

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2025, VOL. 71, NO. 4, PP. 1-7

Manuscript received March 03, 2025; revised September 2025. doi: 10.24425/ijet.2025.155487

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,

https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

Abstract—The aim of this research is to enhance the

effectiveness of Android malware detection systems by

implementing dimensionality reduction techniques on Boolean

data. Algorithms such as Linear Discriminant Analysis (LDA),

Principal Component Analysis (PCA), and Multi-Correspondence

Analysis (MCA) serve as operations preceding the classification

stage. The analysis is carried out using multiple classifiers such as

Random Forest Classifier, Logistic Regression, and Support

Vector Machines to measure how effective they can detect cyber

threats. Results show that the Decision Tree Classifier,

implemented without dimensionality reduction, achieved the

optimal results with 100% accuracy. Efficient feature selection and

rapid computation in the context of malware detection are

necessary for real-time mobile cyber environment applications.

Keywords—android; malware; machine learning; algorithms;

dimensionality reduction; classification

I. INTRODUCTION

OBILE devices expand quickly and currently share

majority of computers used worldwide. The Android

Operating System (OS) is the most prominent software solution

in this field. Its popularity makes it an easy target for the

malware (similarly to Microsoft Windows in the desktop

market). Therefore, it is important to analyze existing threats

and find possible countermeasures against them. The Open-

Source environment and customizable features of Android

provide options for investigating system-level capabilities, app

development, and user interaction. Its accessibility and

analytical power are greater than in the more restricted

environment of the main counterpart, i.e. Apple iOS. The

Android ecosystem covers a wide range of devices from

different manufacturers, featuring diverse hardware,

specifications and software settings. Its development

environment (including Android Studio and support for

numerous programming languages) is accessible for

researchers. Android also provides a higher level of adaptability

for personalization and exploration in contrast to iOS. It can be

used to carry out experiments, integrate original functionalities,

or create software prototypes.

Malware detection (especially exploits, rootkits or spyware)

requires usage of reverse engineering. Both static and dynamic

analyses provide information extracted from apps’ structure and

behavior [1]. Static analysis entails inspecting applications’

code, resources, and manifest files without executing them. It

Authors are with Warsaw University of Technology, Poland

(01186007@pw.edu.pl, piotr.bilski@pw.edu.pl, grzegorz.gwardys@

pw.edu.pl).

covers features like requested permissions, API calls, code

structure, and resource references [2]. Decompiling bytecode

may provide further information. Dynamic analysis involves

executing the program in a controlled setting and monitoring its

performance. Features are obtained from interactions with the

OS, hardware, network, and other programs. Methods such as

hooking and runtime modification may be used to collect extra

characteristics [3].

Mobile OS applications do not make direct system calls.

Instead, they interact with the system through a Virtual Machine

(VM) or a managed runtime environment. Because the VM

handles the translation of API to system calls, the direct

intentions of the program may be obscured. The VM acts as a

buffer that masks the application's true behavior from the

underlying OS. This makes it challenging to analyze the

behavior of the application purely based on system calls, as the

actual interactions are abstracted away. Machine learning

models can be trained to recognize patterns of normal

application behavior. Deviations from the nominal operation

can signal potential malicious activity.

Based on the information collected from the analysis,

decisions about the nature of the program can be made. The

amount of extracted information is usually large and difficult to

interpret manually. Therefore Artificial Intelligence (AI) is the

standard solution, being able to solve binary classification

problems [4]. Feature reduction may be essential here, as it

minimizes the amount of data processed both during the

classifier training and decision making. It may lead to both

increasing accuracy and suppressing time of computations. This

is often achieved by filtering attributes with low information

capacity or detecting highly correlated features. The goal is to

simplify data sets.

The aim of this paper is to investigate efficiency of the data

reduction of Boolean-type data for the mobile malware

detection. Well-known feature reduction and classification

algorithms were combined to find the best solution the task. The

framework was deployed using Python language and tested on

selected, publicly available data sets.

The content of the paper is as follows. In Section 2 the

research gap in the field malware detection is presented. Section

3 presents the general framework applied to the task. Selected

feature reduction and classification algorithms are briefly

described. In Section 4 the experimental setup and results are

discussed. Section 5 contains conclusions and future prospects.

Comparative features reduction investigation for

Android malware detection on Boolean data
Ary Irawan, Piotr Bilski, and Grzegorz Gwardys

M

https://creativecommons.org/licenses/by/4.0/

2 A. IRAWAN, P. BILSKI

II. LITERATURE REVIEW

The problem of Android malware detection may be defined

through searching for the minimal set of features allowing for

detecting dangerous programs with the highest possible

accuracy. Multiple AI methods have been employed so far,

including Support Vector Machine (SVM), DT (Decision Tree),

RFC (Random Forest Classifier), MLP (Multilayer Perceptron,

or Naïve Bayes Classifier (NBC) with the level of accuracy,

sensitivity, and precision between 70% and 99% [5-10]. They

are in most cases used on full data sets (with all features

involved), though dimensionality reduction is also employed.

Numerous features possible to extract, but determining which

ones are significant is a challenging task. Therefore, dimension

reduction techniques may be used. They include genetic

algorithms, Weighted Features Ranking Dimension Reduction,

hybrid-based feature selection, correlation-based or

community-based feature selection [6-10]. The aim of the

operation is to maintain the accuracy while simplifying the data

representation and suppress time of computations (especially

during training) [5]. The latter means lower costs, especially for

cloud services or other pay-per-compute platforms. It may also

lead to improved model performance and generalization.

Datasets used for experiments contain different numbers of

benign and malware applications with meta-information such as

permission-based, control flow, component, and system calls

features [5-10]. The total number of programs downloaded from

Aptoide is 12,360. Each application was processed with the

VirusTotal API -- a tool incorporating a total of 56 antivirus

engines to scan for any malicious content. This process

confirmed the presence and absence of malware in the

applications, thus creating a labeled dataset with two classes:

malicious and benign (safe). The dataset contains 8058 cases of

‘benignware’ and 3418 malware with 167 features. They are

classified as continuous, discrete, and Boolean (two-valued

only). Continuous types include numerically-valued features

such as ratings given by users or metrics touching screen size

and CPU type. They facilitate the in-depth analysis of

applications. Discrete meta-information is the name of the

developer or the lowest SDK version needed which fits into the

categorical data. Boolean data include binary variables, most

commonly a yes/no or true/false. For example, an application

may or may not require certain permission to be used.

Among the most popular dimensionality reduction

techniques, PCA has gained attention, since it can handle high-

dimensional feature sets, common in Android malware analysis.

In [11], its performance varied across different algorithms. For

example, the F-measure for PCA combined with K-Nearest

Neighbors (KNN) was 0.945, while for NBC it dropped to

0.793, which indicates that probably PCA is not fit for all

methods. On the other hand, using LDA with KNN, NBC,

Sequential Minimal Optimization (SMO), MLP, RFC, C.45,

and LR allowed for improved classification compared to the full

feature set. For instance, F-measure for LDA-KNN combination

was 0.925, higher than results obtained with PCA [10]. LDA

provided a significant gain in speed, with over 1400 times

runtime reduction of training and testing compared to all

features.

MCA is an extension of the Correspondence Analysis (CA)

for the identification of relationships between datasets

comprising more than two discrete variables. In the case of the

UCI datasets presented in [12], performance metrics have

increased in terms of accuracy across different datasets when

CA is applied. Results confirm that it boosts classification

accuracy on multiple datasets. Selected experiments showed

improvement when CA was used. This implies it does sustain a

significant amount of information for boosting classification

performance while complexity is retained at a lower level.

Accuracy varied between 40% to 100% depending on the

applied classifier, i.e. Artificial Neural Networks (ANN), C4.5,

and KNN algorithms.

Small datasets run the risk of overfitting, where the model

learns from insignificant details specific to the particular

training examples rather than general patterns, leading to poor

generalization on new data [13, 14]. Modern deep learning

models, such as Deep Neural Networks (DNN), require large

quantities of data. Using small datasets with their conventional

training methods often means degraded performances compared

to traditional techniques, like MLP and SVM [15, 16, 17]. As

DNN require large data sets and significant computational

resources, they were excluded from the presented research,

though should be considered in the future.

In [18], a new system for detecting malware, based on a DNN

was developed. It employs the following combination of

features: permissions, intent filters, invalid certificates, presence

of APK files in the asset folder, and API calls with 1200 android

applications, which included 600 benign apps and 600 malicious

apps. The DNN proved to be very effective with an accuracy of

95.31% for classifying benign and malicious applications.

These results stemmed from thorough testing with particular

sets of features.

The dataset [19] employed in this research was tackled with

both static and dynamic analysis. Boolean data cover features

that are either present or absent [20]. Reducing dimensionality

and improving classification performance has been achieved so

far via feature selection and PCA. In this study, scenarios with

No Feature Reduction (NF), Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA), and Multiple

Correspondence Analysis (MCA) were tested. Their impact on

accuracy, sensitivity, specificity, and computing time was

evaluated. The general scheme of the approach is in Fig. 1.

Fig. 1. Scheme of the malware detection using static analysis

In Android malware detection, there is a lack of

comprehensive studies that systematically investigate

COMPARATIVE FEATURES REDUCTION INVESTIGATION FOR ANDROID MALWARE DETECTION ON BOOLEAN DATA 3

effectiveness of these techniques for Boolean data, representing

existence or lack of the particular detail in the application’s

profile. Such data play an important role in static analysis, as

they represent the raw form of the program, allowing for deep

structure and behavior investigation without the code execution.

While profiling a mobile application, this method allows for

basic checks on the usage of components, like whether

broadcast receivers, shared preferences, or background services,

were used. For instance, a broadcast receiver existence is

denoted by 1, and its absence is marked by 0.

Boolean data allow for easier apps partitioning and detecting

anomalies, such as abnormal component and permission levels,

and disallowable modifications. Each aspect of the code,

including libraries, functions, and data structures is simple to

process. Static analysis tools need Boolean data to look for

patterns or signatures of known vulnerabilities or malware for

effective threat detection. In reverse engineering they help

analysts to understand program logic, identify vulnerabilities,

and assess security risks. This is especially important in

uncovering zero-day or backdoor exploits [21].

III. MALWARE DETECTION ALGORITHMS

Machine learning methods are used to analyze program activity

via the operating systems’ Application Programming Interface

(API). This involves integrating Real-Time data and merging

third-party services into mobile apps [22-23]. Investigating

features based on these call reveals distinctive operational traits

of mobile devices, which may help to identify suspicious

behavior patterns. The technique entails storing them to detect

suspicious activities in new applications, facilitating

development of detection algorithms. Security specialists

employ command signatures, which are identifiable indicators

of hazardous instructions, to analyze and develop detection

methods for malicious activities in academic conversations.

A. System Implementation

The system implemented for the research (Fig.2) is divided

into two modules. The first one employs feature reduction to

minimize the amount of extracted from the application. It uses

MCA, PCA, and LDA [21-23]. These are successful in

examining relations between categorical variables, identifying

variability and trends in data, optimizing class distinction,

respectively [24-26]. However, their usefulness is known only

in conjunction with the subsequent classifier. Therefore, the

second module is responsible for the malware detection,

segregation of the analyzed application into one of two

categories: malware or “benign”, harmless program. This is

therefore the binary classification problem. The following

section covers description of all methods used in the research.

B. Classification Algorithms

Eight machine learning methods with the rich history of

practical implementations were employed in this study: Random

Forest Classifier (RFC), Logistic Regression (LR), Gaussian

Naïve Bayes (GNB), KNN, SVM, Linear Classifier with

Stochastic Gradient Descent (LCSGD), Decision Tree Classifier

(DTC), and MLP. They solve the binary classification task,

distinguishing between the legitimate (positive category – 0)

and dangerous (negative category – 1) software:

Fig. 2. Malware detection scheme used in the presented research.

Both DTC and RFC are rule-based approaches, knowledge

extracted by them during training is readable by the human

operator. The tree-like structure allows for the top-down feature

vector processing (using tests existing in nodes) until the

category in the leaf is reached. Because the single tree has the

tendency to excessively adjust the structure to the data, random

forests are used as the more generic solution, with the greater

generalization capabilities. The feature reduction is performed

as the by-product of the decision generation (only part of the

features is selected to nodes). However, it is possible to enforce

the minimum set of attributes externally.

Statistical/numerical approaches are represented by LR,

MLP, SVM and LCSGD. Their aim is to process the input data

through the specifically designed function.

LR is a statistical method used to represent the relationship

between a dependent variable and one or more independent

variables. It involves fitting a straight line to the data in order to

make predictions. GNB is a probabilistic classifier that relies on

Bayes' theorem KNN predicts the class or value of a data point

by considering the majority class or average value of its k

nearest neighbors in the feature space.

SVM implements the separating hyperplane in a

multidimensional space to divide different categories. The goal

is to maximize the distance between them, which is known as

the margin. SGD is a linear classifier trained by updating the

model parameters using the gradient of the loss function, which

is computed on tiny batches of training data. MLP is a specific

kind of ANN that consists of numerous layers of interconnected

nodes, such as input, hidden, and output layers. All classifiers

were used already optimized through grid search [30].

Every classifier uses knowledge of different type, potentially

capturing distinct patterns and correlations in data. By

comparing performance of these models on the same dataset, it

is possible to select the best one. In the end, utilizing several

classifiers allows us to construct prediction models for Boolean

datasets that are more precise, resilient, and adaptable.

C. Feature Reduction Approaches

1) Principal Component Analysis is used to identify the

main patterns in a data matrix. It does this by generating a

set of score and loading plots that capture the dominant

patterns in the matrix [31].

2) Linear Discriminant Analysis aims to optimize the ratio

of between-class variance to within-class variance in a

given dataset, ensuring the highest level of separability. It

is commonly used for classification in speech recognition.

The fact that LDA can directly handle numerous

categories and generate discriminant functions for each

4 A. IRAWAN, P. BILSKI

category in comparison to a baseline makes it especially

helpful for Boolean data [32]. The algorithm is well-

known for its resilience against fluctuations in the data. It

focuses on maximizing the separation between classes

based on their overall distribution in data, rather than

being influenced by individual data points [33, 34].

3) Multiple Correspondence Analysis is comparable to

PCA for categorical data, while PCA is defined

geometrically rather than statistically. It is used to

determine original features and redefine rows and columns

of a data set as points in a high-dimensional Euclidean

space. This allows to discover the primary dimensions that

captures the maximum amount of variation [35].

The experiments were performed on a machine with 64 GB

RAM and AMD Ryzen™ 3 3200U Processor (2.6 GHz base

clock, 3.5 GHz max boost clock, 4 MB L3 cache, 2 cores). On

the software side, Python language with scikit learn library were

used. Linux Ubuntu version 20.04.6 was running as the

operating system.

D. Classifiers’ Configuration

Hyperparameters of the applied classifiers were fine-tuned

to maximize their accuracy. They are presented in Tab. I and

Tab. II, where nest is the number of estimators (classifiers), dmax

is the maximum tree depth, C is the regularization coefficient,

imax is the maximum number of iterations, smooth is the decision

function smoothing, nn is the number of nearest neighbors, γ is

the width of the Gaussian kernel, hls is the number of neurons

in the hidden layer, act is he activation function inside neurons

and solver is the optimization task solver.

TABLE I

CONFIGURATION OF CLASSIFIERS USED IN THE EXPERIMENTS

Reduct

RFC LR GNB kNN SVM

nest dmax C imax smooth nn C γ

NF 200 None 1 800 1 3 1 1

PCA 100 10 10 800 10 3 1 1

LDA 100 10 0,1 100 0,1 7 100 1

MCA 300 20 0,01 100 0,1 3 0,1 0,1

TABLE II

CONFIGURATION OF CLASSIFIERS USED IN THE EXPERIMENTS

Reduct
DTC MLP

dmax hls imax act solver

NF 20 125 800 relu adam

PCA 10 100 800 relu adam

LDA 50 125 200 tanh sgd

MCA 20 5 400 tanh sgd

E. Used Dataset

A dataset from [36] was used in the experiments, covering

12.360. It includes both binary and non-binary data. The former

are variables with only two possible values (such as 0 and 1),

can simplify the decision-making process for binary classifiers

[37]. The features obtained from static analysis were as follows:

API calls, Inter-Component Communication (ICC), and

Android manifest.

The Android uses ICC or Binder for inter-process

communication. Through the use of ICC, an application

component has the ability to access data from another

component within the same or different application, or a remote

service [38]. An instance of a product delivery software may

utilize a Map API to determine the geographical coordinates of

a device [39].
The Android Manifest file is an archive of data regarding an

application's various components, permissions, and

configuration. It is frequently monitored to detect possible signs

of malicious conduct. The manifest files in Android applications

comprise of two sources of information, uses-permissions and

uses-features [40]. They are widely acknowledged as the

security measure. In order to install any application, it is

necessary for the user to provide access permissions [41].
Identifying Android malware based just on the Manifest file

is difficult because of advanced evasion techniques and

dynamic changes in the malware behavior. Thus, a

comprehensive approach that combines Manifest analysis with

other detection methods and security mechanisms is crucial for

successful malware detection.

IV. MALWARE DETECTION PERFORMANCE

All models were trained and tested on the original and reduced

data after removing the numerical (continuous type) features of

the dataset. The test scenario was implemented using cross

validation with 5 folds [42]. Several measures evaluate the

efficiency of the model.

The optimal results obtained for the particular reductions

methods are in Fig. 3. In Tab. III-VI, the performance of each

model may be analyzed and evaluated considering accuracy,

sensitivity, and specificity. They prove that applied classifiers

on binary data perform satisfactorily, though their outcomes are

worse when data reduction is applied.

Fig. 3. Dimensionality reduction performance

Among all used methods, the DT model is the best, reaching

an accuracy of 100%, with sensitivity and specificity of 100%

and low computation time of 180 milliseconds-only, without

dimensionality reduction (the NFR case). DT naturally handles

high-dimensional data by splitting based on thresholds in

features. In the NFR scenario the model preserved all features

originally included, thus retaining some of the most critical

information which could have otherwise been lost.

COMPARATIVE FEATURES REDUCTION INVESTIGATION FOR ANDROID MALWARE DETECTION ON BOOLEAN DATA 5

In all reduction cases the loss in accuracy is visible. It is

acceptable, provided that the minimized set of features is much

easier or faster to collect than the original (larger) set. Each

method provides a different range of features (their number does

not exceed 40), which means the significant speed up in the real-

time analysis may be obtained. Also, Boolean data are simpler

to describe the vector attack (either the operation or event took

place or not), supporting the idea of focusing on such

information extracted from the operating system. Besides, RFC

and DT operating on the original data may be used as the feature

selectors (though the threat of overfitting exists here) with much

smaller computational effort.

TABLE III

PERFORMANCE OF CLASSIFIERS FOR THE ORIGINAL DATA SET

Measure

Algorithms (%)

RFC LR GNB KNN SVM LCSGD DTC MLP

acc 100 100 100 99 99 100 100 100

sens 100 100 100 96 97 100 100 100

spec 100 100 100 100 100 100 100 100

TABLE IV

PERFORMANCE OF CLASSIFIERS FOR THE PCA REDUCTION

 Measure

Algorithms (%)

RFC LR GNB KNN SVM LCSGD DTC MLP

acc 92 90 90 72 92 90 91 91

sens 78 71 71 5 78 69 78 78

spec 97 97 97 100 97 98 96 97

TABLE V

PERFORMANCE OF CLASSIFIERS FOR THE LDA REDUCTION

 Measure

Algorithms (%)

RFC LR GNB KNN SVM LCSGD DTC MLP

acc 91 90 90 72 90 90 91 90

sens 77 71 71 7 71 71 78 73

spec 97 98 98 99 98 98 97 97

TABLE VI

PERFORMANCE OF CLASSIFIERS FOR THE MCA REDUCTION

 Measure

Algorithms (%)

RFC LR GNB KNN SVM LCSGD DTC MLP

acc 91 89 89 71 89 89 91 89

sens 78 67 67 6 67 67 77 67

spec 97 99 99 99 99 99 97 99

CONCLUSIONS

 This study, demonstrated the importance of dimensionality

reduction in combination with machine learning in the

improvement of malware detection in Android OS. Application

of the presented methods enabled to show their impact on

improving classification performance. The DTC was the best

performing model with 100% accuracy, sensitivity, specificity,

and precision without dimensionality reduction. This means that

the data was well-structured and the model captured the

underlying patterns of the dataset quite well.

The results have underlined the importance of Boolean data

in static analysis for malware detection, as this approach gives

knowledge of application behavior without its execution. Also,

computational efficiency of these techniques.

Future work must focus on validation of the obtained results

on additional data (especially using different datasets, though it

should be checked if they contain identical features). Also,

comparative analysis between the applied approaches and the

explainable AI (including decision trees and random forests)

should be performed to verify which approach is more robust.

Finally, the ability to implement these techniques into the real-

time detection systems should be confirmed.

REFERENCES

[1] P. Benedusi, “Improving reverse engineering models with test-case

related knowledge,” Inf. Softw. Technol., vol. 38, no. 11, pp. 711–718,

Nov. 1996, https://doi.org/10.1016/0950-5849(96)01119-6
[2] L. Li et al., “Static analysis of android apps: A systematic literature

review,” Inf. Softw. Technol., vol. 88, pp. 67–95, Aug. 2017,

https://doi.org/10.1016/j.infsof.2017.04.001
[3] H. Binder, K. Krohn, and S. Preibisch, “‘Hook’-calibration of GeneChip-

microarrays: Chip characteristics and expression measures,” Algorithms

Mol. Biol., vol. 3, no. 1, p. 11, Dec. 2008. https://doi.org/10.1186/1748-
7188-3-11

[4] N. Mohapatra, B. Satapathy, B. Mohapatra, and B. K. Mohanta,

“Malware Detection using Artificial Intelligence,” in 2022 13th
International Conference on Computing Communication and

Networking Technologies (ICCCNT), Kharagpur, India: IEEE, Oct.

2022, pp. 1–6. https://doi.org/10.1109/ICCCNT54827.2022.9984218
[5] J. Sahs and L. Khan, “A Machine Learning Approach to Android

Malware Detection,” in 2012 European Intelligence and Security

Informatics Conference, Odense, Denmark: IEEE, Aug. 2012, pp. 141–
147. https://doi.org/10.1109/EISIC.2012.34

[6] A. Fatima, R. Maurya, M. K. Dutta, R. Burget, and J. Masek, “Android

Malware Detection Using Genetic Algorithm based Optimized Feature
Selection and Machine Learning,” in 2019 42nd International

Conference on Telecommunications and Signal Processing (TSP),

Budapest, Hungary: IEEE, Jul. 2019, pp. 220–223.
https://doi.org/10.1109/TSP.2019.8769039

[7] M. Z. Mas’ud, S. Sahib, M. F. Abdollah, S. R. Selamat, and R. Yusof,

“Analysis of Features Selection and Machine Learning Classifier in
Android Malware Detection,” in 2014 International Conference on

Information Science & Applications (ICISA), Seoul, South Korea: IEEE,

May 2014, pp. 1–5. https://doi.org/10.1109/ICISA.2014.6847364
[8] S. K. Smmarwar, G. P. Gupta, and S. Kumar, “A Hybrid Feature

Selection Approach-Based Android Malware Detection Framework

Using Machine Learning Techniques,” in Cyber Security, Privacy and
Networking, vol. 370, D. P. Agrawal, N. Nedjah, B. B. Gupta, and G.

Martinez Perez, Eds., in Lecture Notes in Networks and Systems, vol.

370. , Singapore: Springer Nature Singapore, 2022, pp. 347–356.
https://doi.org/10.1007/978-981-16-8664-1_30

[9] K. Deepa, G. Radhamani, and P. Vinod, “Investigation of Feature

Selection Methods for Android Malware Analysis,” Procedia Comput.
Sci., vol. 46, pp. 841–848, 2015.

https://doi.org/10.1016/j.procs.2015.02.153

[10] A. Bhattacharya and R. T. Goswami, “Community Based Feature
Selection Method for Detection of Android Malware:,” J. Glob. Inf.

Manag., vol. 26, no. 3, pp. 54–77, Jul. 2018.
https://doi.org/10.4018/JGIM.2018070105

[11] D. Ö. Şahin, O. E. Kural, S. Akleylek, and E. Kılıç, “Permission-based

Android malware analysis by using dimension reduction with PCA and
LDA,” J. Inf. Secur. Appl., vol. 63, p. 102995, Dec. 2021.

https://doi.org/10.1016/j.jisa.2021.102995

[12] T. R. Payne and P. Edwards, “Dimensionality Reduction through

Correspondence Analysis,” Oct. 14, 1999. Accessed: Dec. 06, 2024.

[Online]. Available: https://eprints.soton.ac.uk/263091/1/camap.pdf

[13] W. Zhao, “Research on the deep learning of the small sample data based
on transfer learning,” presented at the GREEN ENERGY AND

SUSTAINABLE DEVELOPMENT I: Proceedings of the International

Conference on Green Energy and Sustainable Development (GESD
2017), Chongqing City, China, 2017, p. 020018.

https://doi.org/10.1063/1.4992835

https://doi.org/10.1016/0950-5849(96)01119-6
https://doi.org/10.1016/j.infsof.2017.04.001
https://doi.org/10.1186/1748-7188-3-11
https://doi.org/10.1186/1748-7188-3-11
https://doi.org/10.1109/ICCCNT54827.2022.9984218
https://doi.org/10.1109/EISIC.2012.34
https://doi.org/10.1109/TSP.2019.8769039
https://doi.org/10.1109/ICISA.2014.6847364
https://doi.org/10.1007/978-981-16-8664-1_30
https://doi.org/10.1016/j.procs.2015.02.153
https://doi.org/10.4018/JGIM.2018070105
https://doi.org/10.1016/j.jisa.2021.102995
https://eprints.soton.ac.uk/263091/1/camap.pdf
https://doi.org/10.1063/1.4992835

6 A. IRAWAN, P. BILSKI

[14] L. Brigato and L. Iocchi, “A Close Look at Deep Learning with Small

Data,” Oct. 25, 2020, arXiv: arXiv:2003.12843.

https://doi.org/10.48550/arXiv.2003.12843

[15] S. Feng, H. Zhou, and H. Dong, “Using deep neural network with small
dataset to predict material defects,” Mater. Des., vol. 162, pp. 300–310,

Jan. 2019. https://doi.org/10.1016/j.matdes.2018.11.060

[16] J. Jiang, R. Wang, M. Wang, K. Gao, D. D. Nguyen, and G.-W. Wei,
“Boosting Tree-Assisted Multitask Deep Learning for Small Scientific

Datasets,” J. Chem. Inf. Model., vol. 60, no. 3, pp. 1235–1244, Mar.

2020. https://doi.org/10.1021/acs.jcim.9b01184
[17] B. Labbé, R. Hérault, and C. Chatelain, “Learning Deep Neural

Networks for High Dimensional Output Problems,” in 2009
International Conference on Machine Learning and Applications,

Miami, FL, USA: IEEE, Dec. 2009, pp. 63–68.

https://doi.org/10.1109/ICMLA.2009.48
[18] A. Naway and Y. LI, “Using Deep Neural Network for Android Malware

Detection,” 2019. https://doi.org/10.48550/ARXIV.1904.00736

[19] A. Martín, “ADROIT.” Mendeley, Nov. 15, 2017.

https://doi.org/10.17632/YR92XBRVGX.2

[20] D. P. Farrington and R. Loeber, “Some benefits of dichotomization in

psychiatric and criminological research,” Crim. Behav. Ment. Health,
vol. 10, no. 2, pp. 100–122, Jun. 2000. https://doi.org/10.1002/cbm.349

[21] C. S. Calhoun, J. Reinhart, G. A. Alarcon, and A. Capiola, “Establishing

Trust in Binary Analysis in Software Development and Applications,” in
2020 IEEE International Conference on Human-Machine Systems

(ICHMS), Rome, Italy: IEEE, Sep. 2020, pp. 1–4.

https://doi.org/10.1109/ICHMS49158.2020.9209473
[22] M. Alazab, S. Venkatraman, P. Watters, and M. Alazab, “Zero-day

Malware Detection based on Supervised Learning Algorithms of API

call Signatures,” in AusDM '11: Proceedings of the Ninth Australasian
Data Mining Conference, vol 121, pp. 171-182, December 2011.

https://dl.acm.org/doi/10.5555/2483628.2483648

[23] S. Choi, H. Park, H. Lim, and T. Han, “A static API birthmark for
Windows binary executables,” J. Syst. Softw., vol. 82, no. 5, pp. 862–

873, May 2009. https://doi.org/10.1016/j.jss.2008.11.848

[24] B. A. Draper, K. Baek, M. S. Bartlett, and J. R. Beveridge, “Recognizing
faces with PCA and ICA,” Comput. Vis. Image Underst., vol. 91, no. 1–

2, pp. 115–137, Jul. 2003. https://doi.org/10.1016/S1077-

3142(03)00077-8
[25] P. Xanthopoulos, P. M. Pardalos, and T. B. Trafalis, “Linear

Discriminant Analysis,” in Robust Data Mining, in SpringerBriefs in

Optimization. , New York, NY: Springer New York, 2013, pp. 27–33.
https://doi.org/10.1007/978-1-4419-9878-1_4

[26] D. Ayele, T. Zewotir, and H. Mwambi, “Multiple correspondence

analysis as a tool for analysis of large health surveys in African settings,”
Afr. Health Sci., vol. 14, no. 4, p. 1036, Jan. 2015,

https://doi.org/10.4314/ahs.v14i4.35

[27] J. Lever, M. Krzywinski, and N. Altman, “Principal component
analysis,” Nat. Methods, vol. 14, no. 7, pp. 641–642, Jul. 2017,

https://doi.org/10.1038/nmeth.4346

[28] G. Feng, D. Hu, M. Li, and Z. Zhou, “A Novel LDA Approach for High-
Dimensional Data,” in Advances in Natural Computation, vol. 3610, L.

Wang, K. Chen, and Y. S. Ong, Eds., in Lecture Notes in Computer

Science, vol. 3610. , Berlin, Heidelberg: Springer Berlin Heidelberg,
2005, pp. 209–212. https://doi.org/10.1007/11539087_23

[29] B. Broeksema, A. C. Telea, and T. Baudel, “Visual Analysis of Multi‐

Dimensional Categorical Data Sets,” Comput. Graph. Forum, vol. 32,
no. 8, pp. 158–169, Dec. 2013. https://doi.org/10.1111/cgf.12194

[30] G. S and S. Brindha, “Hyperparameters Optimization using Gridsearch

Cross Validation Method for machine learning models in Predicting
Diabetes Mellitus Risk,” in 2022 International Conference on

Communication, Computing and Internet of Things (IC3IoT), Chennai,

India: IEEE, Mar. 2022, pp. 1–4.

https://doi.org/10.1109/IC3IOT53935.2022.9768005

[31] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,”
Chemom. Intell. Lab. Syst., vol. 2, no. 1–3, pp. 37–52, Aug. 1987, doi:

https://doi.org/10.1016/0169-7439(87)80084-9

[32] S. T. Mueller, “Psychology and Human Factors in R II,” Advanced
Statistical Analysis & Design II. Accessed: Jan. 17, 2024. [Online].

Available: https://pages.mtu.edu/~shanem/psy5220/index.html

[33] C. Vidaurre, M. Kawanabe, P. Von Bünau, B. Blankertz, and K. R.
Müller, “Toward Unsupervised Adaptation of LDA for Brain–Computer

Interfaces,” IEEE Trans. Biomed. Eng., vol. 58, no. 3, pp. 587–597, Mar.
2011. https://doi.org/10.1109/TBME.2010.2093133

[34] F. Tang and H. Tao, “Fast linear discriminant analysis using binary

bases,” Pattern Recognit. Lett., vol. 28, no. 16, pp. 2209–2218, Dec.
2007. https://doi.org/10.1016/j.patrec.2007.07.007

[35] M. Greenacre, “From Correspondence Analysis to Multiple and Joint

Correspondence Analysis,” SSRN Electron. J., 2005.

https://doi.org/10.2139/ssrn.847664

[36] A. Mahindru, “Android permissions dataset, Android Malware and

benign Application Data set (consist of permissions and API calls).”
Mendeley, Mar. 04, 2020. https://doi.org/10.17632/B4MXG7YDB7.3

[37] M. Galar, A. Fernández, E. Barrenechea, H. Bustince, and F. Herrera,

“An overview of ensemble methods for binary classifiers in multi-class
problems: Experimental study on one-vs-one and one-vs-all schemes,”

Pattern Recognit., vol. 44, no. 8, pp. 1761–1776, Aug. 2011.

https://doi.org/10.1016/j.patcog.2011.01.017
[38] J. Jenkins and H. Cai, “Dissecting Android Inter-component

Communications via Interactive Visual Explorations,” in 2017 IEEE

International Conference on Software Maintenance and Evolution
(ICSME), Shanghai: IEEE, Sep. 2017, pp. 519–523.

https://doi.org/10.1109/ICSME.2017.74

[39] V. Sihag, A. Swami, M. Vardhan, and P. Singh, “Signature Based
Malicious Behavior Detection in Android,” in Computing Science,

Communication and Security, vol. 1235, N. Chaubey, S. Parikh, and K.

Amin, Eds., in Communications in Computer and Information Science,
vol. 1235. , Singapore: Springer Singapore, 2020, pp. 251–262.

https://doi.org/10.1007/978-981-15-6648-6_20

[40] F. Shen, “Android Security via Static Program Analysis,” in Proceedings
of the 2017 Workshop on MobiSys 2017 Ph.D. Forum, Niagara Falls New

York USA: ACM, Jun. 2017, pp. 19–20.

https://doi.org/10.1145/3086467.3086469
[41] B. Sanz et al., “MAMA: MANIFEST ANALYSIS FOR MALWARE

DETECTION IN ANDROID,” Cybern. Syst., vol. 44, no. 6–7, pp. 469–

488, Oct. 2013. https://doi.org/10.1080/01969722.2013.803889
[42] H. A. Martens and P. Dardenne, “Validation and verification of

regression in small data sets,” Chemom. Intell. Lab. Syst., vol. 44, no. 1–

2, pp. 99–121, Dec. 1998. https://doi.org/10.1016/S0169-
7439(98)00167-1

[43] G. Yan, N. Brown, and D. Kong, “Exploring Discriminatory Features for

Automated Malware Classification,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, vol. 7967, K. Rieck, P. Stewin,

and J.-P. Seifert, Eds., in Lecture Notes in Computer Science, vol. 7967,

Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 41–61.
https://doi.org/10.1007/978-3-642-39235-1_3

[44] J.-S. Hong and G.-S. Hwang, “Interpretability Comparison of Popular

Decision Tree Algorithms,” J. Soc. Korea Ind. Syst. Eng., vol. 44, no. 2,
pp. 15–23, Jun. 2021. https://doi.org/10.11627/jkise.2021.44.2.015

[45] M. Moshkov, “On the depth of decision trees over infinite 1-

homogeneous binary information systems,” Array, vol. 10, p. 100060,
Jul. 2021, https://doi.org/10.1016/j.array.2021.100060

https://doi.org/10.48550/arXiv.2003.12843
https://doi.org/10.1016/j.matdes.2018.11.060
https://doi.org/10.1021/acs.jcim.9b01184
https://doi.org/10.1109/ICMLA.2009.48
https://doi.org/10.48550/ARXIV.1904.00736
https://doi.org/10.17632/YR92XBRVGX.2
https://doi.org/10.1002/cbm.349
https://doi.org/10.1109/ICHMS49158.2020.9209473
https://dl.acm.org/doi/10.5555/2483628.2483648
https://doi.org/10.1016/j.jss.2008.11.848
https://doi.org/10.1016/S1077-3142(03)00077-8
https://doi.org/10.1016/S1077-3142(03)00077-8
https://doi.org/10.1007/978-1-4419-9878-1_4
https://doi.org/10.4314/ahs.v14i4.35
https://doi.org/10.1038/nmeth.4346
https://doi.org/10.1007/11539087_23
https://doi.org/10.1111/cgf.12194
https://doi.org/10.1109/IC3IOT53935.2022.9768005
https://doi.org/10.1016/0169-7439(87)80084-9
https://pages.mtu.edu/~shanem/psy5220/index.html
https://doi.org/10.1109/TBME.2010.2093133
https://doi.org/10.1016/j.patrec.2007.07.007
https://doi.org/10.2139/ssrn.847664
https://doi.org/10.17632/B4MXG7YDB7.3
https://doi.org/10.1016/j.patcog.2011.01.017
https://doi.org/10.1109/ICSME.2017.74
https://doi.org/10.1007/978-981-15-6648-6_20
https://doi.org/10.1145/3086467.3086469
https://doi.org/10.1080/01969722.2013.803889
https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1016/S0169-7439(98)00167-1
https://doi.org/10.1007/978-3-642-39235-1_3
https://doi.org/10.11627/jkise.2021.44.2.015
https://doi.org/10.1016/j.array.2021.100060

