we enforced a very strict, unsatisfiable goal for both
distance and cost, but since the reservation of cost was also
unsatisfiable, the optimization process tried its best to achieve
as low cost as possible. This confirms that the model is flexible
and robust – even if the reservation point is not achievable,
i.e. the cost in Case 2, still the best possible solution is
found. In the third case, we set more liberal goals for both
costs and distances, but tried to reach 0 latency, which, under
our assumption, is possible. By examining only the criteria,
depending on the specific criteria pair, different solution can
be considered as most balanced, trade-off proposition.

Visualizations of resulting cloud configuration are shown in
Figure 3. We can observe that shifting our focus to different
criteria changed the structure of the solution significantly.
Solution to Case 1 resulted in a very spread-out localization of
the edge stations. Case 2 resulted in allocating edge instance
in place with lowest cost – Frankfurt, and the cheapest central
node possible – in Netherlands. Finally, solution to Case 3
resulted in clustering all of the edges and central in the
same location – Frankfurt. These results, supported by specific
values of criteria allow to make most informed decision.

TABLE VI
RESULTING CRITERIA VALUES qi OBTAINED UNDER DIFFERENT

ASPIRATION qai AND RESERVATION qri PREFERENCES IN
DIFFERENT CASES. THE VALUES WERE ROUNDED TO 2 DIGITS.

Case qr1 qa1 q1 qr2 qa2 q2 qr3 qa3 q3
[$/h] [km] [ms]

1 100 20 22.51 3000 1000 1715.35 20 1 7.83
2 10 0 17.03 3000 200 1893.48 20 15 7.47
3 40 20 18.09 3000 1500 1893.48 20 0 0.00

TABLE VII
RESULTING ALLOCATIONS OF CENTRAL AND EDGE COMPUTING
UNITS, ALONGSIDE VM COUNTS, OBTAINED IN THE CONSIDERED

CASES OF DIFFERENT PREFERENCES.

Case Central unit Edge units
1 Frankfurt Belgium (50 vm1)

Frankfurt (18 vm1)
Zurich (25 vm1)

2 Netherlands Frankfurt (37 vm3)
3 Frankfurt Frankfurt (37 vm3)

Fig. 2. Pareto solutions obtained with three different cases of
preferences toward criteria, illustrated for each pair of criteria.
For clarity, entries from each case are enclosed in ellipsoids.

IV. CONCLUSIONS

In this paper, we propose a multi-criteria MILP model to
support the cloud infrastructure configuration choice of the
enterprise client. The model takes the client’s preferences
toward cost and QoS and determines The required number of
VMs of specific providers’ types in selected regions to connect
with high-performing central unit machines, to meet the geo-
distributed demands.
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Fig. 3. Resulting edge and central locations for VMs obtained
with three cases of preferences toward criteria.

The case study results demonstrate that expressing prefer-
ences in the applied Reference Point Method is straightforward
and can significantly affect the resulting configuration of the
edge-central infrastructure. The observed flexibility confirms
the model’s ability to adapt to diverse client preferences and
trade-offs.

In future work, we intend to evaluate the approach on a real-
world instance. The most promising area is to explore how this
approach could be integrated into a dynamic Infrastructure as
Code (IaC) framework to handle uncertain demand. We expect
that our optimization model could be used to support contin-
uous management of geo-distributed cloud infrastructure.
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