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Abstract—The aim of this research is to enhance the
effectiveness of Android malware detection systems by
implementing dimensionality reduction techniques on Boolean
data. Algorithms such as Linear Discriminant Analysis (LDA),
Principal Component Analysis (PCA), and Multi-Correspondence
Analysis (MCA) serve as operations preceding the classification
stage. The analysis is carried out using multiple classifiers such as
Random Forest Classifier, Logistic Regression, and Support
Vector Machines to measure how effective they can detect cyber
threats. Results show that the Decision Tree Classifier,
implemented without dimensionality reduction, achieved the
optimal results with 100% accuracy. Efficient feature selection and
rapid computation in the context of malware detection are
necessary for real-time mobile cyber environment applications.
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I. INTRODUCTION

OBILE devices expand quickly and currently share

majority of computers used worldwide. The Android
Operating System (OS) is the most prominent software solution
in this field. Its popularity makes it an easy target for the
malware (similarly to Microsoft Windows in the desktop
market). Therefore, it is important to analyze existing threats
and find possible countermeasures against them. The Open-
Source environment and customizable features of Android
provide options for investigating system-level capabilities, app
development, and user interaction. Its accessibility and
analytical power are greater than in the more restricted
environment of the main counterpart, i.e. Apple iOS. The
Android ecosystem covers a wide range of devices from
different manufacturers, featuring diverse hardware,
specifications and software settings. Its development
environment (including Android Studio and support for
numerous programming languages) is accessible for
researchers. Android also provides a higher level of adaptability
for personalization and exploration in contrast to iOS. It can be
used to carry out experiments, integrate original functionalities,
or create software prototypes.

Malware detection (especially exploits, rootkits or spyware)
requires usage of reverse engineering. Both static and dynamic
analyses provide information extracted from apps’ structure and
behavior [1]. Static analysis entails inspecting applications’
code, resources, and manifest files without executing them. It
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covers features like requested permissions, API calls, code
structure, and resource references [2]. Decompiling bytecode
may provide further information. Dynamic analysis involves
executing the program in a controlled setting and monitoring its
performance. Features are obtained from interactions with the
OS, hardware, network, and other programs. Methods such as
hooking and runtime modification may be used to collect extra
characteristics [3].

Mobile OS applications do not make direct system calls.
Instead, they interact with the system through a Virtual Machine
(VM) or a managed runtime environment. Because the VM
handles the translation of API to system calls, the direct
intentions of the program may be obscured. The VM acts as a
buffer that masks the application's true behavior from the
underlying OS. This makes it challenging to analyze the
behavior of the application purely based on system calls, as the
actual interactions are abstracted away. Machine learning
models can be trained to recognize patterns of normal
application behavior. Deviations from the nominal operation
can signal potential malicious activity.

Based on the information collected from the analysis,
decisions about the nature of the program can be made. The
amount of extracted information is usually large and difficult to
interpret manually. Therefore Artificial Intelligence (Al) is the
standard solution, being able to solve binary classification
problems [4]. Feature reduction may be essential here, as it
minimizes the amount of data processed both during the
classifier training and decision making. It may lead to both
increasing accuracy and suppressing time of computations. This
is often achieved by filtering attributes with low information
capacity or detecting highly correlated features. The goal is to
simplify data sets.

The aim of this paper is to investigate efficiency of the data
reduction of Boolean-type data for the mobile malware
detection. Well-known feature reduction and classification
algorithms were combined to find the best solution the task. The
framework was deployed using Python language and tested on
selected, publicly available data sets.

The content of the paper is as follows. In Section 2 the
research gap in the field malware detection is presented. Section
3 presents the general framework applied to the task. Selected
feature reduction and classification algorithms are briefly
described. In Section 4 the experimental setup and results are
discussed. Section 5 contains conclusions and future prospects.
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II. LITERATURE REVIEW

The problem of Android malware detection may be defined
through searching for the minimal set of features allowing for
detecting dangerous programs with the highest possible
accuracy. Multiple Al methods have been employed so far,
including Support Vector Machine (SVM), DT (Decision Tree),
RFC (Random Forest Classifier), MLP (Multilayer Perceptron,
or Naive Bayes Classifier (NBC) with the level of accuracy,
sensitivity, and precision between 70% and 99% [5-10]. They
are in most cases used on full data sets (with all features
involved), though dimensionality reduction is also employed.

Numerous features possible to extract, but determining which
ones are significant is a challenging task. Therefore, dimension
reduction techniques may be used. They include genetic
algorithms, Weighted Features Ranking Dimension Reduction,
hybrid-based  feature  selection, correlation-based or
community-based feature selection [6-10]. The aim of the
operation is to maintain the accuracy while simplifying the data
representation and suppress time of computations (especially
during training) [5]. The latter means lower costs, especially for
cloud services or other pay-per-compute platforms. It may also
lead to improved model performance and generalization.

Datasets used for experiments contain different numbers of
benign and malware applications with meta-information such as
permission-based, control flow, component, and system calls
features [5-10]. The total number of programs downloaded from
Aptoide is 12,360. Each application was processed with the
VirusTotal API -- a tool incorporating a total of 56 antivirus
engines to scan for any malicious content. This process
confirmed the presence and absence of malware in the
applications, thus creating a labeled dataset with two classes:
malicious and benign (safe). The dataset contains 8058 cases of
‘benignware’ and 3418 malware with 167 features. They are
classified as continuous, discrete, and Boolean (two-valued
only). Continuous types include numerically-valued features
such as ratings given by users or metrics touching screen size
and CPU type. They facilitate the in-depth analysis of
applications. Discrete meta-information is the name of the
developer or the lowest SDK version needed which fits into the
categorical data. Boolean data include binary variables, most
commonly a yes/no or true/false. For example, an application
may or may not require certain permission to be used.

Among the most popular dimensionality reduction
techniques, PCA has gained attention, since it can handle high-
dimensional feature sets, common in Android malware analysis.
In [11], its performance varied across different algorithms. For
example, the F-measure for PCA combined with K-Nearest
Neighbors (KNN) was 0.945, while for NBC it dropped to
0.793, which indicates that probably PCA is not fit for all
methods. On the other hand, using LDA with KNN, NBC,
Sequential Minimal Optimization (SMO), MLP, RFC, C.45,
and LR allowed for improved classification compared to the full
feature set. For instance, F-measure for LDA-KNN combination
was 0.925, higher than results obtained with PCA [10]. LDA
provided a significant gain in speed, with over 1400 times
runtime reduction of training and testing compared to all
features.

MCA is an extension of the Correspondence Analysis (CA)
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for the identification of relationships between datasets
comprising more than two discrete variables. In the case of the
UCI datasets presented in [12], performance metrics have
increased in terms of accuracy across different datasets when
CA is applied. Results confirm that it boosts classification
accuracy on multiple datasets. Selected experiments showed
improvement when CA was used. This implies it does sustain a
significant amount of information for boosting classification
performance while complexity is retained at a lower level.
Accuracy varied between 40% to 100% depending on the
applied classifier, i.e. Artificial Neural Networks (ANN), C4.5,
and KNN algorithms.

Small datasets run the risk of overfitting, where the model
learns from insignificant details specific to the particular
training examples rather than general patterns, leading to poor
generalization on new data [13, 14]. Modern deep learning
models, such as Deep Neural Networks (DNN), require large
quantities of data. Using small datasets with their conventional
training methods often means degraded performances compared
to traditional techniques, like MLP and SVM [15, 16, 17]. As
DNN require large data sets and significant computational
resources, they were excluded from the presented research,
though should be considered in the future.

In [18], a new system for detecting malware, based on a DNN
was developed. It employs the following combination of
features: permissions, intent filters, invalid certificates, presence
of APK files in the asset folder, and API calls with 1200 android
applications, which included 600 benign apps and 600 malicious
apps. The DNN proved to be very effective with an accuracy of
95.31% for classifying benign and malicious applications.
These results stemmed from thorough testing with particular
sets of features.

The dataset [19] employed in this research was tackled with
both static and dynamic analysis. Boolean data cover features
that are either present or absent [20]. Reducing dimensionality
and improving classification performance has been achieved so
far via feature selection and PCA. In this study, scenarios with
No Feature Reduction (NF), Principal Component Analysis
(PCA), Linear Discriminant Analysis (LDA), and Multiple
Correspondence Analysis (MCA) were tested. Their impact on
accuracy, sensitivity, specificity, and computing time was
evaluated. The general scheme of the approach is in Fig. 1.
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Fig. 1. Scheme of the malware detection using static analysis

In Android malware detection, there is a lack of
comprehensive  studies that systematically investigate
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effectiveness of these techniques for Boolean data, representing
existence or lack of the particular detail in the application’s
profile. Such data play an important role in static analysis, as
they represent the raw form of the program, allowing for deep
structure and behavior investigation without the code execution.
While profiling a mobile application, this method allows for
basic checks on the usage of components, like whether
broadcast receivers, shared preferences, or background services,
were used. For instance, a broadcast receiver existence is
denoted by 1, and its absence is marked by 0.

Boolean data allow for easier apps partitioning and detecting
anomalies, such as abnormal component and permission levels,
and disallowable modifications. Each aspect of the code,
including libraries, functions, and data structures is simple to
process. Static analysis tools need Boolean data to look for
patterns or signatures of known vulnerabilities or malware for
effective threat detection. In reverse engineering they help
analysts to understand program logic, identify vulnerabilities,
and assess security risks. This is especially important in
uncovering zero-day or backdoor exploits [21].

III. MALWARE DETECTION ALGORITHMS

Machine learning methods are used to analyze program activity
via the operating systems’ Application Programming Interface
(API). This involves integrating Real-Time data and merging
third-party services into mobile apps [22-23]. Investigating
features based on these call reveals distinctive operational traits
of mobile devices, which may help to identify suspicious
behavior patterns. The technique entails storing them to detect
suspicious activities in new applications, facilitating
development of detection algorithms. Security specialists
employ command signatures, which are identifiable indicators
of hazardous instructions, to analyze and develop detection
methods for malicious activities in academic conversations.

A. System Implementation

The system implemented for the research (Fig.2) is divided
into two modules. The first one employs feature reduction to
minimize the amount of extracted from the application. It uses
MCA, PCA, and LDA [21-23]. These are successful in
examining relations between categorical variables, identifying
variability and trends in data, optimizing class distinction,
respectively [24-26]. However, their usefulness is known only
in conjunction with the subsequent classifier. Therefore, the
second module is responsible for the malware detection,
segregation of the analyzed application into one of two
categories: malware or “benign”, harmless program. This is
therefore the binary classification problem. The following
section covers description of all methods used in the research.

B. Classification Algorithms

Eight machine learning methods with the rich history of
practical implementations were employed in this study: Random
Forest Classifier (RFC), Logistic Regression (LR), Gaussian
Naive Bayes (GNB), KNN, SVM, Linear Classifier with
Stochastic Gradient Descent (LCSGD), Decision Tree Classifier
(DTC), and MLP. They solve the binary classification task,
distinguishing between the legitimate (positive category — 0)
and dangerous (negative category — 1) software:
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Fig. 2. Malware detection scheme used in the presented research.

Both DTC and RFC are rule-based approaches, knowledge
extracted by them during training is readable by the human
operator. The tree-like structure allows for the top-down feature
vector processing (using tests existing in nodes) until the
category in the leaf is reached. Because the single tree has the
tendency to excessively adjust the structure to the data, random
forests are used as the more generic solution, with the greater
generalization capabilities. The feature reduction is performed
as the by-product of the decision generation (only part of the
features is selected to nodes). However, it is possible to enforce
the minimum set of attributes externally.

Statistical/numerical approaches are represented by LR,
MLP, SVM and LCSGD. Their aim is to process the input data
through the specifically designed function.

LR is a statistical method used to represent the relationship
between a dependent variable and one or more independent
variables. It involves fitting a straight line to the data in order to
make predictions. GNB is a probabilistic classifier that relies on
Bayes' theorem KNN predicts the class or value of a data point
by considering the majority class or average value of its k
nearest neighbors in the feature space.

SVM implements the separating hyperplane in a
multidimensional space to divide different categories. The goal
is to maximize the distance between them, which is known as
the margin. SGD is a linear classifier trained by updating the
model parameters using the gradient of the loss function, which
is computed on tiny batches of training data. MLP is a specific
kind of ANN that consists of numerous layers of interconnected
nodes, such as input, hidden, and output layers. All classifiers
were used already optimized through grid search [30].

Every classifier uses knowledge of different type, potentially
capturing distinct patterns and correlations in data. By
comparing performance of these models on the same dataset, it
is possible to select the best one. In the end, utilizing several
classifiers allows us to construct prediction models for Boolean
datasets that are more precise, resilient, and adaptable.

C. Feature Reduction Approaches

1) Principal Component Analysis is used to identify the
main patterns in a data matrix. It does this by generating a
set of score and loading plots that capture the dominant
patterns in the matrix [31].

2) Linear Discriminant Analysis aims to optimize the ratio
of between-class variance to within-class variance in a
given dataset, ensuring the highest level of separability. It
is commonly used for classification in speech recognition.
The fact that LDA can directly handle numerous
categories and generate discriminant functions for each



category in comparison to a baseline makes it especially
helpful for Boolean data [32]. The algorithm is well-
known for its resilience against fluctuations in the data. It
focuses on maximizing the separation between classes
based on their overall distribution in data, rather than
being influenced by individual data points [33, 34].

3) Multiple Correspondence Analysis is comparable to
PCA for categorical data, while PCA is defined
geometrically rather than statistically. It is used to
determine original features and redefine rows and columns
of a data set as points in a high-dimensional Euclidean
space. This allows to discover the primary dimensions that
captures the maximum amount of variation [35].

The experiments were performed on a machine with 64 GB
RAM and AMD Ryzen™ 3 3200U Processor (2.6 GHz base
clock, 3.5 GHz max boost clock, 4 MB L3 cache, 2 cores). On
the software side, Python language with scikit learn library were
used. Linux Ubuntu version 20.04.6 was running as the
operating system.

D.Classifiers’ Configuration

Hyperparameters of the applied classifiers were fine-tuned
to maximize their accuracy. They are presented in Tab. I and
Tab. 11, where n.y is the number of estimators (classifiers), dax
is the maximum tree depth, C is the regularization coefficient,
imax 1S the maximum number of iterations, smooth is the decision
function smoothing, 7, is the number of nearest neighbors, y is
the width of the Gaussian kernel, Als is the number of neurons
in the hidden layer, act is he activation function inside neurons
and solver is the optimization task solver.

TABLE I
CONFIGURATION OF CLASSIFIERS USED IN THE EXPERIMENTS
RFC LR GNB kNN SVM
Reduct | 7est dmax C imax | Smooth Nn C Y
NF 200 | None 1| 800 1 3 1 1
PCA 100 10 10| 800 10 3 1 1
LDA 100 10 0,1| 100 0,1 7] 100 1
MCA 300 20| 0,01] 100 0,1 3] 0,1] 0,1
TABLE II

CONFIGURATION OF CLASSIFIERS USED IN THE EXPERIMENTS

DTC MLP
Reduet dmax | hls imax act | solver
NF 20| 125 800 [ relu | adam
PCA 10| 100 800 | relu | adam
LDA 50| 125 200 | tanh | sgd
MCA 20 5 400 | tanh | sgd

E. Used Dataset

A dataset from [36] was used in the experiments, covering
12.360. It includes both binary and non-binary data. The former
are variables with only two possible values (such as 0 and 1),
can simplify the decision-making process for binary classifiers
[37]. The features obtained from static analysis were as follows:
API calls, Inter-Component Communication (ICC), and
Android manifest.

A.IRAWAN, P. BILSKI

The Android uses ICC or Binder for inter-process
communication. Through the use of ICC, an application
component has the ability to access data from another
component within the same or different application, or a remote
service [38]. An instance of a product delivery software may
utilize a Map API to determine the geographical coordinates of
a device [39].

The Android Manifest file is an archive of data regarding an
application's ~ various = components, permissions, and
configuration. It is frequently monitored to detect possible signs
of malicious conduct. The manifest files in Android applications
comprise of two sources of information, uses-permissions and
uses-features [40]. They are widely acknowledged as the
security measure. In order to install any application, it is
necessary for the user to provide access permissions [41].

Identifying Android malware based just on the Manifest file
is difficult because of advanced evasion techniques and
dynamic changes in the malware behavior. Thus, a
comprehensive approach that combines Manifest analysis with
other detection methods and security mechanisms is crucial for
successful malware detection.

IV. MALWARE DETECTION PERFORMANCE

All models were trained and tested on the original and reduced
data after removing the numerical (continuous type) features of
the dataset. The test scenario was implemented using cross
validation with 5 folds [42]. Several measures evaluate the
efficiency of the model.

The optimal results obtained for the particular reductions
methods are in Fig. 3. In Tab. III-VI, the performance of each
model may be analyzed and evaluated considering accuracy,
sensitivity, and specificity. They prove that applied classifiers
on binary data perform satisfactorily, though their outcomes are
worse when data reduction is applied.

m Accuracy m Sensitivity Specificity

100
95
90
85

80

Performance value [%]

75
NF PCA LDA

Reduction method

MCA

Fig. 3. Dimensionality reduction performance

Among all used methods, the DT model is the best, reaching
an accuracy of 100%, with sensitivity and specificity of 100%
and low computation time of 180 milliseconds-only, without
dimensionality reduction (the NFR case). DT naturally handles
high-dimensional data by splitting based on thresholds in
features. In the NFR scenario the model preserved all features
originally included, thus retaining some of the most critical
information which could have otherwise been lost.
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In all reduction cases the loss in accuracy is visible. It is
acceptable, provided that the minimized set of features is much
easier or faster to collect than the original (larger) set. Each
method provides a different range of features (their number does
not exceed 40), which means the significant speed up in the real-
time analysis may be obtained. Also, Boolean data are simpler
to describe the vector attack (either the operation or event took
place or not), supporting the idea of focusing on such
information extracted from the operating system. Besides, RFC
and DT operating on the original data may be used as the feature
selectors (though the threat of overfitting exists here) with much
smaller computational effort.

TABLE III
PERFORMANCE OF CLASSIFIERS FOR THE ORIGINAL DATA SET

Algorithms (%)

Measure| RFC | LR | GNB | KNN | SVM | LCSGD | DTC | MLP

acc 100{ 100] 100 99 99 100 100{ 100

sens 100( 100| 100 96 97 100| 100| 100

spec 100{ 100] 100{ 100] 100 100 100{ 100
TABLE IV

PERFORMANCE OF CLASSIFIERS FOR THE PCA REDUCTION
Algorithms (%)

Measure| RFC | LR | GNB | KNN | SVM | LCSGD | DTC | MLP
acc 92| 90 90 72 92 90 91 91
sens 78| 71 71 5 78 69 78 78
spec 97| 97 97 100 97 98 96 97

TABLE V
PERFORMANCE OF CLASSIFIERS FOR THE LDA REDUCTION
Algorithms (%)

Measure| RFC | LR | GNB | KNN | SVM | LCSGD | DTC | MLP
acc 91| 90 90 72 90 90 91 90
sens 77 71 71 7 71 71 78 73
spec 97| 98 98 99 98 98 97 97

TABLE VI
PERFORMANCE OF CLASSIFIERS FOR THE MCA REDUCTION
Algorithms (%)

Measure| RFC | LR | GNB | KNN | SVM | LCSGD | DTC |MLP
acc 91| 89 89 71 89 89 91| &9
sens 78| 67 67 6 67 67 77 67
spec 97| 99 99 99 99 99 971 99

CONCLUSIONS

This study, demonstrated the importance of dimensionality
reduction in combination with machine learning in the
improvement of malware detection in Android OS. Application
of the presented methods enabled to show their impact on
improving classification performance. The DTC was the best
performing model with 100% accuracy, sensitivity, specificity,
and precision without dimensionality reduction. This means that
the data was well-structured and the model captured the
underlying patterns of the dataset quite well.

The results have underlined the importance of Boolean data
in static analysis for malware detection, as this approach gives
knowledge of application behavior without its execution. Also,
computational efficiency of these techniques.

Future work must focus on validation of the obtained results
on additional data (especially using different datasets, though it
should be checked if they contain identical features). Also,
comparative analysis between the applied approaches and the
explainable Al (including decision trees and random forests)
should be performed to verify which approach is more robust.
Finally, the ability to implement these techniques into the real-
time detection systems should be confirmed.
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