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Investigation and Study of Mode Splitting in Near

Field Inductive Communication Systems
Hoa Doan Thanh and Johnson I. Agbinya

Abstract—Frequency splitting is a near field inductive com-
munication phenomenon where the resonant frequency divides
into many separate frequencies or to different modes. In this
paper, we show that this phenomenon depends on the coupling
coefficients or the natural response of the circuit by using the
circuit theory to derive these splitting frequencies. Also, the
rules for the general matrix that is used to solve for splitting
frequencies are also demonstrated clearly. Mode splitting is
observed for peer-to-peer, three coils and four coil systems due to
the existence of the nearest and second neighbour interactions.
In particular, two, three and four modes have been analysed
for two, three, and four coil systems respectively. However, the
number of modes for these systems can be changed according
to the degree of coupling. The differences in the resultant
splitting frequencies with and without the second neighbour
interaction are shown in the simulation results. Furthermore,
we assess the system performances regarding to power efficiency
through the inductive transfer functions. Besides, either coupling
coefficients at resonance or the simplified transfer functions in
some specific scenarios can be obtained by having an insight
into these transfer functions. Finally, we recognise and propose
that splitting frequency phenomenon can be deployed to transmit
signals at many frequencies concurrently.

Keywords—splitting frequencies, modes, the nearest and sec-
ond neighbour interactions, coupling coefficients, conventional
resonant frequency, power efficiency, transfer function

I. INTRODUCTION

DATA and power transfer using magnetic flux coupling in

near field communication has captured a lot of attention

from researchers and telecommunication companies because

it has a large number of applications in near field inductive

communication devices, biomedical embedded devices, per-

sonal area networks, and wireless power transfer and data

transmission. The name “near field inductive communication”

stands for the very short distance between transceivers. In

other words, most applications of inductive transceivers are

based on the receivers within the flux bubble of the transmitter

in order to induce current in the repeaters and then finally to

enable the induced voltage in the receiver load. In general, the

target of research work is to induce the maximum voltage in

the receiver load to achieve the most efficient transmission by

making both transmitter and receiver to resonate at the same

frequency. This is the reason why transceivers are called res-

onators. The resonant frequency of LC circuits is well known

as a function of inductance and capacitance of these compo-

nents. The coupling coefficient however affects the resonant

frequency. Therefore, the transceivers may perform in three
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operational regimes namely under coupling, critically coupling

at the traditional resonant frequency and over coupling or

strongly coupling. These regimes will result in different system

performances and in terms of power, determine the efficiency

of wireless power transfer in inductive systems as mentioned

in other papers [1]–[4]. These papers recognised that systems

perform best at either the critically or over coupling states for

the purpose of power transfer efficiency.

The degree of coupling between transmitter, repeaters and

receiver causes the transfer function or the scattering parameter

(the ratio of the induced voltage at the load to the source

voltage) to have two, three, four or M modes according to

the number of separate coils in the system. When the resonant

frequency splits into several frequencies, the phenomenon is

called frequency splitting. Hence if the transferred energy mea-

surements are focused on the resonant frequency in such cases,

significant system performance reduction will be observed.

Mode splitting has been reviewed for peer-to-peer, three coil

and four coil systems by a means of the coupled mode or

circuit theory [1]–[7]. In a two coil system, two splitting

frequencies have been shown in [5] without showing how to

obtain those frequencies. Nevertheless, in [6] the author has

shown clearly steps to obtain these two splitting frequencies

by using circuit theory. In a three coil system, three modes

have been analysed using the coupled mode theory [4]. In

four coil systems, only two modes have been observed using

the circuit theory [1]–[3]. However, papers [1] and [2] have

demonstrated the relationships of the S-scattering parameter

in terms of coupling coefficients and quality factors. Mode

splitting behaviour of one system is not a result of the method

of system analysis but is due to the natural response of system

in certain circumstances [6], [7]. In [7], the authors have

shown how to derive the splitting frequencies for three systems

through the circuit theory analysis. In particular, two, three and

four modes have been demonstrated for two, three, and four

coil systems respectively. Therefore mode splitting is not a new

idea [1]–[7]. However none of these papers paid attention to

the influence of second neighbour mutual coupling interaction

between repeaters and transmitter which in fact can affect the

splitting frequencies. Besides, [6] and [7] have not shown how

to obtain the general matrix and the Eigen values that result in

the splitting frequencies. This paper eliminates the drawbacks

of earlier works and also demonstrates more accurate values

of the split frequencies obtained by considering the second

neighbour interaction, albeit with more computation required.

By acknowledging mode splitting phenomenon, we can

further analyse the system performances in the concern of

power transfer. The voltage gains or the inductive transfer
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functions have been written in this paper to quantity the power

efficiency at different frequencies. Moreover, the coupling

coefficients at resonance can be found at resonance. Along

with that, the simplified versions of transfer functions at

resonance can be achieved for loosely coupled and low quality

factor conditions. These results are somehow similar with

paper [8] if the second neighbour interaction is excluded from

system analysis. Otherwise, the differences again have been

shown in this work.

Therefore, there are four main parts mentioned in the body

graph. The first part is the circuit analysis for peer-to-peer,

three coil and four coil systems where the splitting frequency

derivation method is shown in order to confirm the reason

for the resulting in mode splitting. After that, the rules for

the general matrix used to solve those frequencies have been

presented. The second part is simulations for splitting and

resonant frequencies where the numbers of modes have been

observed for each system with and without the second neigh-

bour mutual coupling interaction. It is stated that the nearest

and second neighbour coupling coefficients decide the number

of modes in each system. For instance, four coil systems can

have two, three or four modes in accordance with the degree

of coupling. Moreover, it is investigated that the results for

splitting frequencies are different for systems affected and

unaffected by the second neighbour interaction. The next part

mentions about transfer functions for inductive systems. In this

section, all the voltage gains are derived for two, three and

four coil systems in terms of angular frequencies. In addition,

the voltage gains also are represented in terms of coupling

coefficients and quality factors as to figure out the coupling

coefficients at resonance and simplify the transfer functions at

special conditions. The last section is about the simulations for

voltages at different frequencies for power transfer efficiency

purpose. After all, the conclusion provides the summary of

achievements and future applications. In Appendix we give

definitions for all variables used in the paper.

II. CIRCUIT ANALYSIS

In the following analyses we used the circuit theory Kirch-

hoff Voltage Law (KVL) to analyse circuits for all of the

systems. Circuit theory formulation is more tractable since it

presents less complex system consideration and computation.

A. Two Coil System

By following the method of analysis in [6], [7], the circuit

can be analysed as the given expression:
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Equation (1) is equivalent to:

Av = λv (2)

Where A is a 2×2 matrix, v is Eigen vector and λ is Eigen

value. Since det(A – λI) = 0, this leads to the Eigen value

equation:

(1− λ)2 = k212 (3)

It is noticed that two coil systems are simple and do not

have the second neighbour interaction. Hence, Equation (3)

results in two separate frequencies that are not related to the

second coupling interaction same as in [5]–[7] as given below:

ω1 =
ω0√

1 + k12
; ω2 =

ω0√
1− k12

(4)

B. Three Coil System

In the three coil system, the second neighbour coupling has

occurred. Thus, the same method in [7] is re-applied for natural

response of this system with the effects of both the nearest and

the second mutual coupling in order to achieve the result:
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For the 3×3 matrix A, the Eigen value equation is:

(1 − λ)3 − (1− λ)(k212 + k223 + k213) + 2k12k23k13 = 0 (6)

The solutions to Equation (6) require numerical methods

such as the fixed point or Newton-Raphson iteration. From

Equation (6), it is learnt that the Eigen value is different

from unity, which means that the splitting frequencies do not

coincide with the conventional resonant frequency. However,

this result changes if the second neighbour interaction is

excluded from consideration in the three coil inductive circuit.

In that case, Equation (6) turns into the following:

(1− λ)3 − (1− λ)(k212 + k223) = 0 (7)

Equation (7) gives the same result as in Dukju Ahn and

Songcheol paper [7] as:

ω1 =
ω0

√

1 +
√

k212 + k223

;

ω2 = ω0; (8)

ω3 =
ω0

√

1−
√

k212 + k223

Without the second neighbour interaction, one of three

splitting frequencies is exactly the same as the resonant

frequency ω0. This leads to the belief that power transmission

is still maximized at the original resonant frequency as in

[7]. This concept may be accurate or inaccurate depending

on how the second neighbour mutual coupling takes effect on

the system. Therefore, the second neighbour interaction gives

a clearer picture of the splitting frequencies in terms of the

original resonant frequency and the first and second neighbour

coupling coefficients.
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Fig. 1. The four coil system with one transmitter, one receiver and two
repeaters.

C. Four Coil System

We show how to analyse the system including one trans-

mitter, two repeaters and one receiver affected by the nearest

and second neighbour interactions in details by following the

same concept:

I1(Rs +R1 + jωL1 + 1/(jωC1))+

+I2(jωM12)− I3(jωM13) = 0 (9)

By dividing Equation (9) by jωL1 and assuming that

(Rs +R1)/jωL1 approaches 0, Equation (9) can be written

as:
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Similarly, the other three equations are given as:
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We can transform these four simultaneous equations into the

matrix form:
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It is observed that matrix A whose diagonal elements are all

1s has symmetry through its diagonal if the self-inductance of

coils are identical to each other. In other words, it is clearly

seen that A(i, j) × A(j, i) = k2ij . In addition, A(1, 4) and

A(4, 1) are both equal to zero since we assumed that the

third neighbour interaction is not responsible for the mutual

coupling of the circuit. Based on three matrices for three

different systems above, the rules to obtain the general matrix

A with dimensions n by n are expressed in the following way

as A(i, i) = 1 and |A(i, j)| = kij
√

Lj/Li where kij = kji.
From Equation (14), the Eigen value equation can be

obtained as the following:

(1− λ)4 − (1 − λ)2(k212 + k223 + k234 + k213 + k224)+

+2(1− λ)(k12k13k23 + k34k24k23) + k213k
2
24 + k212k

2
34

−2k12k13k24k34 = 0 (15)

Through these steps to Equation (15), it is learned that

only coupling coefficients have effects on the solutions of

Equation (15), which determines the splitting frequencies. By

factorizing, Equation (15) becomes:

⌊(1− λ)2 − (k212 + k224)⌋⌊(1− λ)2 − (k213 + k234)⌋ =

[k23(1 − λ)− (k12k13 + k34k24)]
2 (16)

The assumed condition such that k212 + k224 = k213 + k234 is

satisfied as long as the radii of all coils are identical and the

distance from the transmitting coil to the nearest repeater is

the same as the distance from the receiving coil to the nearest

repeater. In other words, this assumption means that k12 = k34
and k13 = k24 and therefore enables us to simplify Equation

(16) further to achieve the result as:

[(1 − λ)2 − (k212 + k224)]
2 = [k23(1− λ)− (k12k13

+k34k24)]
2 (17)

Since λ = ω2
0/ω

2 or ω = ω0/
√
λ the splitting resonant

frequencies are:

ω1,2 =
ω0

√

1 +
k23 ±

√

k223 + 4(k12 + k13)2

2

;

ω3,4 =
ω0

√

1− k23 ±
√

k223 + 4(k12 + k13)2

2

(18)

The result in Equation (18) shows that the splitting resonant

frequencies differ from the conventional resonant frequency

ω0. Therefore the relationship between splitting frequency and

coupling coefficients with regards to the nearest and second

neighbour interactions is demonstrated clearly. In addition,

because of the conditions: k12 = k34 and k13 = k24, there

always exist four splitting frequencies that are either complex

or real. In the case that the second neighbour interaction is

not included (k13 = k24 = 0), the resultant frequencies in

Equation (18) are the same as in [7]. Obviously, the result

could be more accurate if the second neighbour coupling

which also accounts for this inductive circuit behaviour is

considered. In summary, the result for the four coil system in

this paper is more realistic compared to result in [7] because

it shows how the second neighbour interaction affects the

splitting frequencies in addition to the nearest one.
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Fig. 2. Two frequencies for the two coil system compared with the resonant
frequency.

Fig. 3. Two real splitting frequencies for the three coil system compared
with the resonant frequency.

Although the assumed condition above leads to four splitting

frequencies, this limitation is not true all the time so that

numerical methods could be used to get the approximate

results for Equation (15).

III. SIMULATIONS FOR THE SPLITTING AND RESONANT

FREQUENCIES

The simulations in this section are based on the following

conditions: Self- inductance of the coil is: L = 0.5µH;

Capacitance is: C = 286 pF and the traditional resonant

angular frequency is: ω0 = 84 MRad/s.

A. Two Coil System

The Eigen value Equation (3) is run by MATLAB. For any

value of k12, two modes have been achieved.

The result shown in Fig. 2 where k12 = 0.2 demon-

strates two splitting frequencies standing for two modes. This

achievement has also been proved in Equation (4).

B. Three Coil System

The Eigen value Equation (6) is used for MATLAB simu-

lation so that a clear picture of splitting frequencies with the

effect of second neighbour interaction can be demonstrated.

Two modes have been observed as both k23 and k12 are

set to 0.95 and k13 is set to 0.2375. It is seen that putting

coils close to each other brings one negative Eigen solution

for Equation (6), which eventually leads to one complex

Fig. 4. Three splitting frequencies for the three coil system compared with
the resonant frequency.

frequency. This result can be seen obviously in Fig. 3 where ω3

is set to zero due to complex frequency omission. Besides, the

right side of Fig. 3 shows that one of the splitting frequencies

is the same as ω0, which is proved in Equation (8). This

result will be true for any three coil system without the second

neighbour interaction.

Three modes have been gained for most of the values of the

coupling coefficients. For example, when k12 = k23 = 0.5 and

k13 = 0.125 in Fig. 4, three different splitting frequencies or

three different modes are observed. Once again, the splitting

is affected by the second neighbour interaction showing a

difference from the system without this coupling as in Fig. 4.

All the three frequencies in the left side are not the same

as ω0 and they also differ from those in the right one. The

same consequence is observed with k23 = 0.7; k12 = 0.8;

k13 = 0.175 as shown clearly in Fig. 5.

C. Four Coil System

Equation (15) is used for simulation in MATLAB to get the

accurate results without any constraint to the four coil systems.

Two modes have been obtained in Fig. 6 for the four coil

system when k12 = 0.1376, k23 = 0.01, k34 = 0.1343,

k13 = 0.0025, k24 = 0.0025. This result is the same as in

[2] in the way that there are two pairs of splitting frequencies

standing for two splitting modes since the same values for

the nearest neighbour coupling coefficients are used. It is seen

in Fig. 6 that the four splitting frequencies do not coincide

with the traditional resonant frequency and only two separate

pairs of frequencies can be achieved from the four ones. The

reason is that Equation 15 gives two pairs of values that are

different with unity. It can be learned that coupling coefficients

will decide the coefficients for the quartic Equation (15),

which leads to the Eigen roots and eventually to the splitting

frequencies.

Similarly, frequency splitting for three modes have been

investigated when k12 = 0.1, k23 = 0.6, k34 = 0.05,

k13 = 0.025, k24 = 0.0125. This result is quite different from

the result in [1]. When k12 and k34 are the same values, as

long as k23 in paper [1] is greater 0, the system in [1] has three

modes if it includes the traditional resonant mode. However,

in this work, only when k23 starts to be greater than 0.3, three

modes (one mode is the same as the traditional resonant one)

can be observed as k23 = 0.6 in Fig. 7. Otherwise, our four

coil system will have four modes.
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Fig. 5. Three/two real splitting frequencies for the three coil system compared
with the resonant frequency.

Fig. 6. Two splitting frequencies for the four coil system compared with
resonant frequency.

Another case for three modes was observed as k12 = 0.9;

k23 = 0.5; k34 = 0.7; k13 = 0.125; k24 = 0.125. This

time, Equation (15) brings three real and one complex Eigen

value. The complex value is omitted since we only deal

with real frequencies. This is why the three separate splitting

frequencies are different from ω0 and one frequency is set to

0. We notice that the frequency values are not the same for the

system with second neighbour coupling coefficients in the left

of Fig. 8 and without it in the right of Fig. 8. This result is not

found in Fig. 6 and Fig. 7. Therefore, the second neighbour

coupling does have significant effect on the system behaviour

depending on its degree. In other words, if k13 and k24 are

big enough, they will affect the circuit behaviour. Thus, the

second neighbour interaction should be included in the system

considerations if coils are arranged closely to each other.

Finally, four modes have been obtained as well when k12 =
0.3; k23 = 0.6; k34 = 0.8; k13 = 0.075; k24 = 0.15. In this

case, four real splitting are frequencies observed for the system

where the second neighbour coupling is involved as seen in the

left of Fig. 9. Nevertheless, only three real splitting frequencies

could be achieved for this system without k13 and k24 as in the

right of Fig. 9. Thus, the effect of second neighbour interaction

is shown again in this case.

To sum up, the differences of simulation results between

systems with and without the second neighbour interaction

have been shown more clearly in Tab. I located at the last

page. The results are the same only for the four coil system

in the case of two modes with and without the second

neighbour interaction. For other cases, the splitting frequencies

for systems with the second interaction are quite different from

the ones without it.

Fig. 7. Three splitting frequencies for the four coil system compared with
the resonant frequency.

Fig. 8. Three real splitting frequencies for the four coil system compared
with the resonant frequency.

IV. TRANSFER FUNCTIONS FOR INDUCTIVE SYSTEMS

In order to estimate the power efficiency of each inductive

system at different frequencies, the transfer functions of the

models are derived in terms of angular frequencies. Besides,

they are also used for assessing the system gains in terms of

quality factors and coupling coefficients at resonance as to

either find out the critical coupling coefficients at the resonant

frequencies or to simplify the models further in some specific

conditions.

A. Two Coil System

The circuit can be summarised in the following matrix form:
[

Z1 jωM12

jωM12 Z2

] [

I1
I2

]

=

[

Vs

0

]

(19)

The current flowing in the receiver side is:

I2 =
−jωM12VS

Z1Z2 + ω2M2
12

(20)

The voltage at the receiver load is:

VL = −I2RL (21)

Therefore, the voltage gain is derived as:

VL

VS

=
jωM12RL

Z1Z2 + ω2M2
12

(22)

Voltage gain can be expressed in another way in terms of

quality factors and coupling coefficients. Consider the quality

factors of the transmitting coil and receiving coil as the

following below:

Q1 =
ωL1

R1 +RS

, Q2 =
ωL2

R2 +RL

(23)
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Fig. 9. Four/three real splitting frequencies for the four coil system compared
with the resonant frequency.

At resonance, all the impedances become pure resistances.

Thus, Equation (22) can be written as the follows:

VL

VS

=
jk12

√
Q1Q2

√

(R1 +RS)(R2 +RL)RL

(R1 +RS)(R2 +RL)
(24)

+k212Q1Q2(R1 +RS)(R2 +RL)

By simplifying Equation (24) and taking the absolute value of

the voltage gain, we can obtain this expression:

∣
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√
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This result here is the same as paper [8]. The only minor

difference is that the source resistance and the load resistance

may be ignored for simplification [8].

Equation (25) helps to determine the critical coupling co-

efficient at resonance that enables the voltage gain to achieve

the maximum value. Thus, by differentiating Equation (25) in

terms of k12 and letting the first derivative of that equation

equal to 0, the following equation can be gained:

√
Q1Q2(1 + k212Q1Q2 − 2k212Q1Q2

(1 + k212Q1Q2)2
= 0 (26)

The solution for Equation (26) brings the critical coupling

value which is:

k12 =
1√

Q1Q2

(27)

Moreover, in both loosely coupled and low quality factor

conditions [8], Equation (25) can be shortened into:
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and
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∣

∣
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∣
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= β2(k12
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Q1Q2)

where β2 = RL/
√

(R1 +RS)(R2 +RL)

It is said that at resonance, with weak coupling and low

quality factor cases, the transfer function for inductive two-

coil system is therefore linearly proportional to the coupling

coefficient, which does not apply for other cases.

B. Three Coil System

For three coil system, the matrix form representing the

system performance can be expressed as given below:




Z1 jωM12 −jωM13

jωM12 Z2 −jωM23

−jωM13 −jωM23 Z3




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0
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The current flowing in the receiver loop is derived in Equation

(30) below.

The load voltage at the receiver side is:

VL = I3RL (31)

Thus, the voltage gain for this three coil system is given as

Equation (32) below.

In the same way, the voltage gain for three coil system can

also be represented in terms of quality factors and coupling co-

efficients. Let the quality factors for transmitting, intermediate

and receiving coils be:

Q1 =
ωL1

R1 +RS

, Q2 =
ωL2

R2

, Q3 =
ωL3

R3 +RL

(33)

By substituting the quality factors into Equation (32), the

inductive transfer function for three coil system at resonance

can be obtained as the expression:

VL

VS

=
RL

√

(R1 +RS)(R3 +RL)
· (34)

· (k12k23Q2 + jk13)
√
Q1Q3

k212Q1Q2 + k223Q2Q3 + k213Q1Q3 + 1− 2jk12k23k13Q1Q2Q3

The result in Equation (34) differs from the transfer function

for three coil system in paper [8] due to the existence of the

second neighbour mutual interaction. Based on Equation (34),

the critical coupling coefficients for three coil systems at the

resonant frequency are the solutions for three simultaneous

equations which are the partial derivatives of Equation (34).

The general solutions for these equations are left for mathe-

maticians.

In addition, in the case of both loosely coupled (the first

neighbour coupling coefficients are quite small and thus the

second neighbour coupling coefficient does not account for

system operation) and low quality factors Q, the voltage gain

for the system can reduce to:
∣

∣

∣

∣

∣

VL

VS

∣

∣

∣

∣

∣

=
RLk12k23Q2

√
Q1Q3

√

(R1 +RS)(R3 +RL)
(35)

and
∣

∣

∣

∣

∣

VL

VS

∣

∣

∣

∣

∣

= β3(k12
√

Q1Q2)(k23
√

Q2Q3)

where β3 = RL/
√

(R1 +RS)(R3 +RL)
Equation (35) is exactly the same result in paper [8] due to

omission of the second neighbour coupling coefficient. This

equation is used only when coils are arranged quite far from

each other and have low quality factors. Otherwise, Equation

(34) definitely has to be used for other scenarios.
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I3 =
(ω2M12M23 + jωM13Z2)VS

ω2(Z1M2
23 + Z2M2

13 + Z3M2
12)− 2jω3M12M23M13 + Z1Z2Z3

(30)

VL

VS

=
(ω2M12M23 + jωM13Z2)RL

ω2(Z1M2
23 + Z2M2

13 + Z3M2
12)− 2jω3M12M23M13 + Z1Z2Z3

(32)

C. Four Coil System

The four coil system can be transformed into the character-

istic matrix as the following:








Z1 jωM12 −jωM13 0
jωM12 Z2 −jωM23 jωM24

−jωM13 −jωM23 Z3 −jωM34

0 jωM24 −jωM34 Z4

















I1
I2
I3
I4









=









VS

0
0
0









(36)

The current flowing in the receiver loop is given in Equation

(37) put on the top of next page.

The load voltage at the receiver side is:

VL = −L4RL (38)

The voltage gain is finally obtained as the following Equation

(39) put on the top of next page.

The voltage gain in Equation (39) can be written in terms of

the quality factors and coupling coefficients in the same way

with two and three coil systems. Quality factors for four coil

system are defined as the following:

Q1 =
ωL1

R1 +RS

; Q2 =
ωL2

R2

;

Q3 =
ωL3

R3

; Q4 =
ωL4

R4 +RL

(40)

At resonance, Equation (39) can turn into the following

inductive transfer function as given in Equation (41) put on

the top of next page.

Comparing the transfer function Equation (41) with the

inductive transfer function in paper [8], it is noticed that there

is a remarkable difference because of considering the second

neighbour interaction in the four coil model.

It is learnt that the critical values are the roots for four

simultaneous equations that are the first partial derivatives of

Equation (41). Solving those equations in order to have the

general solutions involves more analysis.

Besides, in the low coupling and small quality factor

scenario, Equation (41) can be simplified further into the

following expression:
∣

∣

∣

∣

∣

VL

VS

∣

∣

∣

∣

∣

=
RLk12k23k34Q2Q3

√
Q1Q4

√

(R1 +RS)(R4 +RL)
(42)

and
∣

∣

∣

∣

∣

VL

VS

∣

∣

∣

∣

∣

= β4(k12
√

Q1Q2)(k23
√

Q2Q3)(k34
√

Q3Q4)

where β4 = RL/
√

(R1 +RS)(R4 +RL).
The result obtained in Equation (42) is similar to the one in

paper [8] and only useful for special conditions as mentioned

Fig. 10. Voltage gain versus splitting frequencies for two-coil system in
Equation (22).

Fig. 11. Voltage gain versus splitting frequencies for three-coil system in
Equation (32) with three modes.

above. Therefore, for general cases, Equation (41) has to be

deployed instead.

In general, the inductive transfer function for N coil system

can be written as the product:

∣

∣

∣

∣

∣

VL

VS

∣

∣

∣

∣

∣

= βN

N
∏

j=1

(kj,j+1

√

QjQj+1 (43)

where βN = RL/
√

(R1 +RS)(RN +RL)

Equation (43) is derived through the rules acknowledged

from transfer functions for two, three and four coil systems.

This equation shows the relationship of the voltage gain in

terms of coupling coefficients, quality factors and resistances

in any inductive system at loosely coupling and low quality

factor conditions.
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I4 =
VS [−ω2(M24M12Z3 +M13M34Z2) + jω3(M13M23M24 +M34M12M23)]

ω4(M2
12M

2
34 − 2M12M34M13M24 +M2

13M
2
24)− 2jω3(M23M24M34Z1 +M23M12M13Z4)

(37)

+ω2(M2
12Z3Z4 +M2

23Z1Z4 +M2
34Z1Z2 +M2

13Z2Z4 +M2
24Z1Z3) + Z1Z2Z3Z4

VL

VS

=
RL[−ω2(M24M12Z3 +M13M34Z2) + jω3(M13M23M24 +M34M12M23)]

ω4(M2
12M

2
34 − 2M12M34M13M24 +M2

13M
2
24)− 2jω3(M23M24M34Z1 +M23M12M13Z4)

(39)

+ω2(M2
12Z3Z4 +M2

23Z1Z4 +M2
34Z1Z2 +M2

13Z2Z4 +M2
24Z1Z3) + Z1Z2Z3Z4

VL

VS

=
RL

√

(R1 +RS)(R4 +RL)

√
Q1Q4(−k12k24Q2 − k13k34Q3 + jQ2Q3k23(k13k24 + k12k34))

Q1Q2Q3Q4(k12k34 − k13k24)2 − 2jQ2Q3k23(k12k13Q1 + k24k34Q4)
(41)

+k212Q1Q2 + k223Q2Q3 + k213Q1Q3 + k224Q2Q4 + k234Q3Q4 + 1

V. SIMULATIONS FOR VOLTAGE GAINS AT DIFFERENT

FREQUENCIES

The simulations in section IV are based on the same

conditions with section II. Voltage gains for all systems

have been plotted versus the splitting and traditional resonant

frequencies in order to compare the differences of power

efficiency at different frequencies and then determine the

maximum efficiency of systems when mode splitting happens.

It is noticed that for two coil system with the same coupling

coefficient with previous section k12 = 0.2, there are two

splitting frequencies which are different with the resonant

frequency as proved in Equation (4) and section II. From

Fig. 10, it is learnt that the maximum voltage gain can be

achieved at the splitting frequency f2 instead of the resonant

frequency f0. It is said that in the strongly coupled case,

frequency splitting degrades the system performance in term

of power transfer. Therefore, correct frequency selection is

supposed to perform to achieve the maximum power efficiency.

For the three coil systems, we have done the simulation

with the similar conditions as one case in section II where

k23 = 0.7; k12 = 0.8; k13 = 0.175. The results obtained in

Figs. 11 and 12 agree with all the ones achieved in section II

for systems with and without the second neighbour interaction.

From these two figures, it is learnt that the system performance

is not affected by the mode splitting phenomenon.

Similarly, we have achieved the same results as the previous

part in section III for the four coil systems where k12 = 0.3;

k23 = 0.6; k34 = 0.8; k13 = 0.075; k24 = 0.15. Nevertheless,

in this situation, the maximum voltage gain cannot be gained at

the traditional resonant frequency as demonstrated in Figs. 13

and 14, which again strengthens the statement that for strongly

coupling scenarios, mode splitting does affect the system

performances due to power transfer efficiency. Thus, it is

supposed to choose another splitting frequency instead of the

resonant one in order to achieve the maximum power transfer.

Fig. 12. Voltage gain versus splitting frequencies for three-coil system in
Equation (32) with two modes.

Fig. 13. Voltage gain versus splitting frequencies for four-coil system in
Equation (39) with 4modes.

VI. CONCLUSION

From the circuit analysis and simulation result parts, it

is believed that the only factor affecting the mode splitting

phenomenon is the coupling coefficients. The degree of these
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Fig. 14. Voltage gain versus splitting frequencies for the four coil system in
Equation (39) with 3 modes.

TABLE I
COMPARISON OF SIMULATION RESULTS WITH/WITHOUT SECOND

NEIGHBOUR INTERACTION

Kind of system 3 coil systems

Number of modes 2 modes 3 modes

k23 = k12 = 0.95k23 = k12 = 0.5 k23 = 0.7
Different cases k13 = 0.2375 k13 = 0.125 k12 = 0.8

k13 = 0.175

Highest neighbour1st 2nd 1st 2nd 1st 2nd
interaction

W1 (MRad/s) 55 53 64 63 58 57
W0 (MRad/s) 84 84 84 84 84 84
W2 (MRad/s) 84 96 84 89 84 92
W3 (MRad/s) 0 0 155 141 0 593

Kind 4 coil systems
of system

Number 2 modes 3 modes 4 modes
of modes

k12 = 0.1376 k12 = 0.1 k12 = 0.9 k12 = 0.3
Different k23 = 0.01 k23 = 0.6 k23 = 0.5 k23 = 0.6

cases k34 = 0.1343 k34 = 0.05 k34 = 0.7 k34 = 0.8
k13 = 0.0025 k13 = 0.025 k13 = 0.125k13 = 0.075
k24 = 0.0025k24 = 0.0125k24 = 0.125 k24 = 0.15

Highest
neighbour 1st 2nd 1st 2nd 1st 2nd 1st 2nd
interaction

W1 78 78 66 66 58 56 0 58
(MRad/s)

W2 78 78 83 84 67 69 59 78
(MRad/s)

W0 84 84 84 84 84 84 84 84
(MRad/s)

W3 90 90 84 84 127 147 72 102
(MRad/s)

W4 90 90 134 133 0 0 96 330
(MRad/s)

coupling coefficients plays a very important role in producing

the Eigen values that result in the number of real splitting

frequencies. The conventional resonant frequency does not

decide the number of modes but alter the magnitudes of

the splitting frequencies due to its relationship with Eigen

values and these frequencies. Moreover, the second neigh-

bour interaction has strong effects on the system behaviour

regarding to splitting frequency results, especially when the

distances between coils are short as in applications such as

wireless charging platforms and inductive power chains. Thus,

this factor needs to be considered in any system analysis.

In wireless power transfer, mode splitting should be avoided

because of power transmission efficiency. It has been observed

that the application of resonance with loops limits inductive

transceivers to monochromatic applications that use only the

conventional resonant frequency as the operating frequency of

the system. Nevertheless, splitting frequency phenomenon can

be utilized for data transmission at many separate frequencies

concurrently. In this work, further insights into mode splitting

have enabled to analyse the power efficiency for inductive

systems at splitting and resonant frequencies so that the correct

frequency can be tuned. Besides, coupling coefficients can be

determined at resonance by representing the transfer functions

in another way. Also the simplified forms of voltage gains

have brought the general system model for N -coil near field

inductive system.

APPENDIX

DEFINITIONS FOR ALL VARIABLES

Variables Definitions

k12, k21 Coupling coefficient between coils 1 and 2
k23, k32 Coupling coefficient between coils 2 and 3
k34, k43 Coupling coefficient between coils 3 and 4
k13, k31 Coupling coefficient between coils 1 and 3
k24, k42 Coupling coefficient between coils 2 and 4
M12, M21 Mutual Inductance between coils 1 and 2
M23, M32 Mutual Inductance between coils 2 and 3
M34, M43 Mutual Inductance between coils 3 and 4
M13, M31 Mutual Inductance between coils 1 and 3
M24, M42 Mutual Inductance between coils 2 and 4

ω Angular frequency
ω0 Resonant angular frequency
f0 Resonant frequency

ω1, ω2, ω3, ω4 Splitting angular frequencies
f1, f2, f3, f4 Splitting frequencies

Q1, Q2, Q3, Q4 Quality factors for coil 1, 2, 3, 4
I1, I2, I3, I4 Currents flowing in coils 1, 2, 3, 4

L1, L2, L3, L4 Inductances of coils 1, 2, 3, 4
C1, C2, C3, C4 Capacitors in series with coils 1, 2, 3, 4
R1, R2, R3, R4 Resistances of coils 1, 2, 3, 4
Z1, Z2, Z3, Z4 Impedances for coil 1, 2, 3 ,4

RS , RL Resistances for source, load
VS , VL Voltages across the source, load
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