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Abstract—High-Level Synthesis (HLS) has become an estab-
lished methodology to accelerate the development of FPGA-
based systems by allowing algorithms to be written in high-level
languages (HLLs) such as C/C++ or Python. Yet, for real-time
physics experiments—including fusion plasma diagnostics, high-
energy physics (HEP) detectors, and rare-event astrophysical
triggers—conventional HLS still falls short in three essential
aspects: determinism, portability, and auditability. Pragmas em-
bedded in HLL code blur the separation between algorithmic
intent and implementation details, coupling scientific software
to a particular device or compiler version. This is particularly
problematic in long-lived scientific projects such as ITER or the
Pierre Auger Observatory, where systems must remain functional
and maintainable over decades [4]–[6].

To address these challenges, we propose an Intermediate
Representation (IR)-centric HLS flow—PyHLS—that explicitly
introduces an abstraction layer between algorithm and Register-
Transfer Level (RTL) design. The IR centralizes all performance-
critical aspects: timing contracts (initiation interval, latency,
jitter), concurrency (loop unrolling, pipelining), memory layout
(banking, tiling, port allocation), and resource binding (DSPs,
BRAMs, AI tiles). In this model, the algorithm is expressed
in clean, testable Python code [1], [2], while device-specific
optimizations are described in a structured IR graph. This IR is
then lowered into a reusable VHDL microinstruction library [3],
which serves as a portable middle layer across devices. By ver-
sioning and auditing IR graphs and instruction streams, PyHLS
ensures reproducibility and traceability—critical properties in
scientific computing where results must be verifiable years after
deployment.

The methodology builds upon earlier work in Python-based
high-level synthesis, parameterizable metamodels, and algorith-
mic synthesis with multi-level compilers [8], [9], [11]. It in-
corporates systematic design space exploration (DSE), allowing
parameter sweeps over IR attributes and early feasibility checks.
The flow is complemented by a cycle-accurate microinstruction
emulator, which validates both functionality and timing contracts
before vendor toolchains are invoked, reducing iteration time and
catching infeasible designs early.

We demonstrate the motivation and applicability of this
approach in two demanding domains. First, in plasma diagnostics
at JET/ITER, where spectrometer and data acquisition systems
must combine high bandwidth with deterministic latency [6].
Second, in trigger pipelines for astroparticle physics, where
artificial neural networks (ANNs) and fuzzy-logic algorithms have
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been implemented directly in FPGA logic to discriminate rare
events from large backgrounds [4], [5]. These use-cases highlight
the need for explicit IR-level contracts and modularity: the same
high-level algorithm must be portable across device generations,
yet adapted to exploit specialized hardware resources such as
DSP slices, systolic AI engines, or high-bandwidth memories.

The contribution of this work is therefore threefold:
1) We formalize the role of an explicit IR in HLS, decoupling

algorithms from implementation decisions and introducing
contract-driven determinism.

2) We present a reusable VHDL microinstruction library
and emulator that stabilize implementation and provide
auditable artifacts.

3) We show how PyHLS extends naturally to heterogeneous
FPGAs, mapping operators to emerging AI/ML blocks
while maintaining scientific reproducibility and portability
across decades.

By unifying algorithmic specification, IR-based parameter-
ization, and reusable microinstructions, PyHLS establishes a
sustainable methodology for real-time physics experiments and
beyond. In short: write the science once, retarget the hardware
many times.High-Level Synthesis (HLS) has become an estab-
lished methodology to accelerate the development of FPGA-
based systems by allowing algorithms to be written in high-level
languages (HLLs) such as C/C++ or Python. Yet, for real-time
physics experiments—including fusion plasma diagnostics, high-
energy physics (HEP) detectors, and rare-event astrophysical
triggers—conventional HLS still falls short in three essential
aspects: determinism, portability, and auditability. Pragmas em-
bedded in HLL code blur the separation between algorithmic
intent and implementation details, coupling scientific software
to a particular device or compiler version. This is particularly
problematic in long-lived scientific projects such as ITER or the
Pierre Auger Observatory, where systems must remain functional
and maintainable over decades [4]–[6].

To address these challenges, we propose an Intermediate
Representation (IR)-centric HLS flow—PyHLS—that explicitly
introduces an abstraction layer between algorithm and Register-
Transfer Level (RTL) design. The IR centralizes all performance-
critical aspects: timing contracts (initiation interval, latency,
jitter), concurrency (loop unrolling, pipelining), memory layout
(banking, tiling, port allocation), and resource binding (DSPs,
BRAMs, AI tiles). In this model, the algorithm is expressed
in clean, testable Python code [1], [2], while device-specific
optimizations are described in a structured IR graph. This IR is
then lowered into a reusable VHDL microinstruction library [3],
which serves as a portable middle layer across devices. By ver-
sioning and auditing IR graphs and instruction streams, PyHLS
ensures reproducibility and traceability—critical properties in
scientific computing where results must be verifiable years after
deployment.

The methodology builds upon earlier work in Python-based
high-level synthesis, parameterizable metamodels, and algorith-
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mic synthesis with multi-level compilers [8], [9], [11]. It in-
corporates systematic design space exploration (DSE), allowing
parameter sweeps over IR attributes and early feasibility checks.
The flow is complemented by a cycle-accurate microinstruction
emulator, which validates both functionality and timing contracts
before vendor toolchains are invoked, reducing iteration time and
catching infeasible designs early.

We demonstrate the motivation and applicability of this
approach in two demanding domains. First, in plasma diagnostics
at JET/ITER, where spectrometer and data acquisition systems
must combine high bandwidth with deterministic latency [6].
Second, in trigger pipelines for astroparticle physics, where
artificial neural networks (ANNs) and fuzzy-logic algorithms have
been implemented directly in FPGA logic to discriminate rare
events from large backgrounds [4], [5]. These use-cases highlight
the need for explicit IR-level contracts and modularity: the same
high-level algorithm must be portable across device generations,
yet adapted to exploit specialized hardware resources such as
DSP slices, systolic AI engines, or high-bandwidth memories.

The contribution of this work is therefore threefold:
1) We formalize the role of an explicit IR in HLS, decoupling

algorithms from implementation decisions and introducing
contract-driven determinism.

2) We present a reusable VHDL microinstruction library
and emulator that stabilize implementation and provide
auditable artifacts.

3) We show how PyHLS extends naturally to heterogeneous
FPGAs, mapping operators to emerging AI/ML blocks
while maintaining scientific reproducibility and portability
across decades.

By unifying algorithmic specification, IR-based parameter-
ization, and reusable microinstructions, PyHLS establishes a
sustainable methodology for real-time physics experiments and
beyond. In short: write the science once, retarget the hardware
many times.H
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I. INTRODUCTION

THE last two decades have seen a rapid growth in the
use of reconfigurable hardware in physics experiments,

embedded systems, and data acquisition pipelines. Field-
Programmable Gate Arrays (FPGAs) now form the backbone
of many real-time systems where latency and determinism are
as important as throughput and energy efficiency. Unlike CPUs
and GPUs, which rely on instruction-level execution and often
variable latency, FPGAs offer fully customized datapaths and
memory fabrics that can be tailored to a specific application
domain. This property makes them indispensable in areas
such as plasma diagnostics for fusion devices, high-energy
physics triggers, network packet inspection, and advanced
control systems.

However, FPGA development has traditionally relied on
hardware description languages (HDLs) such as VHDL or
Verilog. While these approaches guarantee full control over
timing and resources, they are labor-intensive and error-prone,
particularly in large, long-lived scientific projects. As the
complexity of physics experiments grows, so does the demand
for higher productivity design flows that allow scientists and
engineers to focus on the algorithms rather than the intricacies
of low-level implementation.

High-Level Synthesis and Its Limitations

High-Level Synthesis (HLS) tools emerged to address this
productivity gap by allowing designers to specify algorithms
in C, C++, SystemC, or Python, which are then automat-
ically compiled into RTL. This abstraction promised rapid
development and reuse of high-level code. Yet, in practice,
HLS has revealed significant limitations for real-time appli-
cations. The most critical shortcoming is the heavy reliance
on pragmas—compiler directives embedded in the high-level
language—which dictate pipelining, loop unrolling, and mem-
ory partitioning strategies. While effective in the short term,
pragmas couple algorithmic code tightly to specific compiler
versions and FPGA families, undermining both portability and
reproducibility.

In addition, timing predictability remains a challenge. In
classical HLS flows, performance emerges as a side-effect of
tool heuristics rather than as an explicit contract. This unpre-
dictability is problematic in scientific domains where stable
latency and bounded jitter are not just desirable but mandatory.
As highlighted in earlier reviews of FPGA parallelism [7],
the interaction between concurrency, memory bandwidth, and
scheduling is highly complex. Without a structured way to
represent and reason about these factors, HLS often produces
designs that are difficult to validate or port.

Scientific Motivation: ITER and JET

A concrete illustration of these issues comes from plasma
diagnostics in fusion experiments. The JET tokamak, and its
successor ITER, require x-ray spectrometry systems and other
diagnostic pipelines to capture and analyze plasma behavior in
real time [6]. These systems must operate with deterministic
latency, often below microseconds, while handling very high
data rates. At the same time, they must remain maintainable
across decades of experimental operation, during which FPGA
families and vendor tools will inevitably evolve. A design
flow that entangles algorithms with low-level pragmas cannot
meet these long-term requirements. What is needed instead is
a methodology that keeps the algorithmic layer stable while
allowing implementation choices to evolve.

Beyond Fusion: Triggers and Rare-Event Detection

Similar constraints arise in high-energy physics (HEP) and
astrophysics. First-level triggers in experiments such as the
Pierre Auger Observatory or CERN-based detectors must filter
rare physical events—such as neutrino-induced showers or ex-
otic particle interactions—from extremely large backgrounds.
Latency budgets are tight, and decisions must be taken de-
terministically within fixed windows. The use of artificial
neural networks (ANNs) [4] and fuzzy-logic discriminators
[5] implemented directly in FPGA logic shows the field’s
drive toward more sophisticated, algorithmically rich triggers.
However, these advances also highlight the inadequacy of
classical HLS approaches: as algorithms grow in complexity,
embedding performance directives directly in the HLL code
becomes unsustainable.



PYHLS: INTERMEDIATE REPRESENTATION FOR VERSATILE HIGH-LEVEL SYNTHESIS 3

The Case for an Intermediate Representation (IR)
The limitations of existing HLS methodologies point toward

the need for a structured Intermediate Representation (IR). An
IR provides a middle layer between the high-level algorithm
and the low-level RTL, explicitly capturing timing, concur-
rency, and resource-binding decisions. In contrast to pragmas,
which are scattered directives, an IR forms a coherent, ana-
lyzable model of the design. This model can be versioned,
audited, and systematically explored. Crucially, it provides a
stable interface: the algorithm remains unchanged in the HLL,
while IR attributes evolve as hardware generations change.

Our proposal, PyHLS, embodies this philosophy. Writ-
ten in Python both at the algorithmic and compiler levels,
PyHLS decouples scientific algorithms from hardware-specific
optimizations. The IR serves as the single source of truth
for performance decisions, while a reusable microinstruction
library ensures that implementations are modular, portable,
and auditable. This separation is particularly well suited for
scientific projects where reproducibility and long-term main-
tainability are as important as raw performance.

Contribution of This Paper
This paper introduces an IR-centric HLS methodology tai-

lored for real-time scientific applications. Our contributions
are:

• We motivate the need for explicit IR contracts in fusion
diagnostics and HEP triggers, where determinism and
portability are critical [4]–[6].

• We build on prior studies of FPGA parallelism and HLS
parameterization [7], [8], extending them into a structured
metamodel framework.

• We introduce a reusable VHDL microinstruction library
[3], combined with a cycle-accurate emulator, to ensure
correctness and reproducibility.

• We show how capability-aware IR operators map al-
gorithms to heterogeneous FPGA resources, including
emerging AI/ML tiles.

By placing an explicit IR between algorithms and RTL,
PyHLS creates a flow where algorithms are written once and
retargeted many times, bridging the gap between productiv-
ity and determinism. This introduction sets the stage for a
deeper exploration of motivation, metamodel design, microin-
structions, heterogeneous FPGA mapping, and ultimately the
conclusions of this work.

II. MOTIVATION

Despite their success in raising the abstraction level of
FPGA design, existing High-Level Synthesis (HLS) method-
ologies reveal fundamental shortcomings when applied to real-
time scientific systems. The most pressing challenge arises
from the reliance on pragma-driven optimization. Pragmas,
inserted directly into the high-level language (HLL) code,
dictate loop unrolling, pipelining, and memory partitioning.
Although pragmatic in appearance, this approach tightly cou-
ples algorithmic descriptions to specific toolchains and device
families. Over time, such coupling creates designs that are
brittle, difficult to port, and hard to reproduce in long-lived
projects.

Problems with pragma-driven HLS

Pragmas blur the separation between algorithmic intent and
implementation detail. The scientific algorithm, which should
remain a clean mathematical description, becomes polluted
with annotations tied to a particular vendor tool. Moreover,
pragmas are inherently local: they optimize individual loops
or arrays but fail to provide a coherent, system-level view of
timing, resource budgets, or latency contracts. As a result, the
overall performance of the design emerges as a side effect of
tool heuristics rather than as an explicit, analyzable property.

This unpredictability is unacceptable in experiments where
every microsecond matters. For example, in fusion diagnostics
or rare-event triggers, deadlines must be met deterministically.
Silent degradation—where the compiler silently alters initia-
tion intervals (II) or fails to meet a latency bound—is not
tolerable. Without a higher-level representation of performance
contracts, reproducibility and scientific auditability are under-
mined.

Parameterization as a solution

To overcome these limitations, we argue for systematic pa-
rameterization of the synthesis process. Instead of embedding
performance hints inside the HLL, parameters should be first-
class entities in an explicit Intermediate Representation (IR).
This allows timing (II, deadlines, jitter), concurrency (pipelin-
ing, unrolling), memory layout (banking, tiling), and resource
ceilings (DSP, BRAM, LUT) to be expressed declaratively.
Parameters can then be varied systematically in design space
exploration (DSE), making it possible to navigate the trade-
offs between performance, area, and power in a controlled
fashion.

Earlier work on widely parameterizable HLS demonstrated
the value of exposing a multidimensional parameter space for
synthesis [8]. By modeling parameters as ranges, feasibility
checks and cost models can prune the search space before full
RTL synthesis. This ensures that only realistic and resource-
compliant designs are considered, reducing wasted compila-
tion cycles and accelerating design convergence.

The multi-level compiler concept

Parameterization is most effective when coupled with a
multi-level compiler architecture. In this model, the HLL
encodes only the algorithm, while intermediate layers—most
importantly the IR—capture performance decisions. Back-
ends then translate the IR into device-specific RTL. This
philosophy was formalized in the multi-level compiler concept
for HLS [9], which emphasized that abstraction should not
stop at the algorithm level but extend through multiple layers
of representation. Each layer serves as a boundary: algorithms
remain pure, IR captures time and resources, and microinstruc-
tions materialize the design in reusable VHDL modules.

The multi-level approach provides several benefits. First,
it isolates scientific code from toolchain volatility: as devices
evolve, only IR presets and back-ends need to change. Second,
it enables explicit reasoning about performance: contracts and
resource budgets are part of the IR rather than scattered across
pragmas. Third, it fosters modularity: subsystems can be
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compiled independently and integrated via IR-level contracts,
improving maintainability.

Practical implications

The motivation for our work is thus twofold. On one hand,
we must escape the limitations of pragma-driven flows that
compromise determinism, portability, and reproducibility. On
the other, we must embrace parameterization and multi-level
abstraction as the foundation of a sustainable methodology.
By placing an explicit IR at the heart of the synthesis process,
PyHLS transforms performance from an incidental property
into a contract, while enabling systematic exploration of the
parameter space. This approach provides the predictability
required by real-time physics experiments and the flexibility
demanded by decades-long scientific collaborations.

III. IR-CENTRIC HLS

The central thesis of this work is that a dedicated In-
termediate Representation (IR) layer transforms High-Level
Synthesis (HLS) from a pragma-driven heuristic into a struc-
tured, contract-based methodology. Rather than embedding
optimization hints in the high-level language (HLL), PyHLS
moves all performance-critical decisions into the IR. This
separation allows scientific algorithms to remain pure and
portable while ensuring that timing, concurrency, and memory
policies are explicit, analyzable, and auditable.

Rationale and Background

The need for an intermediate layer arises from the shortcom-
ings of classical HLS. As shown in prior studies on algorithmic
synthesis using Python compilers [11] and RPython-based
flows [10], embedding optimization at the source code level
leads to fragile designs that depend on specific compiler
interpretations. By contrast, an IR-centric approach creates a
stable abstraction boundary:

• HLL (Python) encodes only the algorithmic intent and
test vectors.

• IR encodes performance contracts: deadlines, initiation
intervals (II), loop unroll factors, memory banks, and
resource ceilings.

• Microinstructions (VHDL) materialize the IR as
reusable units, links, and memories [3].

• Back-ends translate the same IR to different FPGA
families, exploiting vendor-specific optimizations without
altering the algorithm.

This separation reflects a broader trend in compiler design:
the introduction of multiple intermediate layers, each respon-
sible for progressively lowering abstraction while preserving
correctness. In HLS, however, such layering has historically
been weak, with pragmas serving as a poor substitute for an
explicit IR. PyHLS addresses this gap by introducing IR as a
first-class citizen.

Modularity at Different Levels

The IR-centric flow promotes modularity across four levels:
1) Algorithmic Level. The high-level algorithm is written

in Python. It remains unchanged when retargeting to new
devices or adopting new optimization strategies. Func-
tional correctness and scientific meaning are preserved.

2) IR Level. The IR captures timing, concurrency, and
memory attributes. Each block (dataflow, control, mem-
ory) is represented as an independent module with
explicit contracts. This makes the design space explicit
and analyzable.

3) Microinstruction Library. A set of reusable VHDL
modules defines datapath primitives, memory fabrics,
and controllers [3]. Algorithmic IR operators are mapped
to these microinstructions, ensuring reusability and uni-
formity across projects.

4) Back-End Level. Vendor-specific back-ends lower the
same IR into RTL for different FPGA families (Intel,
Xilinx, Lattice) or even ASIC targets. Device hetero-
geneity is handled at this level without contaminating
the algorithm.

Fig. 1. Compilation and optimization model in PyHLS. The IR
separates algorithmic description (Python) from reusable mi-
croinstructions (VHDL) and device-specific back-ends. Modu-
larity is preserved at algorithm, IR, microinstruction, and back-
end levels.

IR as a Parameterized Contract Space

In PyHLS, the IR is not just an intermediate syntax tree.
It is a parameterized graph where each operation and channel
carries attributes and contracts. These parameters cover:

• Representation. Numeric types (fixed/floating), bit-
widths, quantization and rounding, vector layouts.

• Transformation. Loop unrolling, pipelining, tiling, strip-
mining, memory banking.
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• Estimation. Operator latency models (DSP vs LUT), area
usage, simple power models.

• Constraints. Deadlines, jitter bounds, throughput/II tar-
gets, ceilings on DSP/BRAM/LUT/FF.

• Heuristics. Scheduler/binder biases, exploration strate-
gies.

This taxonomy is consistent with the vision of widely
parameterizable HLS flows [8], but here embedded explicitly
in IR. Parameters may be fixed values or ranges to be
swept during design space exploration (DSE). Conflicts, such
as more memory reads than ports available at a given II,
are reported deterministically with minimal counterexamples,
ensuring that no design silently fails.

Lowering Path: From Algorithm to Hardware

The lowering process from HLL to IR and then to microin-
structions proceeds in structured stages:

1) Algorithm Analysis. The Python AST is parsed; loops,
dependences, and memory accesses are summarized.

2) IR Construction. Operations and channels are repre-
sented with timing and resource attributes; contracts are
attached.

3) Legality Checks. Loop-carried dependences and mem-
ory conflicts are validated against requested II and unroll
factors.

4) Scheduling. A timestamped dataflow graph is generated,
ensuring that deadlines and ceilings are respected.

5) Binding. Operations are mapped to DSPs, LUTs, or AI
tiles; arrays are mapped to banks or replicated RAMs
with explicit port usage.

6) Layout. Multiplexers and FIFOs are inserted to respect
cycle budgets and meet timing closure.

7) Control Generation. Guard logic, counters, and hand-
shake signals are synthesized, keeping datapaths regular.

8) Microinstruction Emission. The design is encoded as
a stream of microinstructions that drive the reusable
VHDL library [3].

This disciplined lowering path stabilizes the synthesis pro-
cess. Instead of ad hoc pragma tweaking, each decision is
explicit, inspectable, and auditable.

Microinstructions as the Executable Form of IR

A distinctive feature of PyHLS is that IR is not only ana-
lyzed but also executed. By lowering IR into a microinstruction
stream, PyHLS creates an executable artifact that can be run
in a cycle-accurate emulator. Each instruction carries timing
metadata, and the emulator checks contracts such as deadlines,
II, and jitter. This approach pushes failures early—designs that
cannot meet contracts fail before vendor synthesis. The dual
artifact (HDL + microinstructions) provides clarity about what
was built and why it satisfies performance targets.

Comparison with Prior HLS Approaches

Earlier Python-based HLS efforts demonstrated the potential
of using high-level languages for hardware synthesis [10],
[11], but lacked a stable intermediate abstraction. Vendor tools

such as Xilinx Vivado HLS or Intel HLS Compiler offer
pragma-driven optimization but leave determinism implicit.
Open-source flows such as LegUp and Bambu emphasize
productivity but often lack explicit timing contracts. PyHLS
differs in its insistence that all timing and resource properties
be first-class IR attributes, enforced by an emulator and
realized through reusable microinstructions. This positions IR
as the single source of truth.

Implications for Scientific and Engineering Projects

By introducing a dedicated IR layer, PyHLS provides the
determinism, portability, and auditability required for long-
lived scientific facilities. In ITER and JET, algorithms for
spectroscopy or diagnostics can be written once and retar-
geted across FPGA generations by evolving IR presets. In
high-energy astrophysics, trigger algorithms based on neural
networks or fuzzy logic [4], [5] can be mapped to AI tiles
or DSPs by altering IR binding policies, without rewriting the
algorithm. The IR-centric methodology thus bridges the gap
between scientific intent and hardware realization, ensuring
that FPGA accelerators remain both performant and sustain-
able.

IV. MICROINSTRUCTIONS AND EMULATION

A defining feature of PyHLS is the use of a reusable
microinstruction library as the executable carrier of the Inter-
mediate Representation (IR). Rather than emitting plain RTL
code directly from the IR, the compiler lowers algorithmic
operators, memory actions, and control flow into streams
of parameterized microinstructions. These microinstructions
instantiate reusable VHDL primitives—datapath units, con-
trollers, and memory fabrics—providing a stable middle layer
between the IR and vendor back-ends [3].

Microinstruction Classes

The microinstruction set is compact but expressive. Each
instruction encodes an operation, its arguments, attributes, and
optional timing metadata:

INST { opcode, args[], attrs{}, timing{} }

The instruction classes include:
• Declaration/configuration: introduce units, ports,

buffers, and clock domains.
• Data movement: memory loads/stores, buffer-to-unit

transfers, scatter/gather patterns.
• Arithmetic/logic: DSP and ALU operations (e.g., add,

multiply, MAC), with latency and pipeline attributes.
• Control: conditional branches, loop counters, and syn-

chronization barriers.
• Synchronization: valid/ready signals, deadline markers,

epoch tags.
By representing datapath and control as streams of such

instructions, PyHLS ensures modularity. A convolution kernel,
a matrix multiply, or a trigger filter can be expressed as a
parameterized sequence of microinstructions, independent of
vendor or device family.
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Advantages of a Microinstruction Layer

The use of microinstructions provides several practical
benefits:

• Reusability. Instructions map to a library of verified
VHDL modules that can be reused across projects and
devices.

• Auditability. Instruction streams are human-readable and
diffable; changes in pipeline depth or unroll factor are
visible as small edits.

• Portability. Device-specific back-ends interpret the same
instruction stream differently, binding operators to DSPs,
LUTs, or AI tiles.

• Determinism. Timing metadata embedded in instructions
allows explicit contracts (II, deadlines, jitter) to be en-
forced by the controller.

This approach mirrors earlier ideas of modular DSP building
blocks for FPGA-based accelerators, but extends them into
a unified HLS flow [12]. Instead of ad hoc instantiation,
every operator in PyHLS flows through a common instruction
abstraction.

Cycle-Accurate Emulation

To validate designs before vendor synthesis, PyHLS pro-
vides a cycle-accurate emulator that executes microinstruction
streams. The emulator models:

• Primitive units: registers, FIFOs, RAMs (with ports and
latencies), DSP/ALU units.

• Control: counters, guards, handshakes.
• Channels: typed links with valid/ready semantics and

backpressure.
At each cycle, the emulator:

1) Fetches instructions ready to execute.
2) Checks port availability; if a port is oversubscribed, it

raises a contention violation.
3) Advances units according to their latency models.
4) Commits results to registers or memories in the correct

order.
5) Updates control state and validates deadlines, II, and

jitter.
Outputs include waveforms of selected signals, FIFO oc-

cupancies, resource utilization, and timing summaries. Impor-
tantly, the emulator provides early failure: infeasible designs
are rejected before synthesis, saving time and avoiding mis-
leading results.

Application to AI and Real-Time Systems

The microinstruction layer is especially powerful when
targeting heterogeneous FPGAs with AI accelerators. For
example, a matrix multiply operator may be expressed as a
stream of multiply-accumulate instructions. On one device,
these instructions bind to DSP blocks; on another, to dedicated
AI tiles with systolic scheduling. The IR remains unchanged,
and the algorithmic code in Python is untouched. This ca-
pability aligns with earlier demonstrations of reconfigurable
computing accelerating AI workloads [12], but extends them
with a systematic, contract-driven methodology.

In real-time physics experiments, such as fusion diagnostics
or cosmic-ray triggers, emulation provides confidence that
latency and determinism are met before deployment. ANN-
based triggers for inclined showers [4] or fuzzy-logic triggers
for neutrino signatures [5] can thus be validated in a cycle-
accurate environment before being committed to hardware.

Summary

The combination of a microinstruction library and a cycle-
accurate emulator bridges the gap between abstract IR and
concrete FPGA implementations. Microinstructions ensure
modularity, portability, and reproducibility; emulation ensures
correctness and determinism. Together, they form the practical
backbone of PyHLS, enabling scientific algorithms to be
“written once” and “retargeted many times” without sacrificing
the stringent requirements of real-time systems.

V. FUTURE WORK

While the present work establishes the foundations of an
IR-centric HLS flow, the most compelling opportunities for
extension arise from trigger systems in large-scale physics
experiments. These systems, which must discriminate rare
signals from overwhelming backgrounds, place the strictest
demands on determinism, latency, and reproducibility.

Neural and Fuzzy Logic Triggers

Past efforts have shown that artificial neural networks
(ANNs) can successfully identify signatures of very inclined
air showers when implemented in FPGA hardware [4]. Simi-
larly, fuzzy-logic triggers have been proposed for distinguish-
ing neutrino-induced events in the Pierre Auger Observatory
[5]. Both approaches highlight the need for low-latency, high-
throughput accelerators that are also flexible enough to adapt
to evolving physics requirements. Extending PyHLS with
specialized IR operators for ANN layers (dense, convolutional,
pooling) and fuzzy classifiers would directly address this need.

CNNs and Pattern-Based Methods

Convolutional Neural Networks (CNNs) represent a natural
extension of ANN-based triggers. Their ability to detect spatial
and temporal patterns makes them suitable for analyzing
waveforms, images, or segmented detector data. Implement-
ing CNN layers efficiently on FPGA requires careful han-
dling of convolutions, data reuse, and memory banking. By
extending the IR with CNN-specific capability tags (e.g.,
conv1d, conv2d, pooling) and binding policies (DSP
vs AI tile), PyHLS can target future heterogeneous FPGAs
that integrate AI blocks. Beyond neural models, pattern-
based algorithms—such as matched filtering or template cor-
relation—could also be formalized as IR primitives. These
algorithms are widely used in physics for feature extraction
and can benefit from the same systematic parameterization.
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Extending the Compiler and IR

Supporting these trigger-oriented algorithms will require
several compiler and IR enhancements:

• Specialized operators. IR extensions for ANN and CNN
layers, pattern-matching kernels, and fuzzy inference
rules.

• Capability-aware binding. Mapping dense linear alge-
bra to AI tiles or DSP blocks, depending on device
capabilities.

• Contract integration. Expressing latency, throughput,
and memory bandwidth requirements of neural triggers
as explicit IR contracts.

• Reusable microinstructions. Enriching the microinstruc-
tion library with optimized primitives for convolutions,
activation functions, and pattern recognition.

Scientific Relevance

Trigger systems are often the first and most critical stage
of data acquisition. In fusion diagnostics, they decide which
plasma events warrant deeper analysis; in astroparticle physics,
they determine whether candidate neutrino or cosmic-ray
events are preserved for offline study. By extending PyHLS
toward ANN, CNN, and pattern-based triggers, we enable
experiments to leverage heterogeneous FPGA platforms with
confidence that their timing constraints will be met. This
direction aligns naturally with the long-term demands of
facilities such as ITER, JET, and the Pierre Auger Observatory.

Outlook

The ultimate goal of this line of research is to create a
unified, IR-centric toolchain where physics triggers—whether
based on ANN, CNN, fuzzy logic, or pattern matching—are
expressed once in Python and then retargeted across FPGA
generations. With IR carrying the performance contracts and
the microinstruction library enforcing modularity, such triggers
can remain both scientifically valid and technically portable for
decades.

VI. CONCLUSIONS

This paper has presented a comprehensive argument for an
Intermediate Representation (IR)-centric approach to High-
Level Synthesis (HLS), with specific focus on the demands
of real-time physics experiments such as fusion diagnos-
tics and astroparticle triggers. By introducing a dedicated
IR layer between high-level algorithmic description and
hardware-specific realization, PyHLS establishes a contract-
driven methodology that ensures determinism, portability, and
auditability—properties that are indispensable for long-lived
scientific facilities.

Transfer of Abstraction

The most important conceptual shift advocated in this work
is the deliberate transfer of performance-related concerns out
of the high-level language (HLL) and into the IR. While the
HLL (Python) remains the reference point for algorithmic

intent and functional validation, all decisions regarding tim-
ing, concurrency, resource binding, and memory layout are
expressed in the IR. This separation eliminates the fragility
of pragma-driven flows, where small changes in compiler
heuristics or vendor tool versions can lead to unpredictable
variations in performance. Instead, the IR provides a stable,
inspectable, and versioned record of performance contracts
that must be met for an implementation to be considered
correct.

Determinism by Explicit Contracts

A central advantage of the IR is that it elevates performance
targets to first-class contracts. Initiation intervals (II), end-
to-end deadlines, jitter bounds, and resource ceilings are not
implicit side effects of scheduling but explicit properties at-
tached to IR operators and channels. The compiler must either
satisfy these contracts or report minimal counterexamples that
pinpoint infeasible assumptions. This contract-driven model
transforms latency from a heuristic goal into a predictable
guarantee. For experiments that must respond to signals within
microseconds—such as plasma diagnostics at ITER [6] or rare-
event triggers in the Pierre Auger Observatory [4], [5]—this
determinism is not optional but mission-critical.

Portability Across Device Generations

Another major benefit of the IR-centric approach is porta-
bility. FPGA devices evolve rapidly, with each new gener-
ation offering different mixes of DSP slices, logic, mem-
ory resources, and increasingly specialized AI tiles. Vendor
toolchains also change, sometimes in backward-incompatible
ways. Scientific projects, however, often span decades, during
which algorithms must remain valid even as the underlying
hardware shifts. By maintaining the algorithm in pure Python
and expressing performance in the IR, PyHLS allows designs
to be retargeted across devices by adjusting IR presets and
back-end mappings. This ensures that the same scientific code
can be replayed on legacy platforms or extended to exploit
next-generation heterogeneous architectures without rewriting
the algorithm.

Auditability and Reproducibility

Scientific work demands transparency and reproducibility.
In PyHLS, IR graphs, parameters, and contracts are human-
readable and version-controlled. A change in unroll factor or
memory banking strategy is visible as a small diff in the IR,
making design decisions traceable and reviewable. Moreover,
by lowering IR into both HDL and microinstruction streams
[3], PyHLS generates dual artifacts: the implementation itself
and a structured record of the decisions that produced it. This
duality enhances reproducibility: accelerator designs can be
reconstructed and validated years later by replaying the same
microinstruction streams under the same contracts.

Microinstructions and Emulation as Practical Tools

The microinstruction library acts as the executable form of
the IR. Rather than producing opaque RTL directly, PyHLS
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lowers designs into streams of parameterized microinstructions
that instantiate reusable VHDL modules. This provides three
advantages: (i) modularity—operators and memories are de-
scribed by composable building blocks; (ii) portability—back-
ends interpret the same stream differently depending on de-
vice capabilities; and (iii) auditability—streams are human-
readable, versioned, and diffable.

Complementing this is a cycle-accurate emulator that ex-
ecutes microinstruction streams before vendor synthesis. The
emulator validates functionality, checks latency and initiation
interval contracts, and detects hazards such as port contention.
By moving failures earlier in the flow, the emulator shortens
iteration time and stabilizes continuous integration pipelines.
In domains where missed deadlines cannot be tolerated, such
as real-time DAQ in plasma diagnostics [6] or online pattern
recognition in cosmic-ray experiments [4], [5], this ability to
prune infeasible designs early is invaluable.

Alignment with Parameterizable and Multi-Level HLS

The PyHLS philosophy resonates with prior efforts in
widely parameterizable HLS [8] and multi-level compiler
design [9]. By embedding a structured parameter space in
the IR—including representation, transformation, estimation,
constraints, and heuristics—PyHLS allows systematic design
space exploration. Instead of rewriting HLL code, designers
sweep IR parameters such as unroll factors, pipeline depths,
and memory banking schemes. This makes design optimiza-
tion a reproducible, configuration-driven process rather than an
ad hoc art. Similarly, the multi-level philosophy [10], [11] is
realized here in practice: from algorithm in Python, to IR with
explicit contracts, to microinstructions, to back-end-specific
RTL.

Heterogeneous FPGA Devices and Specialized Blocks

The rise of heterogeneous FPGAs reinforces the need for an
explicit IR layer. Modern devices integrate not only general-
purpose logic and DSP slices but also specialized AI engines
(matrix multipliers, systolic arrays), high-bandwidth memory
(HBM), and on-chip networks. Exploiting these resources
requires capability-aware binding. In PyHLS, IR operators
carry capability tags (e.g., matmul_int8, conv1d_fp16)
and binding policies (prefer: AI_tile; fallback:
DSP; legal: LUT). Back-ends interpret these tags to se-
lect the most efficient implementation for the target device.
This mechanism allows the same IR to map to DSP-based
designs on legacy devices and AI-tile-based designs on newer
ones [12]. The algorithmic code remains unchanged, and the
IR contracts remain intact.

Triggers as a Driving Use-Case

Trigger systems in physics experiments exemplify the need
for IR-centric HLS. They must recognize rare and subtle pat-
terns—whether plasma instabilities, neutrino-induced showers,
or cosmic-ray events—while rejecting overwhelming back-
ground. ANN-based triggers for very inclined showers [4]
and fuzzy-logic triggers for neutrino discrimination [5] have

demonstrated the feasibility of advanced algorithms on FPGA
hardware. Looking forward, CNNs and pattern-based methods
represent natural extensions: convolutions can capture spa-
tial or temporal correlations, while template-matching kernels
provide deterministic pattern recognition. By extending the
IR with operators for dense layers, convolutions, pooling,
and pattern filters, PyHLS can directly support such triggers.
These operators would carry explicit contracts for latency and
throughput, ensuring that physics requirements are met.

Scientific and Practical Implications
The implications of the IR-centric methodology extend

beyond academic elegance. For large facilities such as ITER,
JET, or the Pierre Auger Observatory, the cost of revalidating
algorithms after toolchain changes is immense. By freezing the
HLL and managing performance exclusively via IR and pre-
sets, PyHLS reduces this cost. For engineers, the availability
of a microinstruction library and emulator provides practical
tools for debugging and optimization. For scientists, the au-
ditability of IR ensures that algorithms remain reproducible
and trustworthy even decades after deployment.

Outlook
Future work will extend PyHLS along several lines:
• Trigger-oriented operators. Adding IR primitives for

ANN layers, CNN convolutions, fuzzy inference, and pat-
tern matching, building directly on prior trigger research
[4], [5].

• Capability-aware compilation. Refining back-ends to
exploit AI tiles, HBM, and NoC fabrics on heterogeneous
FPGAs while preserving IR contracts.

• Extended emulation. Enhancing the microinstruction
emulator to cover more device models and to integrate
energy estimation for sustainable design.

Final Takeaway
The trajectory of FPGA devices is clear: greater hetero-

geneity, stronger AI acceleration, and tighter integration with
large-scale experiments. The trajectory of scientific facilities is
also clear: longer lifespans, stricter reproducibility demands,
and more complex real-time triggers. The IR-centric approach
of PyHLS addresses both trajectories. By keeping algorithms
pure in Python, moving performance into explicit IR contracts,
and enforcing them through reusable microinstructions and
emulation, PyHLS creates a future-proof methodology. It is a
methodology in which algorithms are written once, retargeted
many times, and trusted always—a foundation for the next
generation of real-time scientific computing.

REFERENCES
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