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Generalized Benders Decomposition to solve
a nonlinear routing problem with
queueing delay goal function

Kacper Kozerski, Andrzej Karbowski

Abstract—We address the multicommodity flow problem with a
nonlinear goal function modeling queueing delay. It is well-known
that linear programming solvers perform better than those used
for nonlinear programming. We can leverage their performance
by employing the Generalized Benders Decomposition (GBD) to
partition the problem into master and primal subproblems. We
prove that in the case of multiple subproblems, which is true
in our case, we can split both the optimality and feasibility cuts
and add them independently. Moreover, we extended a known
proof of convergence to enable a wider range of problems to be
solved using GBD. We use the split cuts technique to precompute
feasibility cuts and analytically solve the subproblems to omit
the use of nonlinear optimization software. Furthermore, we
explore the possibilities of starting point selection through linear
and quadratic approximation. We carry out tests on a classical
network example to show that GBD can sometimes outperform
nonlinear solvers, and also that quadratic approximation for
starting point selection can provide strictly better solution times,
dominating commercial solvers.

Keywords—benders; GBD, optimization; decomposition; flow
optimization; queueing delay

I. INTRODUCTION

N the Internet age, we are faced with supplying a large

number of users with data sent from different servers, with
as little delay as possible. In order to achieve high-quality
of service, routing algorithms have to account for interactions
between different commodities flowing through the same links
[1]. This aspect is also taken into account when planning and
dimensioning network infrastructure [2].

Some authors consider game-theoretical formulations to
reach a balance between different flows, for example, coalition
games in international phone rerouting [3] or to determine
behavior with overflowing packets [4]. To gain insight into
the connection behavior under different loads, stemming from
many flows using the same link, we can also employ queueing
theory models [5] [6], which enable us to find the parameters
such as sojourn time. Additionally, simulation and optimiza-
tion are used to plan better network performance [7] [8]. In
most cases, the models are linear, they often also have some
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discrete variables and we deal with mixed-integer linear pro-
gramming (MILP) problems [9] [8]. This is partially motivated
by the availability of computationally efficient optimization
software for MILP problems like Xpress, Gurobi, or CPLEX.
The linearity assumption can, however, be seen as limiting. For
instance, queueing-theory-based models are often nonlinear
[6].

Decomposition techniques can be employed to deal with
computationally demanding problems. Augmented Lagrangian
methods can deal with problematic constraints [10]. In the
field of packet routing, it has found use in speeding up large-
scale multicommodity routing [!1]. Algorithms like column
generation help us when too many variables are present [12],
for instance, in the problem of routing and scheduling in
multi-hop networks [13]. Benders Decomposition [14] and
Generalized Benders Decomposition [15], [16] allow us to
partition variable sets and create smaller subproblems. In
the last decade, many papers on Benders Decomposition in
routing have been published, as it allows, for instance, to solve
efficiently energy-aware routing optimization [17].

This paper’s goal is to bridge the gap between the important
properties of nonlinear, queue-based models and fast, linear
programming solvers. This is achieved through decomposing
a multicommodity flow problem with Generalized Benders
Decomposition. An important property of path-based flow
problems is exploited, as the problem decomposes into many
independent subproblems. We prove that in such a case,
optimality and feasibility can be split and added independently
of each other. Additionally, split cuts lead to a new criterion
for algorithm convergence. We also propose methods to pre-
compute the feasibility cuts in the case of a single-dimensional
constraint function and solving the subproblems without the
need to use nonlinear optimizers. We also explore different
possibilities for obtaining a starting point selection for GBD.

II. BACKGROUND
A. Network flow model

We take the modified formulation of multicommodity net-
work flow, minimizing the queueing delay from [6]. It is a
nonlinear programming problem. We use the notation, which
can be found in Table I.

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.


https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/

f

. l
min T (D)
2€RIWI fERILI Z Cr—fit+e
leL
Y. LM wm<fi VIEL 2)
weW peP,
S ap=r, YweW 3)
PEPy
<G viel 4
>0 VpeP,,weW
&)
TABLE I
NOTATION USED IN THE MODEL
w single flow (demand, connection) between a given source and
a destination node
w set of flows
Py set of all paths for the flow w € W
L set of all links of the network graph
C flow rate capacity of the link [
Tw demand of the flow rate for the flow w € W
Tp variable determining how much of demand w should be sent
through path p (flow rate)
11 variable determining the flow rate in the arc [ € L
€ >0 | small constant
1,(1) | a predicate, a function equal 1 when the link / belongs to
path p and O otherwise.

The function (1) represents the sum of queueing delays on
links. It grows monotonically with the flow rates in links
fi- The constraint (2) connects link flows f; with routing
decisions, the constraint (3) guarantees that the demand will be
fulfilled and finally the constraint (4) guarantees no overflow
on the link [.

We notice that if we fix the values of x variables to z*,
the problem decomposes into independent problems for each
leL:

. fi
}Izlglé C — fl +e ©)
YD L)< )
weW peP,
h <G ¥

This structure can then be exploited using the GBD algorithm.

B. Generalized Benders Decomposition theory

Generalized Benders Decomposition allows us to partition
the variable sets into master and subproblem variables [15].

We first formulate a general optimization problem in the
form [16]:

zexgﬂg},il?evgkq f(z,v) ®)
S.t.
g(x,v) <0 (10)
where:
f: R"xRYI—=R (11)
g: R"xR?—R™ (12)
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We can reformulate this problem in the following manner:

min  z(v) (13)

veVnVy
Vo&{v: FxeX g(z,v) <0} (14)
z(v) éinf{f(ﬂc,v) xe X, glx,v) < O} (15)

The set Vj guarantees feasibility of the primary subproblem
(Vo is referred to as a solvability set).

Theorem 1. Projection [/5]

1) Problem (9)-(10) is infeasible iff problem (13)-(14) is
infeasible

2) Problem (9)-(10) is unbounded iff problem (13)-(14) is
unbounded

3) If (&, ) is the optimal solution of the problem (9)-(10),
then v is the optimal solution of the problem (13)-(14)

4) If v is the optimal solution of the problem (13)-(14) and
Z reaches its infimum at v = 0, then (&, ) is the optimal
solution of the problem (9)-(10)

Theorem 2. Representation of Vo [15]

Let us assume that:
1) X is a nonempty convex set
2) g(x,v) is convex on x € X for each fixed v €V
3) For each fixed v € V, the set:

Z, = {z ER™:Jxe X gx,v) < z} (16)
is closed
Then a point v* € V belongs to the set Vy iff:
sup inf Ly(z,v™, ) <0 17)
)\EAf zeX
ApE{XER™:A>0,) N =1} (18)
j=1
and
Li(z,0,0) 2 X g(z,v) (19)

Theorem 3. Representation of z(v) [15]
Let us assume that:

1) X is a nonempty convex set

2) g(z,v), f(x,v) are convex on X for fixed value of v =
viveV

3) For each v* € V at least one of the following conditions
is true:

a) z(v*) is finite and there exists a vector of optimal
Lagrange multipliers for the problem (13)-(14)

b) z(v*) is finite, g(x,v*) and f(x,v*) are contin-
uous on X, X is closed and there exists ¢ > 0,
such that the e-optimal solution set of (13)-(14) is
nonempty and bounded

¢) z(v*) =400
Then
z(v) = sup inf L,(x,v, ) (20)
AEA, TEX
where
Ao 2= {AeR™:A>0} 21
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and
Lo(z,0,A) £ f(z,v) + AT g(z,v) (22)
veVnl (23)
Using Thms 1 - 3 we can formulate the problem (9) - (10)
as:
i 24
ve?%géR 24)
S.t.
inf Ly(z,v,\) <p VA €A, (25)
reX
in}t( Ly(z,v,X) <0 VA€ Ay (26)
xe

As the sets in conditions (25) - (26) are of cardinality up
to ¢, we cannot use this formulation directly. Instead, we
iteratively substitute sets, therefore approximating the original
formulation. The finite set versions of (25) - (26) are referred
to as cuts. In every iteration, if the primal problem is feasible,
we save the dual A values and add them to the set, as they are
from the set A,. If the problem turns out infeasible, we solve
the feasibility problem [16]:

seX aer 7
S.t.
gij(z,v) < a Vi e {1.m} (28)

which supplies us with dual values from Ay.

Definition 1. P property [/5] (infimal independence)

We say that the Lagrangian function L(xz,v,)\) satisfies P
property when we can find the value of inf,cx  L(xz,v,\)
independently of the value of v.

Some examples of problems that result in infimally inde-
pendent Lagrangians are problems with separable goal and
constraint functions and variable factor programming problems
[15].

P property allows us to omit explicit infima calculations in
cuts. The optimal values of the cut Lagrangians are calculated
while solving feasible primal problems or feasibility problems,
since the optimality Lagrangian is dual to the feasible primal
problem and the feasibility Lagrangian is dual to the feasibility
problem. Thus, we can store the values of xk, ¥ from iteration
k and plug them into our Lagrangian functions.

Finally, we arrive at an iterative Algorithm 1.

The constraints (32)-(33) added in each iteration are, re-

spectively, optimality and feasibility cuts.

Theorem 4. Convergence of the GBD algorithm [15], [16]
GBD algorithm converges in a finite number of steps with a
given tolerance B > 0 when either:

1) V is a finite, discrete set and the assumptions of z(v)
and Vy representation Thms 2,3 are satisfied (even with
B=0)

2) V is a nonempty and compact set, V. C Vy, X is a
nonempty compact convex set, functions f and g are
convex on X for each fixed v € V and continuous on
X XV, the set of optimal Lagrange multiplier of the

Algorithm 1 Generalized Benders Decomposition
UBD + +o00
LBD + —0
vt < select(v € V)
iter < 1
Ko Ky {}.0}
while UBD — LBD > 3 do

min{ f(z,v"") : x € X, g(x,v"") < 0}

(29)

if Problem (29) is feasible then

Save z%t" and \¥e"

K, + K, U {iter}

UBD < min(UBD, f(z", viter))
else

min{o: 2 € X,g;(z,0"") <a je{l.m}} (30)

Save x*°" and A¥*°" from problem (30)
Kf — Kf U{iter}

end if

iter < iter + 1

LBD < min pu

1
veV,ueR (3 )

S.t.
Lo(x®, v, M%) = f(a¥,v) + (A Tg(a¥,0) <p Vk e K,
(32)

Vk € Kf
(33)

Ly(x" v, AF) = (W) Tg(a*,0) <0

Save v*°" from the problem (31) - (33)
end while

subproblem is nonempty for fixed v € V' and constraints
satisfy Slater’s regularity condition: 3x € X Jv eV :
g(z,v) <0

3) V. & Vi, constraint function g is linearly separable:
g(x,v) = g1(x) + g2(v), set X is defined using linear
constraints, rest of the conditions as in p. 2.

III. MuLTIicuT GBD
A. Separable problems

As we have mentioned before, some problems have a special
structure that we can exploit.
The separable problems have the form:

p
v, B fo(0) + 2_; fi(zi,v) (34
s.t.
gi(x;,v) <0 Vi e {1..p} (35)

Setting the value of master variables v = v*, the subproblem is
composed of p independent subproblems, which can be solved
in parallel:

e ) . *
Jnin fi(zi,v™)

(36)



S.t.

gi(zi,v) <0 (37)

B. Fully multicut Benders formulation

In the case of separable problems both the optimality
and feasibility cuts can be split. This is a generalization of
the so-called L-shaped method, the Benders’ method applied
to (linear) stochastic programming problems with a specific
structure, where the objective cuts are often being “split” [18].
We will prove in Thm 6 that such a technique can also be
applied in the case of GBD and feasibility and optimality
cuts for each problem can be added independently to every
subproblem. We will earlier show in Thm 5, that the feasibility
cuts can be split. We also provide examples showing that
split feasibility cuts can lead to tighter approximations of the
feasibility set (Example 1) and that split objective cuts can
lead to tighter approximations of the goal function (Example
2).

Theorem 5. Feasibility multicut formulation
For problems in the form (34)-(35), we can split feasibility
cuts.

Proof. Since the subvectors z; are independent of each other
after setting the values of v, we have a solvability set in the
form:

P
Vo= Voi
=1
Voi £ {’U cdz; € X; gi({Ei,’U) < 0} Vi € {1])} (39)
veWy <= veVuAveVp A . Avely, (40)

(38)

We also have that the set Z,, is closed iff for all ¢ € {1..p}
the sets:

7 = {z eR™ :Jx; € X gi(x,v) < z} 41)
are closed.
Now we can apply the 1y Representation Thm 2 to every set
Voi Vie{l.p}:
veVy < sup inf Lypi(zi,v, ) <0 (42)
Xi€A; Ti€Xs
Lyi(wi,v, M) £ M gi(wi,v) (43)
A2\ eR™ 1) zo,ZAU =1} (44)
j=1
O

Practically, in order to gain A\, € A;, for any infeasible
subproblem ¢, we can solve feasibility subproblem 4:

zie Xk (45)
S.t.
gij(xi’v) < Vi e {l.m;} (46)

We conclude from Thm 5 that the split feasibility cuts can ap-
proximate the feasibility set at least as good as the formulation
without splits. Moreover, the split cuts can provide a tighter
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approximation of the feasibility set in a smaller number of
iterations, as we show in Example 1.

Example 1.
. I 47
16[071]?11)2{0,1}2 V1 — V2 + T1 + T2 (47)

s.t.
3vi+ve—21—1<0 48)
0.5+U2_x2§0 (49)

After setting the values of v that cause infeasibility, the
resulting feasibility subproblems: one with x1, the second with
9, can be solved independently.

If we choose v to be the complicating variables, then the
primal problem will be feasible only when we set the values
of complicating variables to v1 = 0,vo = 0. Suppose we
choose v1 = 1,v9 = 1 as the starting point (which makes the
primal problem infeasible).

In the case without splitting feasibility cuts, we have a
feasibility problem in the form:

min o (50)
z€[0,1]2,a€R
S.1.
3—x1 <« (&29)
1.0 —29 <« (52)

The solution to such a problem will be at « = 2,21 =
1,29 € [0, 1], making the constraint (51) the only active one
with dual value of A\ = 1.

The resulting cut will be in the form:

)\1'(3U1+U2—$1—1)+/\2~(0.5+U2—$2)SO
= ]_-(3’[)1+1)2—1—1)+0'(0.5+'02—1'2)§0
= 3vi+v2 <2 (53)

which cuts all infeasible solutions with v1 = 1, but leaves
the solution v1 = 0,v9 = 1, which is infeasible.

In the case of split cuts, we have two subproblems.
The first subproblem has the form:

min s 54
z1€[0,1],a1 ER
S.1.
3—z1 <o (55)

with solution at the point ©1 = 1,1 = 2. The value of the
dual multiplier will be \y = 1, because it is the only one
existing in this problem (and they have to sum up to 1).

The second subproblem has the form:

min Qo (56)
z2€[0,1],a2€R
s.1.
1.5 — 29 < g &)
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with solution at the point xo = 1,ao = 0.5. The value of where

the dual multiplier will be Ay = 1, because it is the only one
existing in this problem (and they have to sum up to 1).

The first problem produces the cut:

3v1+v9a—21 —1<0
= v +va—1—-1<0

= 3vy + vy <2 (58)

which cuts all the points with v1 = 1 (since v € {0,1} we
have 3 -1 + vy > 2 and v, is a binary variable).
The second problem produces the cut:

0.5+1}2*I2S0
= 0.54+v2—-1<0

=  1,<05 (59)

which cuts all the points with vo = 1 (since vo is a binary
variable). Both cuts produce a tighter approximation of the
feasibility set (in this example the direct representation, which
allows only vi = 0,v9 = 0).

Theorem 6. Objective multicut formulation

If all assumptions of feasibility cut splitting Thm 5 hold, and
the goal function is separable with respect to each decision
variable subvector x;, then we can also split the objective
function cuts.

Proof. We have a problem in the form:

P
zeg}yev[f(z,v) = ; fi(xi, v)] (60)
s.t.
gi(z;,v) <0 Vie{l.p} (61)

Since for the fixed values of v, the subproblem ¢ becomes
fully independent from other subproblems, we can solve every
subproblem ¢ as:

nf filwi,v) (62)
S.t.
gi(zi,v) <0 (63)

Therefore, the vector of optimal Lagrange multipliers (for
every feasible subproblem) can also be split into independent
subvectors:

A1
A2
A= A Vi € {1..])} i €A (64)
Ap
where
A 2 {/\i eR™ A > O} Vi € {1..p} (65)
Optimality Lagrangian takes the form:
P
Lo($7v7)\) = ZLoi(xivva )\’L) (66)

i=1

Loi(zi,v, ) = fi(xs,v) —I—)\jgi(xi,v) Vi e {l.p} (67)

Then, going back to z(v) representation:

p
min sup inf Loi(xiy v, N) =
veVNVy x> TEX 4 1
> -
p
min E sup inf Lyi(zi, v, \;) (68)
veVNVy 4 1 ;>0 z, €X;
=1 "=
O

We conclude from Thm 6 that the split objective cuts
will provide an approximation of the objective Lagrangian at
least as good as the formulation without splits. Moreover, the
approximation with split cuts can sometimes be tighter, as we
show in Example 2.

Example 2.
i 69
vzrlr,lféw(“l + p2) (69)
S.L.
v <y cut from Ist iteration (70)
—v < U cut from Ist iteration 71
—v < cut from 2nd iteration (72)
v < Lo cut from 2nd iteration (73)
The solution to this problem is at the point
v=1,pu =1pu =1, LBD=2v=2.
A problem without splitting objective cuts:
i 74
vznll.,l;LDG]R ( )
S.L.
v—v=0<p cut from 1st iteration (75)
—v+v=0<p cut from 2nd iteration (76)

The solution to this problem is at the point v > 1,u =
0, LBD=0.

The resulting algorithm will be in the form given in Algo-
rithm 2.

Even if some subproblem turns out to be infeasible, we
can both add feasibility cut for the infeasible subproblem and
valid objective cuts for other feasible subproblems - since
the infeasibility of the subproblem ¢; doesn’t influence the
fact that the feasible subproblem o (obtained with the same
value of v) creates valid values of \;. Adding optimality cuts,
even for the infeasible v* can approximate the behavior of the
objective function in some proximity of v*, which can in turn
be feasible.

As we have mentioned, this algorithm can be used in the
case of our routing problem.



Algorithm 2 Generalized Benders decomposition with split
cuts

UBD + +oc0

LBD ¢ —

vl « select(v € V)

iter <1

Ko Kp + (1.0}

while UBD — LBD > 3 do

for i = 1..p do

min{fi(‘riuvitm-) HETIS Xi7g(xi7viter> < 0}

(77)

if Problem (77) is feasible then
Save xi" and Aifer
K, «+ K,U{(iter,q)}

else

min_{ai 2 € Xy, 945 (2,0 <oy j € {lmy}}
(78)

Save z¢°" and A?°" from problem (78)
Ky« KyU{(iter,i)}
end if
end for
if Vi = 1..p problem ¢ was feasible then
UBD < min(UBD, fo(v)+>_b_, fi(xiter viter))
end if
iter < uter + 1

p
LBD ' 4 7
 duin fo(v) + ; 1 (79)

S.t.

Loi(x},v, A7) =fi(af,v) (80)
+ (M) Tgi(af,v) < pi (ki) € K,
(81)

V(k’, Z) S Kf
(82)

Lyi(af, v, M) =) "gi(af, v) <0

1 )

Save v from problem (79) - (82)
end while

C. New convergence criterion for specific cases

In the case of multicut formulation, we can relax the
assumptions of Thm 4 p. 2, effectively obtaining a new
convergence criterion. We will prove in Thm 7 that, instead
of requiring that V' C 1}, we can assume that:

V.CVovm; =1 ViE{l..p}
Vi={v:3z; € X; gi(x;,v) <0} Vie{l.p}

(83)
(84)

and m; refers to the number of g; constraints: g; : X; x V —
R™i,

This criterion can be used in our problem, as the dimension-
ality of the constraints (7) is 1 in every subproblem [ € L.

Theorem 7. Let us suppose that v & Vy, but the conditions for
feasibility multicut formulation hold and for all independent
subproblems i, with respect to feasibility, we have that V C

K. KOZERSKI, A. KARBOWSKI

Voi V- m; = 1. Rest of the conditions as in Thm 4 p.2. Then
the problem will converge in a finite number of steps.

Proof. We are only interested in problems where V' & Vj,,
since for the rest of them the feasibility is guaranteed.

From assumptions, we have that m; = 1, so we are dealing
with single-constraint subproblems. And we know that for
such problems, the feasibility requires only a single cut (since
|A;| = 1). Therefore, we can spend up to p iterations adding
cuts that provide feasibility (if needed). The rest follows from
Thm 4 p.2. O

IV. SPECIFIC FEATURES OF GBD IMPLEMENTATION TO
THE NETWORK ROUTING PROBLEM CONCERNING QUEUING
DELAYS

A. Analytical solution to subproblems

In our case, we can speed up subproblem computation
by precomputing feasibility cuts, and once the feasibility is
guaranteed, we can solve the subproblems in O(m) time.

In the case of split cuts, the V{, Representation Thm 2,
applied to the set Vy;, [ € L is in form:

inf A(> D 1,0 w, - ) <0 Ne{)

fi<Cy

weW peP,
(85)
= SN 1,0, — sup <0 (86)
wEW pEP,, fisCi
= Z Z 1,(1) -2, < C) (87)
weW peP,

If we add those cuts, before the problem starts, we will always
have feasible subproblems.

Then we can notice that since the goal function is differ-
entiable and strictly increasing, the optimal solution to the
subproblem will be at the lowest possible point, that is, when
the constraint (7) is active. Moreover, we can find the dual
values from KKT conditions:

fi

Lo(fi,z,N) = er

MO 1,0 a— f) (88)
weW peP,

oL,

W/(fl,xm) —0 (89)
Ci+e B «_  C+e

C—firer N0 = AT e 0

=3 1,0 o1

weW peP,

Using this, we can compute all of the optimality cuts in
O(m) time. Moreover, this makes it possible to omit using a
nonlinear optimizer altogether. Thus, we will only need to use
a linear programming optimizer to solve the series of master
problems.
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B. Starting point selection

In general, a starting point selection can greatly influence
the convergence time of iterative procedures [19]. We want
our starting point v! to not only lead to a feasible subproblem
solution, but also be close to the optimum itself. Since our
problem has a twice-differentiable function, we propose to
produce the starting solution from the original problem, but
with the function approximated by a Maclaurin series of order
1 and 2, that is:

. fi
Linear start: Z —_— (92)
el Ci+e
2
Quadratic start: Z(lej_ . + (Cl]}' 5)2) 93)

leL

The linear approximation leads to the LP problem, and the
quadratic approximation to the QP problem with a positive
definite Hessian matrix; therefore, the starting point selection
is a computationally easy procedure.

V. NUMERICAL EXPERIMENTS

We have selected the network model with routing
bottlenecks from the original article [6], which is shown in
Fig. 1. On top of the picture, we see producers 1-5 who have
to send their commodities to customers 6-10 through two
bottlenecks represented by links 21 and 22. As this network

Fig. 1. Network graph, based on [0]. The vertices 1-5 represent heterogeneous
suppliers, and the vertices 6-10 represent the recipients, which have demands
for different suppliers’ products. The arcs 21 and 22 constitute the network’s
bottlenecks.

is too small to argue for the usefulness of the decomposition,
the tests were run on artificially constructed, larger network,
but still preserving the “shape” of the original network with

parameter values generated as such:

-c
T{P,C} = P P c Ve € {1-~Cmax}7p S {1--pmax}
%94)
>cec T{pch
C =20 ceC P v 1. .Pmax 1. Max
{p,n} - (Tnax + 1 — 1) D€ {1..pmax 1 € {1l.Nmax }
(95)
2opep 2acec {pe
Cipy = 30=2 = — ¥ 1. Mmax 96
=30 =y € L max) (96)
Oy oy = 20 2oreP " tpe) Ve € {1..cmax}s 7 € {1 max
{n,c} n- (nmax+1—n) +-Cmax f» - Mmax
o7
where

- number of producers, bottlenecks
and customers, respectively,
demand for customer-producer
pair,

capacities of link from

producer p to bottleneck n,
bottleneck n link, and from
bottleneck n to customer c,

respectively.
The models were implemented in AMPL. We have run the

GBD algorithm using Xpress 9.4.2 solver. We have compared
the performance of Benders algorithm against commercial
nonlinear solvers (without decomposition) — Baron 24.5.8
and Minos 5.51. The accuracy parameter in GBD was set to
B = 1073, and the small constant was set to ¢ = 1076, The
objective cuts were split, and feasibility cuts precomputed.
Tests were run on a PC with the Linux Mint operating
system, AMD Ryzen 7 3750H processor with Radeon Vega
Mobile Gfx, and 16GB of RAM. The results are in the Table
II. The numbers have been rounded to 3 decimal places.

pmax> nmaxy cmax

"{p,c} }

C{p,n} ’ C{n} ) C{n,c}

TABLE II
RESULTS FOR THREE PROBLEM SIZES. THE FIRST COLUMN SPECIFIES THE
APPROPRIATE VALUES OF (Pmax, "max, Cmax ). THE OBJECTIVE AND TIME
VALUES WERE ROUNDED TO 3 DECIMAL PLACES.

(p, n, C)max Method Solver  Objective Time [s]
(100, 5, 100) No decomposition Minos 48.182 37.345
No decomposition Baron 48.182 10.786

Benders-linear start Xpress 48.182 130.535
Benders—quadratic start ~ Xpress 48.182 4.100

(200, 5, 200) No decomposition Minos 94.935 590.914
No decomposition Baron 94.935 530.014

Benders—linear start Xpress 94.935 917.105
Benders—quadratic start ~ Xpress 94.935 20.056

(200, 5, 400) No decomposition Minos 131.299 2411.695
No decomposition Baron 131.299 146.343

Benders—linear start Xpress 131.299 1661.551
Benders—quadratic start ~ Xpress 131.299 51.251

As we see, the Benders procedure with linear start achieved
worse times than Minos on small problems, but would take the
lead when the size of the problem increased. However, Baron
outperformed both Minos and linear start GBD in all cases.
The GBD with a quadratic approximation function start would
perform significantly better in all cases, which shows just how



much the correct starting point can speed the optimization
procedure.

VI. CONCLUSIONS

Efficient routing is essential for sustaining high quality of
service, especially considering the scale of modern Internet
infrastructure. Unfortunately, the technological complexity and
interactions between different network flows exhibit properties
that make our models harder to solve, e.g., the nonlinear
phenomena in queue-based models. In order to address those
issues, we can apply decomposition techniques, such as Gen-
eralized Benders Decomposition (GBD), that can help us
isolate the nonlinear model parts from purely affine ones, thus
possibly changing the problem’s class.

In our paper we present one such example, when we apply
the GBD method to a routing problem with a nonlinear queue-
ing delay function, obtaining a linear programming master’s
problem and multiple independent nonlinear subproblems.

First, we provide theoretical considerations for the GBD
method:

(T1) We propose that in the case of multiple primal
subproblems, all of the feasibility and optimality cuts
can be split and added independently of each other
We extend the GBD convergence criteria to include
the case where some of the independent subprob-
lems have single-dimensional constraints, binding the
master’s and subproblem variables

(T2)

Application of those propositions in our case enables us
to omit the use of nonlinear optimization software altogether.
Moreover, we present two options — linear and quadratic — to
generate the starting point.

We provide computational insight into our proposition’s
performance by comparing the decomposed problems with
both types of starting point selection with the performance
of commercial nonlinear programming software applied to the
problem without decomposition. The experiments were carried
out on 3 networks of multiple sizes.

Our main findings are as follows:

(F1) The obtained results show that the GBD managed
to find the optimum, showing that GBD, after our
improvements is, indeed, applicable to routing prob-
lems, and can change to problem’s class to LP
When linear starting point selection was applied,
the runtimes could not compete with those of com-
mercial solvers, especially on problems with smaller
sizes

The use of quadratic starting point selection leads
to significantly lower runtimes than the commercial
solvers, suggesting how crucial the starting point
selection for GBD is.

To summarize, the GBD can be applied to change the
problem’s class altogether, which can enable us to solve
complex routing problems. Some of those problems have
multiple independent subproblems, for which we provide
theoretical improvements (T1, T2). We apply the method to
one such nonlinear problem, and as a result, we obtain a purely

(F2)

(F3)

K. KOZERSKI, A. KARBOWSKI

linear iterative problem (F1). However, such a decomposition
might not be competitive against the commercial solvers (F2).
Therefore, an appropriate starting point selection might be
needed to achieve a better performance (F3).
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