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Abstract—The aim of this research is to enhance the 

effectiveness of Android malware detection systems by 

implementing dimensionality reduction techniques on Boolean 

data. Algorithms such as Linear Discriminant Analysis (LDA), 

Principal Component Analysis (PCA), and Multi-Correspondence 

Analysis (MCA) serve as operations preceding the classification 

stage. The analysis is carried out using multiple classifiers such as 

Random Forest Classifier, Logistic Regression, and Support 

Vector Machines to measure how effective they can detect cyber 

threats. Results show that the Decision Tree Classifier, 

implemented without dimensionality reduction, achieved the 

optimal results with 100% accuracy. Efficient feature selection and 

rapid computation in the context of malware detection are 

necessary for real-time mobile cyber environment applications. 
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I. INTRODUCTION 

OBILE devices expand quickly and currently share 

majority of computers used worldwide. The Android 

Operating System (OS) is the most prominent software solution 

in this field. Its popularity makes it an easy target for the 

malware (similarly to Microsoft Windows in the desktop 

market). Therefore, it is important to analyze existing threats 

and find possible countermeasures against them. The Open-

Source environment and customizable features of Android 

provide options for investigating system-level capabilities, app 

development, and user interaction. Its accessibility and 

analytical power are greater than in the more restricted 

environment of the main counterpart, i.e. Apple iOS. The 

Android ecosystem covers a wide range of devices from 

different manufacturers, featuring diverse hardware, 

specifications and software settings. Its development 

environment (including Android Studio and support for 

numerous programming languages) is accessible for 

researchers. Android also provides a higher level of adaptability 

for personalization and exploration in contrast to iOS. It can be 

used to carry out experiments, integrate original functionalities, 

or create software prototypes. 

Malware detection (especially exploits, rootkits or spyware) 

requires usage of reverse engineering. Both static and dynamic 

analyses provide information extracted from apps’ structure and 

behavior [1]. Static analysis entails inspecting applications’ 

code, resources, and manifest files without executing them. It 
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covers features like requested permissions, API calls, code 

structure, and resource references [2]. Decompiling bytecode 

may provide further information. Dynamic analysis involves 

executing the program in a controlled setting and monitoring its 

performance. Features are obtained from interactions with the 

OS, hardware, network, and other programs. Methods such as 

hooking and runtime modification may be used to collect extra 

characteristics [3]. 

Mobile OS applications do not make direct system calls. 

Instead, they interact with the system through a Virtual Machine 

(VM) or a managed runtime environment. Because the VM 

handles the translation of API to system calls, the direct 

intentions of the program may be obscured. The VM acts as a 

buffer that masks the application's true behavior from the 

underlying OS. This makes it challenging to analyze the 

behavior of the application purely based on system calls, as the 

actual interactions are abstracted away. Machine learning 

models can be trained to recognize patterns of normal 

application behavior. Deviations from the nominal operation 

can signal potential malicious activity. 

Based on the information collected from the analysis, 

decisions about the nature of the program can be made. The 

amount of extracted information is usually large and difficult to 

interpret manually. Therefore Artificial Intelligence (AI) is the 

standard solution, being able to solve binary classification 

problems [4]. Feature reduction may be essential here, as it 

minimizes the amount of data processed both during the 

classifier training and decision making. It may lead to both 

increasing accuracy and suppressing time of computations. This 

is often achieved by filtering attributes with low information 

capacity or detecting highly correlated features. The goal is to 

simplify data sets. 

The aim of this paper is to investigate efficiency of the data 

reduction of Boolean-type data for the mobile malware 

detection. Well-known feature reduction and classification 

algorithms were combined to find the best solution the task. The 

framework was deployed using Python language and tested on 

selected, publicly available data sets. 

The content of the paper is as follows. In Section 2 the 

research gap in the field malware detection is presented. Section 

3 presents the general framework applied to the task. Selected 

feature reduction and classification algorithms are briefly 

described. In Section 4 the experimental setup and results are 

discussed. Section 5 contains conclusions and future prospects. 
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II. LITERATURE REVIEW 

The problem of Android malware detection may be defined 

through searching for the minimal set of features allowing for 

detecting dangerous programs with the highest possible 

accuracy. Multiple AI methods have been employed so far, 

including Support Vector Machine (SVM), DT (Decision Tree), 

RFC (Random Forest Classifier), MLP (Multilayer Perceptron, 

or Naïve Bayes Classifier (NBC) with the level of accuracy, 

sensitivity, and precision between 70% and 99% [5-10]. They 

are in most cases used on full data sets (with all features 

involved), though dimensionality reduction is also employed. 

Numerous features possible to extract, but determining which 

ones are significant is a challenging task. Therefore, dimension 

reduction techniques may be used. They include genetic 

algorithms, Weighted Features Ranking Dimension Reduction, 

hybrid-based feature selection, correlation-based or 

community-based feature selection [6-10]. The aim of the 

operation is to maintain the accuracy while simplifying the data 

representation and suppress time of computations (especially 

during training) [5]. The latter means lower costs, especially for 

cloud services or other pay-per-compute platforms. It may also 

lead to improved model performance and generalization. 

Datasets used for experiments contain different numbers of 

benign and malware applications with meta-information such as 

permission-based, control flow, component, and system calls 

features [5-10]. The total number of programs downloaded from 

Aptoide is 12,360. Each application was processed with the 

VirusTotal API -- a tool incorporating a total of 56 antivirus 

engines to scan for any malicious content. This process 

confirmed the presence and absence of malware in the 

applications, thus creating a labeled dataset with two classes: 

malicious and benign (safe). The dataset contains 8058 cases of 

‘benignware’ and 3418 malware with 167 features. They are 

classified as continuous, discrete, and Boolean (two-valued 

only). Continuous types include numerically-valued features 

such as ratings given by users or metrics touching screen size 

and CPU type. They facilitate the in-depth analysis of 

applications. Discrete meta-information is the name of the 

developer or the lowest SDK version needed which fits into the 

categorical data. Boolean data include binary variables, most 

commonly a yes/no or true/false. For example, an application 

may or may not require certain permission to be used. 

Among the most popular dimensionality reduction 

techniques, PCA has gained attention, since it can handle high-

dimensional feature sets, common in Android malware analysis. 

In [11], its performance varied across different algorithms. For 

example, the F-measure for PCA combined with K-Nearest 

Neighbors (KNN) was 0.945, while for NBC it dropped to 

0.793, which indicates that probably PCA is not fit for all 

methods. On the other hand, using LDA with KNN, NBC, 

Sequential Minimal Optimization (SMO), MLP, RFC, C.45, 

and LR allowed for improved classification compared to the full 

feature set. For instance, F-measure for LDA-KNN combination 

was 0.925, higher than results obtained with PCA [10]. LDA 

provided a significant gain in speed, with over 1400 times 

runtime reduction of training and testing compared to all 

features. 

MCA is an extension of the Correspondence Analysis (CA) 

for the identification of relationships between datasets 

comprising more than two discrete variables. In the case of the 

UCI datasets presented in [12], performance metrics have 

increased in terms of accuracy across different datasets when 

CA is applied. Results confirm that it boosts classification 

accuracy on multiple datasets. Selected experiments showed 

improvement when CA was used. This implies it does sustain a 

significant amount of information for boosting classification 

performance while complexity is retained at a lower level. 

Accuracy varied between 40% to 100% depending on the 

applied classifier, i.e. Artificial Neural Networks (ANN), C4.5, 

and KNN algorithms.  

Small datasets run the risk of overfitting, where the model 

learns from insignificant details specific to the particular 

training examples rather than general patterns, leading to poor 

generalization on new data [13, 14]. Modern deep learning 

models, such as Deep Neural Networks (DNN), require large 

quantities of data. Using small datasets with their conventional 

training methods often means degraded performances compared 

to traditional techniques, like MLP and SVM [15, 16, 17]. As 

DNN require large data sets and significant computational 

resources, they were excluded from the presented research, 

though should be considered in the future. 

In [18], a new system for detecting malware, based on a DNN 

was developed. It employs the following combination of 

features: permissions, intent filters, invalid certificates, presence 

of APK files in the asset folder, and API calls with 1200 android 

applications, which included 600 benign apps and 600 malicious 

apps. The DNN proved to be very effective with an accuracy of 

95.31% for classifying benign and malicious applications. 

These results stemmed from thorough testing with particular 

sets of features. 

The dataset [19] employed in this research was tackled with 

both static and dynamic analysis. Boolean data cover features 

that are either present or absent [20]. Reducing dimensionality 

and improving classification performance has been achieved so 

far via feature selection and PCA. In this study, scenarios with 

No Feature Reduction (NF), Principal Component Analysis 

(PCA), Linear Discriminant Analysis (LDA), and Multiple 

Correspondence Analysis (MCA) were tested. Their impact on 

accuracy, sensitivity, specificity, and computing time was 

evaluated. The general scheme of the approach is in Fig. 1.  

 

Fig. 1. Scheme of the malware detection using static analysis 

 

In Android malware detection, there is a lack of 

comprehensive studies that systematically investigate 
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effectiveness of these techniques for Boolean data, representing 

existence or lack of the particular detail in the application’s 

profile. Such data play an important role in static analysis, as 

they represent the raw form of the program, allowing for deep 

structure and behavior investigation without the code execution. 

While profiling a mobile application, this method allows for 

basic checks on the usage of components, like whether 

broadcast receivers, shared preferences, or background services, 

were used. For instance, a broadcast receiver existence is 

denoted by 1, and its absence is marked by 0. 

Boolean data allow for easier apps partitioning and detecting 

anomalies, such as abnormal component and permission levels, 

and disallowable modifications. Each aspect of the code, 

including libraries, functions, and data structures is simple to 

process. Static analysis tools need Boolean data to look for 

patterns or signatures of known vulnerabilities or malware for 

effective threat detection. In reverse engineering they help 

analysts to understand program logic, identify vulnerabilities, 

and assess security risks. This is especially important in 

uncovering zero-day or backdoor exploits [21]. 

III. MALWARE DETECTION ALGORITHMS 

Machine learning methods are used to analyze program activity 

via the operating systems’ Application Programming Interface 

(API). This involves integrating Real-Time data and merging 

third-party services into mobile apps [22-23]. Investigating 

features based on these call reveals distinctive operational traits 

of mobile devices, which may help to identify suspicious 

behavior patterns. The technique entails storing them to detect 

suspicious activities in new applications, facilitating 

development of detection algorithms. Security specialists 

employ command signatures, which are identifiable indicators 

of hazardous instructions, to analyze and develop detection 

methods for malicious activities in academic conversations. 

A. System Implementation 

The system implemented for the research (Fig.2) is divided 

into two modules. The first one employs feature reduction to 

minimize the amount of extracted from the application. It uses 

MCA, PCA, and LDA [21-23]. These are successful in 

examining relations between categorical variables, identifying 

variability and trends in data, optimizing class distinction, 

respectively [24-26]. However, their usefulness is known only 

in conjunction with the subsequent classifier. Therefore, the 

second module is responsible for the malware detection, 

segregation of the analyzed application into one of two 

categories: malware or “benign”, harmless program. This is 

therefore the binary classification problem. The following 

section covers description of all methods used in the research. 

B. Classification Algorithms 

Eight machine learning methods with the rich history of 

practical implementations were employed in this study: Random 

Forest Classifier (RFC), Logistic Regression (LR), Gaussian 

Naïve Bayes (GNB), KNN, SVM, Linear Classifier with 

Stochastic Gradient Descent (LCSGD), Decision Tree Classifier 

(DTC), and MLP. They solve the binary classification task, 

distinguishing between the legitimate (positive category – 0) 

and dangerous (negative category – 1) software: 

 
Fig. 2. Malware detection scheme used in the presented research. 

 

Both DTC and RFC are rule-based approaches, knowledge 

extracted by them during training is readable by the human 

operator. The tree-like structure allows for the top-down feature 

vector processing (using tests existing in nodes) until the 

category in the leaf is reached. Because the single tree has the 

tendency to excessively adjust the structure to the data, random 

forests are used as the more generic solution, with the greater 

generalization capabilities. The feature reduction is performed 

as the by-product of the decision generation (only part of the 

features is selected to nodes). However, it is possible to enforce 

the minimum set of attributes externally. 

Statistical/numerical approaches are represented by LR, 

MLP, SVM and LCSGD. Their aim is to process the input data 

through the specifically designed function. 

LR is a statistical method used to represent the relationship 

between a dependent variable and one or more independent 

variables. It involves fitting a straight line to the data in order to 

make predictions. GNB is a probabilistic classifier that relies on 

Bayes' theorem KNN predicts the class or value of a data point 

by considering the majority class or average value of its k 

nearest neighbors in the feature space.  

SVM implements the separating hyperplane in a 

multidimensional space to divide different categories. The goal 

is to maximize the distance between them, which is known as 

the margin. SGD is a linear classifier trained by updating the 

model parameters using the gradient of the loss function, which 

is computed on tiny batches of training data. MLP is a specific 

kind of ANN that consists of numerous layers of interconnected 

nodes, such as input, hidden, and output layers. All classifiers 

were used already optimized through grid search [30]. 

Every classifier uses knowledge of different type, potentially 

capturing distinct patterns and correlations in data. By 

comparing performance of these models on the same dataset, it 

is possible to select the best one. In the end, utilizing several 

classifiers allows us to construct prediction models for Boolean 

datasets that are more precise, resilient, and adaptable. 

C. Feature Reduction Approaches 

1) Principal Component Analysis is used to identify the 

main patterns in a data matrix. It does this by generating a 

set of score and loading plots that capture the dominant 

patterns in the matrix [31]. 

2) Linear Discriminant Analysis aims to optimize the ratio 

of between-class variance to within-class variance in a 

given dataset, ensuring the highest level of separability. It 

is commonly used for classification in speech recognition. 

The fact that LDA can directly handle numerous 

categories and generate discriminant functions for each 
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category in comparison to a baseline makes it especially 

helpful for Boolean data [32]. The algorithm is well-

known for its resilience against fluctuations in the data. It 

focuses on maximizing the separation between classes 

based on their overall distribution in data, rather than 

being influenced by individual data points [33, 34]. 

3) Multiple Correspondence Analysis is comparable to 

PCA for categorical data, while PCA is defined 

geometrically rather than statistically. It is used to 

determine original features and redefine rows and columns 

of a data set as points in a high-dimensional Euclidean 

space. This allows to discover the primary dimensions that 

captures the maximum amount of variation [35]. 

The experiments were performed on a machine with 64 GB 

RAM and AMD Ryzen™ 3 3200U Processor (2.6 GHz base 

clock, 3.5 GHz max boost clock, 4 MB L3 cache, 2 cores). On 

the software side, Python language with scikit learn library were 

used. Linux Ubuntu version 20.04.6 was running as the 

operating system. 

D. Classifiers’ Configuration 

Hyperparameters of the applied classifiers were fine-tuned 

to maximize their accuracy. They are presented in Tab. I and 

Tab. II, where nest is the number of estimators (classifiers), dmax 

is the maximum tree depth, C is the regularization coefficient, 

imax is the maximum number of iterations, smooth is the decision 

function smoothing, nn is the number of nearest neighbors, γ is 

the width of the Gaussian kernel, hls is the number of neurons 

in the hidden layer, act is he activation function inside neurons 

and solver is the optimization task solver.  

TABLE I 

CONFIGURATION OF CLASSIFIERS USED IN THE EXPERIMENTS 

Reduct 

RFC LR GNB kNN SVM 

nest dmax C imax smooth nn C γ 

NF 200 None 1 800 1 3 1 1 

PCA 100 10 10 800 10 3 1 1 

LDA 100 10 0,1 100 0,1 7 100 1 

MCA 300 20 0,01 100 0,1 3 0,1 0,1 

 
TABLE II 

CONFIGURATION OF CLASSIFIERS USED IN THE EXPERIMENTS 

 

Reduct 
DTC MLP 

dmax hls imax act solver 

NF 20 125 800 relu adam 

PCA 10 100 800 relu adam 

LDA 50 125 200 tanh sgd 

MCA 20 5 400 tanh sgd 

E. Used Dataset 

A dataset from [36] was used in the experiments, covering 

12.360. It includes both binary and non-binary data. The former 

are variables with only two possible values (such as 0 and 1), 

can simplify the decision-making process for binary classifiers 

[37]. The features obtained from static analysis were as follows: 

API calls, Inter-Component Communication (ICC), and 

Android manifest. 

The Android uses ICC or Binder for inter-process 

communication. Through the use of ICC, an application 

component has the ability to access data from another 

component within the same or different application, or a remote 

service [38]. An instance of a product delivery software may 

utilize a Map API to determine the geographical coordinates of 

a device [39].  
The Android Manifest file is an archive of data regarding an 

application's various components, permissions, and 

configuration. It is frequently monitored to detect possible signs 

of malicious conduct. The manifest files in Android applications 

comprise of two sources of information, uses-permissions and 

uses-features [40]. They are widely acknowledged as the 

security measure. In order to install any application, it is 

necessary for the user to provide access permissions [41]. 
Identifying Android malware based just on the Manifest file 

is difficult because of advanced evasion techniques and 

dynamic changes in the malware behavior. Thus, a 

comprehensive approach that combines Manifest analysis with 

other detection methods and security mechanisms is crucial for 

successful malware detection. 

IV. MALWARE DETECTION PERFORMANCE 

All models were trained and tested on the original and reduced 

data after removing the numerical (continuous type) features of 

the dataset. The test scenario was implemented using cross 

validation with 5 folds [42]. Several measures evaluate the 

efficiency of the model. 

The optimal results obtained for the particular reductions 

methods are in Fig. 3. In Tab. III-VI, the performance of each 

model may be analyzed and evaluated considering accuracy, 

sensitivity, and specificity. They prove that applied classifiers 

on binary data perform satisfactorily, though their outcomes are 

worse when data reduction is applied.  

 

 
 

Fig. 3. Dimensionality reduction performance 

 

Among all used methods, the DT model is the best, reaching 

an accuracy of 100%, with sensitivity and specificity of 100% 

and low computation time of 180 milliseconds-only, without 

dimensionality reduction (the NFR case). DT naturally handles 

high-dimensional data by splitting based on thresholds in 

features. In the NFR scenario the model preserved all features 

originally included, thus retaining some of the most critical 

information which could have otherwise been lost. 
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In all reduction cases the loss in accuracy is visible. It is 

acceptable, provided that the minimized set of features is much 

easier or faster to collect than the original (larger) set. Each 

method provides a different range of features (their number does 

not exceed 40), which means the significant speed up in the real-

time analysis may be obtained. Also, Boolean data are simpler 

to describe the vector attack (either the operation or event took 

place or not), supporting the idea of focusing on such 

information extracted from the operating system. Besides, RFC 

and DT operating on the original data may be used as the feature 

selectors (though the threat of overfitting exists here) with much 

smaller computational effort. 

 
TABLE III 

PERFORMANCE OF CLASSIFIERS FOR THE ORIGINAL DATA SET 

Measure 

Algorithms (%) 

RFC LR GNB KNN SVM LCSGD DTC MLP 

acc 100 100 100 99 99 100 100 100 

sens 100 100 100 96 97 100 100 100 

spec 100 100 100 100 100 100 100 100 

 

TABLE IV 

PERFORMANCE OF CLASSIFIERS FOR THE PCA REDUCTION 

 Measure 

Algorithms (%) 

RFC LR GNB KNN SVM LCSGD DTC MLP 

acc 92 90 90 72 92 90 91 91 

sens 78 71 71 5 78 69 78 78 

spec 97 97 97 100 97 98 96 97 

 

TABLE V 

PERFORMANCE OF CLASSIFIERS FOR THE LDA REDUCTION 

 Measure 

Algorithms (%) 

RFC LR GNB KNN SVM LCSGD DTC MLP 

acc 91 90 90 72 90 90 91 90 

sens 77 71 71 7 71 71 78 73 

spec 97 98 98 99 98 98 97 97 

 

TABLE VI 

PERFORMANCE OF CLASSIFIERS FOR THE MCA REDUCTION 

 Measure 

Algorithms (%) 

RFC LR GNB KNN SVM LCSGD DTC MLP 

acc 91 89 89 71 89 89 91 89 

sens 78 67 67 6 67 67 77 67 

spec 97 99 99 99 99 99 97 99 

 

CONCLUSIONS 

 This study, demonstrated the importance of dimensionality 

reduction in combination with machine learning in the 

improvement of malware detection in Android OS. Application 

of the presented methods enabled to show their impact on 

improving classification performance. The DTC was the best 

performing model with 100% accuracy, sensitivity, specificity, 

and precision without dimensionality reduction. This means that 

the data was well-structured and the model captured the 

underlying patterns of the dataset quite well. 

The results have underlined the importance of Boolean data 

in static analysis for malware detection, as this approach gives 

knowledge of application behavior without its execution. Also, 

computational efficiency of these techniques.  

Future work must focus on validation of the obtained results 

on additional data (especially using different datasets, though it 

should be checked if they contain identical features). Also, 

comparative analysis between the applied approaches and the 

explainable AI (including decision trees and random forests) 

should be performed to verify which approach is more robust. 

Finally, the ability to implement these techniques into the real-

time detection systems should be confirmed.  
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