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Generalization of Linear Rosenstark Method

of Feedback Amplifier Analysis

to Nonlinear One
Andrzej Borys and Zbigniew Zakrzewski

Abstract—This paper deals with an extension of the Rosen-
stark’s linear model of an amplifier to a nonlinear one for the
purpose of performing nonlinear distortion analysis. Contrary to
an approach using phasors, our method uses the Volterra series.
Relying upon the linear model mentioned above, we define first
a set of the so-called amplifier’s constitutive equations in an op-
erator form. Then, we expand operators using the Volterra series
truncated to the first three components. This leads to getting two
representations in the time domain, called in-network and input-
output type descriptions of an amplifier. Afterwards, both of these
representations are transferred into the multi-frequency domains.
Their usefulness in calculations of any nonlinear distortion
measure as, for example, harmonic, intermodulation, and/or
cross-modulation distortion is demonstrated. Moreover, we show
that they allow a simple calculation of the so-called nonlinear
transfer functions in any topology as, for example, of cascade and
feedback structures and their combinations occurring in single-,
two-, and three-stage amplifiers. Examples of such calculations
are given. Finally in this paper, we comment on usage of such
notions as nonlinear signals, intermodulation nonlinearity, and
on identification of transfer function poles and zeros lying on the
frequency axis with related real-valued frequencies.

Keywords—weakly nonlinear amplifiers, nonlinear Rosenstark
model, nonlinear distortion analysis, harmonic distortion, consti-
tutive equations, Volterra series

I. INTRODUCTION

IN his well known paper [1] and a book [2], Rosenstark

developed an unconventional means of analysis of linear

feedback amplifiers in the frequency domain. This approach

became recently very popular among designers of amplifiers

implemented in CMOS and related technologies, see for exam-

ple [3], [4], [5]. The original Rosenstark’s amplifier model is

a linear one. So, in such a form, it cannot be used in evaluation

of nonlinear distortion occurring in weakly (mildly) nonlinear

amplifiers – that is in amplifiers which are not strictly linear

ones. Nevertheless, it has been used in [5] as a heuristic tool

for developing a specific nonlinear model for calculation of

harmonic distortions. Correctness of the so-called nonlinear

coefficients of the first-, second-, and third-order calculated

with its help has been checked in [5] by confronting them with

their counterparts evaluated in the analysis using phasors.

In this paper, we extend the original linear Rosenstark’s

model to a fully nonlinear one, presenting its general form

using operators working on continuous time signals. This

A. Borys and Z. Zakrzewski are with the Faculty of Telecommunications,
Computer Science, and Electrical Engineering, University of Technology and
Life Sciences (UTP), 85-789 Bydgoszcz, Poland; (e-mails: {andrzej.borys;
zbigniew.zakrzewski}@utp.edu.pl).

operator model exploits four linear operators and two nonlinear

ones. Further, the nonlinear operators are assumed to have ex-

pansions of a polynomial type, which are afterwards truncated

to the first three components. All the operators mentioned

above are used in a set of three equations. This set constitutes

the so-called weakly nonlinear amplifier description – accord-

ing to the ideas of Rosenstark [1], [2]. It builds a model called

weakly nonlinear one because it involves only nonlinearities of

the polynomial type which are of the highest order of three.

Further, in this form, the model formulation is in the time

domain.

After Chua [6], the aforementioned set is a set of con-

stitutive relations (equations) describing a weakly nonlinear

amplifier as a two-port (shortly 2-port). More precisely, it

is a simplified set of constitutive equations because it in-

volves only two port variables from the whole number of

four occurring in this case. Moreover, it is such a set of

relations that contains also (two) internal variables, besides

the port ones mentioned above. Further, consistently with

the above simplification, none of the six aforementioned

operators describes any 2-port circuit element of which the

amplifier model is built. Each of them describes a two-terminal

(shortly 2-terminal) circuit element independently of weather

it is in fact such an element (as for example a nonlinear

amplifier conductance) or not (as for instance a nonlinear

voltage controlled current source). For those amplifier model

components that are 2-ports, these descriptions form equivalent

2-terminal circuit element representations. We can view them

as 2-port-like-2-terminal or block-like-2-terminal descriptions,

and name simply a generalized 2-terminal representation. In

this context, observe that amplifier’s description that relates

its output voltage with its input voltage – without involving in

this description amplifier’s output and input currents – can be

viewed as a type of a generalized 2-terminal circuit element

representation. So, such an amplifier model is one of the forms

the generalized 2-terminal device can assume.

In this paper, we assume that terminal, port or internal

variables occurring in the set of constitutive equations de-

scribing a weakly nonlinear amplifier are related to the input

signal applied to the whole circuit through Volterra series.

Furthermore, we assume here that these Volterra series can

be truncated to the first three components. In other words,

we assume that neglecting components of orders higher than

three in all of the above series do not influence significantly

accuracy of the results obtained. By the way, note also that

fulfillment of the above assumption can be used as another
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definition of the notion of a weakly (mildly) nonlinear circuit

(amplifier); it is of course closely related to that presented just

before, however, not identical with.

The set of constitutive equations describing a weakly non-

linear amplifier in the time domain builds the basis for

development of amplifier’s so-called in-network and input-

output representations (in the aforementioned domain). On

this occasion, note that the existence in fact of two kinds

of descriptions for nonlinear circuit elements in nonlinear

analysis using Volterrra series (the same regards also nonlinear

analysis exploiting phasors) has been pointed out for the first

time in [7]; obviously – for linear elements – these descriptions

are identical. In [7], they have been named in-network and

input-output descriptions.

In derivation of the in-network representation (model) of

a weakly nonlinear circuit element, being a part of a larger

circuit, one assumes that the input signal is not applied directly

to a terminal (or port) of this element. Opposite to this, in

derivation of its input-output representation, one assumes that

the input signal is applied directly to one of its terminals

(or ports). Obviously, these two circuit or circuit element

descriptions differ from each other, see for example [7]; this

fact will be also evident in the course of this paper.

Here, we derive first generic formulas in the time domain

for the aforementioned descriptions, valid for any real or

equivalent two-terminal nonlinear circuit element and also

for two-terminal equivalents of whole circuits consisting of

linear and nonlinear elements. Afterwards, these formulas

are transferred into the multi-frequency domains using the

multidimensional Fourier transforms [8], [9]. Further analyses

are performed exclusively in the multi-frequency domains,

which are, as well known, easier to carry out. And at the first

instance, using the above generic formulas for elements that

are the nonlinear Rosenstark amplifier model components, we

derive its in-network and input-output descriptions. Next, we

show that the amplifier’s input-output representation provides

immediately its so-called nonlinear transfer functions of the

first (linear), second, and third order – named in such a way,

for example, in [8]–[11]. These nonlinear transfer functions

specialized for harmonic distortion analysis [12] are identical

with the so-called nonlinear coefficients [3], [5], [13], which

one obtains in the nonlinear analysis using phasors. The above

fact has been pointed out for the first time in [14].

In other words, the nonlinear transfer functions used in

harmonic distortion analysis can be viewed as being functions

of a single frequency, as is the case in symbolic analysis

presented in [3], [5], [13]. Furthermore, as it has been said

above, these transfer functions are then identical with the so-

called nonlinear coefficients introduced in [3], [13]. That is

nonlinear coefficients are nonlinear transfer functions special-

ized exclusively for performing harmonic distortion analysis

– and nothing more. For calculations of more advanced

nonlinear distortion measures as, for example, intermodulation

and cross-modulation distortions [15], nonlinear coefficients

are useless. In these cases, a more general approach using

general forms of nonlinear transfer functions, which are not

achievable in symbolic analysis [3], [5], [13], must be used.

Such a general framework is presented in this paper.

It is also worth noting that the general formulas of in-

network and input-output representations derived here – for

the use according to the simplified convention of modelling

all the circuit elements as equivalent two-terminal ones –

allow a simple calculation of nonlinear transfer functions of

any circuit topology, as for example, cascade and feedback

structures and their combinations occurring in single-, two-,

and three-stage amplifiers analysed intensively in the literature

recently [3], [5], [13].

This paper is structured as follows: Generalization of the

Rosenstark’s linear model of an amplifier to a nonlinear one

– exploiting operators in the time domain – is developed in

Section 2. Furthermore, in this section, it is shown how to

describe the components of the above model as equivalent two-

terminal circuit elements. Also, a graph visualizing their con-

nections, which will prove to be very useful in further analysis,

is developed. In the next section, the in-network and input-

output representations of the generic nonlinear two-terminal

circuit element described by a truncated Volterra series are

derived. Afterwards these representations are transformed into

the frequency domain (precisely, multi-frequency domains),

and the resulting generic expressions are used in Section 4

to get a general form of the nonlinear Rosenstark’s model in

this domain. Section 4 is also devoted to the specialization

of the nonlinear Rosenstark’s model in the frequency domain

to harmonic distortion analysis. In Section 5, we present an

illustrative but a little bit more advanced example of the

usage of the theory developed in derivation of the in-network

model of two-stage amplifier as a component of three-stage

one. Some remarks on such questionable notions as nonlinear

signals, intermodulation nonlinearity, making identity between

the transfer function poles and zeros lying on the real axis of

the complex plane with the related positive-valued frequencies,

and on other ones are presented in Section 6. The next section

concludes the paper.

II. NONLINEAR ROSENSTARK’S MODEL AND NONLINEAR

EQUIVALENT TWO-TERMINAL CIRCUIT ELEMENTS

The linear Rosenstark model of an amplifier [1], [2], [5]

has been formulated in the frequency domain, using such

notions as transfer functions and Fourier transform. Obviously,

using the reverse Fourier transform, this model can put into

an equivalent form that exploits linear operators working on

continuous time signals. The latter is the basis for general-

ization undertaken in this section. Simply, we assume now

occurrence of nonlinear operators in places of linear ones.

Using the version of the Rosenstark’s model presented in [5]

with the nonlinear voltage controlled current source (NVCCS),

the similar notation for signal variables as therein, and naming

the operators here similarly as the transfer functions in [5], we

write






x̃o (t) = H1 (xs) (t) +HF (xn) (t)
xo (t) = HD (xs) (t) +H2 (xn) (t)
xn (t) = gm (x̃o) (t) + go (xo) (t)

(1)

where xs (t) and xo (t) mean the amplifier’s input and output

voltage (input and output signal), respectively. Further, x̃o (t)
and xn (t) are the internal signals in the model. More precisely,
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Fig. 1. An amplifier as a two-port.
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Fig. 2. A scheme of n-port device after [6].

x̃o (t) means the voltage signal controlling the NVCCS, named

here gm. But, xn (t) is the current signal being the sum of

currents flowing through the parallel connection of gm and

nonlinear amplifier’s output conductance go. The operators

H1 (xs) (t), HF (xn) (t), HD (xs) (t), and H2 (xn) (t), in

general being nonlinear in this model, describe transmissions

of the signals: input xs (t) to internal x̃o (t), internal xn (t) to

internal x̃o (t), input xs (t) to output xo (t), and internal xn (t)
to output xo (t), respectively. For more explanation regarding

the choice of the above notation, see [5]. Moreover, note also

that a more convenient way of writing operators in (1) was

chosen, namely, H1 (xs) (t) instead of H1 (xs (t)) as used

usually, and so on.

In [6], Chua has introduced to the circuit theory literature

the so-called constitutive relations describing such the circuit

components as two-terminal elements and, generally, multi-

terminal elements, and multi-ports (n-ports). Further, note that

a nonlinear amplifier can be viewed as a 2-port, as shown in

Fig. 1. Then, it is described by two sets: the first consisting

of voltage and current of port 1 (input port) and the second

of the same variables but now for port 2 (output port); that

is by {v1, i1} and {v2, i2}, together with a set of algebraic

and non-algebraic relations holding between the elements of

the above two sets. In Chua’s terminology [6], these relations

are called constitutive relations (equations); for more details

regarding the subject of constitutive relations of multi-ports

see [6], Section III therein.

The set of equations (1) builds a set of the constitutive

equations of the nonlinear Rosenstark’s model of an amplifier.

This set is however specific and has a simplified form. To see

this, compare first the description (1) with the port variables in

Fig. 1, identifying xs (t) = v1 (t) and xo (t) = v2 (t). Further,

observe the absence of the second variables (signals) in the

pairs of port variables, that is of i1 (t) and i2 (t), in (1). In

this respect, we have to do with simplification of the model.
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Fig. 3. Symbol and notation used for an equivalent 2-terminal circuit element.

Moreover, note that the variables (signals) x̃o (t) and xn (t)
occurring in (1) are absent in Fig. 1. So the 2-port description

by (1) possesses also two internal variables.

Let us now introduce a new notion: of that we call here

a 2-port-like-2-terminal or block-like-2-terminal, or simply

a generalized 2-terminal circuit element. We use this generic

element to model any 2-port or multi-port (circuit block) by

an equivalent 2-terminal element. To formulate the defini-

tion a generalized 2-terminal circuit element, consider now

a scheme of a n-port device as sketched in Fig. 2.

And, let us take into account any two port variables occur-

ring in Fig. 2. We denote them as xT and yT , and assume

that a relation between them (if such one exists) describes an

equivalent 2-terminal circuit element that can be used instead

of the n-port device shown in Fig. 2. In other words, from the

point of view of the pair xT and yT of the n-port variables, the

n-port of Fig. 2 can be equivalently replaced by a 2-terminal

circuit element having terminal variables equal to xT and yT ,

respectively. Furthermore, we assume that the variable xT or

yT can be any port voltage or port current shown in Fig. 2,

and any combination of them (any pair of them) is allowable.

That is we can pair, for example, xT = i1 with yT = v1,

or xT = v1 with yT = v2, or xT = i1 with yT = ii, or

xT = ii with yT = v1, or xT = v2 with yT = i1, and so on.

Moreover, in these combinations, xT and yT can assume the

meaning of current as well as of voltage. Further, because of

the above two properties, such an equivalent 2-terminal circuit

element is named here a generalized one. Depending upon the

meaning of its terminal variables (current, voltage), it can have

a character of a resistor (more general, of an impedance), of

a voltage controlled voltage source, and so on.

The above descriptive definition of a circuit element, which

we named here the generalized equivalent 2-terminal circuit

element, is illustrated in Fig. 3.

The circuit element shown in Fig. 3 possesses two terminals

we called generalized ones because of the fact that they are

not true terminals when xT and/or yT mean voltages. In

these cases, they are physically ports. Furthermore, the above

terminals are numbered: the first and the second generalized

one, suggesting their different roles in applications discussed

further in this paper. In fact, we assume here that the gen-

eralized equivalent 2-terminal circuit element plays a role of

a signal (terminal variable) processing device from the first to

the second generalized terminal. Hence, these nodes in Fig. 3

are also named the input and output terminal, respectively.

Further, the direction of the signal transfer is depicted by

an arrow inside the element symbol (in Fig. 3). Moreover,

we assume that only the signal yT (not xT ) can be an input
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Fig. 4. A generalized 2-terminal circuit element interpreted as a branch of
an oriented graph.
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Fig. 5. A scheme of an ideal nonlinear voltage controlled voltage source
(NVCVS) as a 2-port.

signal of the following (if any) equivalent 2-terminal circuit

element connected to that in Fig. 3. And, the relation existing

between the terminal variables xT and yT is expressed as

yT = D (xT ), where D means, generally, a nonlinear operator.

It is assumed that this operator can possess a memory or be

memoryless; further, the relation yT = D (xT ) is, according to

[6], the constitutive equation of the equivalent circuit element

visualized in Fig. 3. Note also that in some cases, as for

example in the case of yT = D (xT ) describing a resistor

(conductor), we can reverse it using a reverse operator D−1,

providing xT = D−1 (yT ), where the roles of xT and yT
are interchanged. So, in such cases, we can also use a dual

generalized 2-terminal circuit elements, having the direction

of the signal transfer reversed. Obviously, a reverse operator

D−1 does not exist for all the generalized 2-terminal circuit

elements; therefore, not in all of them, the roles of terminal

variables can be reversed.

Further, it follows from the above description of the gen-

eralized 2-terminal circuit element shown in Fig. 3 that this

element can be also well described and in a simpler way

using the notions of graph theory. Simply, it can be viewed as

a branch of an oriented graph, as sketched in Fig. 4.

Comparison of Figs. 3 and 4 shows that only one essential

notational difference exists between them, namely, the termi-

nals of 2-terminal circuit element of Fig. 3 are now, in Fig. 4,

called graph branch nodes. Moreover, in this paper, we will

distinguish between two kinds of graph nodes: a) such ones

in which no algebraic operations are performed and those b)

in which some algebraic operations are carried out. Regarding

the second kind, we will use here exclusively nodes in which

summation operation on the incoming signals is performed.

Let us return now to the problem of replacement of the

n-port device of Fig. 2 by its equivalent in the form of

a generalized 2-terminal circuit element (2-port-like-2-terminal

device) visualized in Fig. 3 and ask about the accuracy of

such replacement. Here, we sketch only the problem. And,

to this end, consider an ideal nonlinear voltage controlled

voltage source (NVCVS) of which equivalent circuit is shown

in Fig. 5.

It is evident from Fig. 5 that the relation between the

following port variables: v1 = xT and v2 = yT is given by

v2 = K (v1), where K stands for a nonlinear operator. And,

observe that this relation involves only two port variables of

the NVCVS as a 2-port. That means it is a perfect one for the

purpose of describing the NVCVS in Fig. 5 by an equivalent

generalized 2-terminal circuit element. In other words, this

equivalent description will be accurate.

Consider now two nonideal nonlinear controlled sources:

nonideal NVCCS and nonideal NVCVS of which schemes are

depicted in Fig. 6.

Equations relating the port variables in the nonideal NVCCS

of Fig. 6(a) and in the nonideal NVCVS of Fig. 6(b) have the

following forms

i2 = H (v1) +Go · v2 and v2 = K (v1) +Ro · i2 (2)

respectively. Observe that in both the cases three port vari-

ables are involved, but we would await only two to be able

to formulate equivalents of the above 2-ports in forms of

generalized 2-terminal circuit elements. We can achieve this

approximately by letting Go → 0 and Ro → 0 in (2). This

leads to getting i2 ∼= H (v1) and v2 ∼= K (v1), respectively. So,

in other words, neglecting the loading effects caused by shunt

output conductance in Fig. 6(a) and series output resistance in

Fig. 6(b), we can replace the nonideal NVCCS and NVCVS

by the corresponding generalized 2-terminal circuit elements

of the ideal NVCCS and NVCVS (not in sense of an exact

replacement, but of an approximate one).

Let us now try to interpret the set of equations (1) in

view of the remarks made above with regard to the notion

of generalized 2-terminal circuit element. To this end, we

recall the fact already pointed out in the explanation beneath

Fig. 1 that this description involves only two port variables of

an amplifier modeled as a 2-port. Hence, it has an accurate

equivalent representation in form of a generalized 2-terminal

circuit element. (Caution: Do not misunderstand accuracy of

the equivalence between the above representations with the

accuracy of modeling a real amplifier by Rosenstark model.)

And this equivalent 2-terminal element can be visualized

as sketched in Figs. 3 and 4; in further problem analyses

and illustrations, we will prefer to use rather the second

type of visualization, graph-oriented. In this convention, the

amplifier H of Fig. 1, which has the constitutive equation

xo = v2 = H (v1 = xs) implicitly defined by the set of

equations (1), is presented in Fig. 7.

Note that using the same arguments as above, we can

interpret similarly all the operators (components) occurring in

equations (1): H1, HF , HD , H2, gm, and go as representing

accurate equivalent generalized 2-terminal circuit elements

(or 2-node oriented graphs). Their equivalent 2-node oriented

graphs are summarized in Fig. 8.

Physical meaning (voltage or current) of the graph node

(terminal) variables xT and yT is depicted in Fig. 8 for each

of the equivalent 2-node oriented graphs. This information

will be necessary in building the whole graph of an amplifier

described by equations (1) to take care of not-connecting to

each other nodes being of different physical type (shortly, to

avoid connection of “current nodes” with “voltage nodes”).

Now, using the equivalent 2-node oriented graphs of Fig. 8,

we can visualize equations (1) as shown in Fig. 9.
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Fig. 6. (a) A scheme of nonideal NVCCS as a 2-port and, similarly, (b) a scheme of nonideal NVCVS as a 2-port.
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Fig. 7. An equivalent generalized 2-terminal circuit element of a Rosenstark
model of an amplifier interpreted as a 2-node oriented graph.

For better understanding of the amplifier graph of Fig. 9,

relations between notations used for the variables occurring in

equations (1) and those used in Fig. 8 are explicitly depicted in

Fig. 9. Moreover, we draw the reader’s attention to occurrence

of the nodes of two types in Fig. 9: usual ones depicted by

dots and the summation nodes. The second type of graph nodes

follows from the physical meaning of variables and governing

rules associated with them: the first and second Kirchhoff’s

laws. In other words, there are points in Fig. 9, in which we

must add to currents or voltages (according to the above laws).

III. IN-NETWORK AND INPUT-OUTPUT REPRESENTATIONS

OF GENERIC NONLINEAR TWO-TERMINAL CIRCUIT

ELEMENT DESCRIBED BY A TRUNCATED VOLTERRA

SERIES

In this paper, we assume that the relation yT = D (xT )
describing a generic element we introduced here and called

the generalized 2-terminal circuit element can be expanded in

a Volterra series [8]–[11]. That is as

yT (t) = D (xT ) (t) =

=
∞
∑

n=1

∞
∫

−∞

· · ·
∞
∫

−∞

d
(n)
T (τ1, . . . , τn)

n

Π
k=1

xT (t− τk)dτk
(3)

where d
(n)
T (τ1, . . . , τn) means a nonlinear impulse response

of the n-th order of the generalized 2-terminal circuit ele-

ment. Observe also that the responses d
(n)
T (τ1, . . . , τn), n =

1, 2, 3, . . ., in (3) can describe the following types of signal

transferring: current-to-current, current-to-voltage, voltage-to-

current, and voltage-to-voltage in case of our generic 2-

terminal element. Moreover, note that in a particular case of

a generic 2-terminal element representing a linear element,

(3) reduces to one component, being a standard convolution

integral. Also, note that for memoryless generic elements the

description in form of 3 becomes a Taylor series.

Further, we restrict ourselves here to consideration of such

nonlinear systems (circuits), as in [3], [5], [7], [8], [12]–[20],

which are only weakly (mildly) nonlinear. And, it is worth

noting at this point that this class of systems has been defined

in the literature cited above using different approaches and

formulations. In terms of the Volterra series, saying shortly, it

encompasses such systems of which analysis with the use of

the truncated Volterra series (truncated to the first three terms),

suffices. More precisely, in this paper, we understand the afore-

mentioned class as: First, as such one in which descriptions of

all the constitutive equations of system’s composing elements,

and of all the relations between terminal (port, or generalized)

variables (signals) and the system’s input variable (signal) are

expressed in form of Volterra series truncated to the first three

terms. And second, each analysis of a system belonging to this

class provides results not differing or differing only slightly

from those one gets in measurements. Hence, it follows that

we assume here

yT (t) = D (xT ) (t) ∼=
∞
∫

−∞

d
(1)
T (τ)xT (t− τ)dτ+

+
∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)xT (t− τ1)xT (t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d
(3)
T (τ1, τ2, τ3)xT (t− τ1)×

× xT (t− τ2)xT (t− τ3)dτ1dτ2dτ3

(4)

for any generalized 2-terminal element, and the following

yT (t) = y
(1)
T (t) + y

(2)
T (t) + y

(3)
T (t) + . . . ∼=

∼=
∞
∫

−∞

h
(1)
To(τ)xs(t− τ)dτ+

+
∞
∫

−∞

∞
∫

−∞

h
(2)
To(τ1, τ2)xs(t− τ1)xs(t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

h
(3)
To(τ1, τ2, τ3)xs(t− τ1)×

× xs(t− τ2)xs(t− τ3)dτ1dτ2dτ3

(5a)

and

xT (t) = x
(1)
T (t) + x

(2)
T (t) + x

(3)
T (t) + . . . ∼=

∼=
∞
∫

−∞

h
(1)
Ti (τ)xs(t− τ)dτ+

+
∞
∫

−∞

∞
∫

−∞

h
(2)
Ti (τ1, τ2)xs(t− τ1)xs(t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

h
(3)
Ti (τ1, τ2, τ3)xs(t− τ1) ×

× xs(t− τ2)xs(t− τ3)dτ1dτ2dτ3

(5b)

for the relations between the terminal variables (signals) yT
and xT , and the input signal applied to the whole system input.
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v1H1=xT v2H1 =yT 

input node of H1 (its 

input terminal) 

output node of H1 (its 

output terminal) 

H1 

(a) 

i1HF=xT v2HF =yT 

input node of HF (its 

input terminal) 

output node of HF (its 

output terminal) 

HF 

(b) 

i1H2=xT v2H2 =yT 

input node of H2 (its 

input terminal) 

output node of H2 (its 

output terminal) 

H2 

(d) 

v1HD=xT v2HD =yT 

input node of HD (its 

input terminal) 

output node of HD (its 

output terminal) 

HD 

(c) 

v1gm=xT i2gm =yT 

input node of gm (its 

input terminal) 

output node of gm (its 

output terminal) 

gm 

(e) 

v1go=xT i2go =yT 

input node of go (its 

input terminal) 

output node of go (its 

output terminal) 

go 

(f) 

Fig. 8. Equivalent 2-node oriented graphs (equivalents of the corresponding generalized 2-terminal circuit elements) for the operators occurring in equations
(1): (a) for H1, (b) for HF , (c) for HD , (d) for H2, (e) for gm, and (f) for go.

 

xs =v1H1 =v1HD 

v2H1 + v2H1= 

=
o
xɶ =v1gm H1 

v2H1 

HF 

v2HF 

v2HD 

HD 

i1HF 

H2 

v2H2 

v1HD 

go 

gm + 

+ 

+ 

output 

input 

v1H1 

i1H2 

v2HD + v2H2= 

=xo=v1go 

xo 

i2gm 

i2go 

i2gm + i2go= 

= xn =i1H2= i1HF 

Fig. 9. Oriented graph of the amplifier described by equations (1), constructed using equivalent 2-node graphs of operators H1, HF , HD , H2, gm, and go
illustrated in Fig. 8.
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In (5a) and (5b), the latter one is denoted as xs (t). More-

over, therein, the corresponding functions h
(n)
To (τ1, . . . , τn) and

h
(n)
Ti (τ1, . . . , τn) mean the nonlinear impulse responses of the

n-th order, n = 1, 2, 3, . . ., of the system’s paths: from the

system’s input to the output and input terminal of the element

considered, respectively. Furthermore, y
(n)
T (t) and x

(n)
T (t),

n = 1, 2, 3, . . ., are used to denote shortly the partial responses

in the generic element output response yT (t) and its input

response xT (t), accordingly, that is the corresponding one-,

two-, and three-dimensional convolution integrals occurring

on the right-hand sides of (5a) and (5b), and the next ones. In

this paper, we will use the above notion of partial responses

to the aforementioned n-dimensional convolution integrals

exclusively when they are calculated with respect to the signal

xs (t).
It has been shown in [7] and [16] that two different de-

scriptions of composing nonlinear elements (blocks) of weakly

nonlinear systems are needed in their analysis. These represen-

tations for a given system’s composing element depend upon

whether an input signal applied to the whole system is identical

or not with the input variable of the element considered. They

have been called the input-output and in-network description,

respectively.

So, to derive the first one for our generic generalized

2-terminal circuit element, we apply xT (t) = xs (t). Taking

this into account in (5b) gives

x
(1)
T (t) =

∞
∫

−∞

δ(τ)xs(t− τ)dτ = xs(t),

x
(2)
T (t) =

∞
∫

−∞

∞
∫

−∞

0·xs(t− τ1)xs(t− τ2)dτ1dτ2= 0,

x
(3)
T (t) =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

0·xs(t− τ1)xs(t− τ2) ×

× xs(t− τ3)dτ1dτ2dτ3 = 0

(6a)

and

h
(1)
Ti (t) = δ (t) , h

(2)
Ti (t1, t2) = 0,

h
(3)
Ti (t1, t2, t3) = 0

(6b)

where δ (t) means the Dirac impulse, and t1, t2, t3 are the aux-

iliary time variables. Further, substitution of xT (t) = xs (t)
in (4) and comparison with (5a) results in

y
(1)
T (t) =

∞
∫

−∞

d
(1)
T (τ)xs(t− τ)dτ,

y
(2)
T (t) =

∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)xs(t− τ1) ×

× xs(t− τ2)dτ1dτ,

y
(3)
T (t) =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d
(3)
T (τ1, τ2, τ3)xs(t− τ1) ×

× xs(t− τ2)xs(t− τ3)dτ1dτ2dτ3

(7a)

and

h
(1)
To(t) = d

(1)
T (t),h

(2)
To(t1, t2) = d

(2)
T (t1, t2),

h
(3)
To(t1, t2, t3) = d

(3)
T (t1, t2, t3)

(7b)

The relations (7a) and (7b) together with the complementing

ones (6a) and (6b) constitute the input-output representation in

the time domain of our generic generalized 2-terminal circuit

element.

Now, we remember that the case of in-network description

is characterized by xT (t) 6= xs (t). So, we get then from (5b)

x
(1)
Tr (t) =

∞
∫

−∞

h
(1)
Ti (τ)xs(t− τ)dτ, x

(2)
Tr (t) =

=
∞
∫

−∞

∞
∫

−∞

h
(2)
Ti (τ1, τ2)xs(t− τ1)xs(t− τ2)dτ1dτ2,

x
(3)
Tr (t) =

∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

h
(3)
Ti (τ1, τ2, τ3)xs(t− τ1)×

× xs(t− τ2)xs(t− τ3)dτ1dτ2dτ3

(8)

where an additional letter “r” has been added to “T ” in

subscripts of x
(n)
T (t), n = 1, 2, 3, to distinguish this case from

the previous “input-output” one (see (6a) and (6b)).

Similarly, let us denote the corresponding partial output re-

sponses in the in-network description of a generic generalized

2-terminal circuit element by y
(n)
Tr (t), n = 1, 2, 3, with the

additional letter “r” in subscripts. Observe next that (4) and

(5a) must give the same result for yT (t), so combining these

expressions, we can write

y
(1)
Tr (t) + y

(2)
Tr (t) + y

(3)
Tr (t)

∼=

∼=
∞
∫

−∞

d
(1)
T (τ)xTr(t− τ)dτ+

∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)xTr(t− τ1)xTr(t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d
(3)
T (τ1, τ2, τ3)xTr(t− τ1)×

× xTr(t− τ2)xTr(t− τ3)dτ1dτ2dτ3

(9a)

Applying then xTr (t) ∼= x
(1)
Tr (t) + x

(2)
Tr (t) + x

(3)
Tr (t), which

follows from (5b), in (9a) gives

y
(1)
Tr (t) + y

(2)
Tr (t) + y

(3)
Tr (t)

∼=

∼=
∞
∫

−∞

d
(1)
T (τ)x

(1)
Tr (t− τ)dτ+

+
∞
∫

−∞

d
(1)
T (τ)x

(2)
Tr (t− τ)dτ+

+
∞
∫

−∞

d
(1)
T (τ)x

(3)
Tr (t− τ)dτ+

∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)x

(1)
Tr (t− τ1)×

× x
(1)
Tr (t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)x

(1)
Tr (t− τ1) ×

× x
(2)
Tr (t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)x

(2)
Tr (t− τ1) ×

× x
(1)
Tr (t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d
(3)
T (τ1, τ2, τ3)x

(1)
Tr (t− τ1)×

× x
(1)
Tr (t− τ2)x

(1)
Tr (t− τ3)dτ1dτ2dτ3

(9b)

Having in mind the relations (5a) and (5b), we can now

compare the components of the same order (degree) with
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respect to the input signal xs (t) on both sides of (9b). This

will give us the following equations

y
(1)
Tr (t) =

∞
∫

−∞

d
(1)
T (τ)x

(1)
Tr (t− τ)dτ, (10a)

y
(2)
Tr (t) =

∞
∫

−∞

d
(1)
T (τ)x

(2)
Tr (t− τ)dτ+

+
∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)x

(1)
Tr (t− τ1)×

× x
(1)
Tr (t− τ2)dτ1dτ2

(10b)

y
(3)
Tr (t) =

∞
∫

−∞

d
(1)
T (τ)x

(3)
Tr (t− τ)dτ+

+
∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)x

(1)
Tr (t− τ1)×

× x
(2)
Tr (t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

d
(2)
T (τ1, τ2)x

(2)
Tr (t− τ1)×

× x
(1)
Tr (t− τ2)dτ1dτ2+

+
∞
∫

−∞

∞
∫

−∞

∞
∫

−∞

d
(3)
T (τ1, τ2, τ3)x

(1)
Tr (t− τ1)×

× x
(1)
Tr (t− τ2)x

(1)
Tr (t− τ3)dτ1dτ2dτ3

(10c)

Mathematically rigorous proof of correctness of the procedure

applied above in derivation of equations (10a), (10b), and

(10c), which uses the properties of homogeneous polynomial

mappings, can be found in [16].

The relations (10a), (10b), and (10c) together with (8), the

complementing one, constitute the in-network description in

the time domain of our generic generalized 2-terminal circuit

element.

To transform the expressions derived above in the time

domain into the multi-frequency domains, one must introduce

some artificial auxiliary time variables in these expressions.

For this purpose, a standard procedure is used as described,

for instance, in [8], [21]. According to it, we apply here

x
(n)
Tr (t) → x

(n)
Tr (t1, . . . , tn) ,

y
(n)
Tr (t) → y

(n)
Tr (t1, . . . , tn)

(11a)

n = 1, 2, 3, for the functions on the left-hand sides of

equalities in (8) and the partial output responses in (10a)-(10c),

respectively, and

xn
s (t) → xn

s (t1, . . . , tn) = xs (t1) · · ·xs (tn) ,

x
(i1)
Tr (t) · · ·x

(in)
Tr (t) → x

(i1)
Tr (t1) · · ·x

(im)
Tr (tn) ,

(11b)

where i1 + . . . + im = n and m ≤ n for the powers of

xs and xTr (of different arguments and denoted shortly as

seen above), which occur under the integrals on the right-

hand sides of (8) and (10a)-(10c), respectively. In (11a) and

(11b), t1, . . . , tn, n = 1, 2, 3, denote the artificial auxiliary

time variables introduced.

The so-called multidimensional (n-dimensional, n =
1, 2, 3, . . .) Fourier transforms [8], [9] are defined as

G(n)(f1, . . . , fn) =
∞
∫

−∞

· · ·
∞
∫

−∞

g(n)(t1, . . . , tn)×

× exp(−j2π(f1t1 + . . .+ fntn))dt1 · · · dtn

(12)

where G(n)(f1, . . . , fn) denotes the n-dimensional Fourier

transform of a function g(n)(t1, . . . , tn), n = 1, 2, 3, . . . ,
expressed as a function of n arguments being artificial auxil-

iary time variables. Consequently, f1, . . . , fn in (12) are the

frequencies of the n-dimensional frequency space.

By exploiting (12) on both the sides of equalities in (8) and

(10a)-(10c), we transfer them into the corresponding multi-

frequency spaces. The operations, we need to carry out then,

are standard; their details have been explained in the literature,

for example, see [8], [10] and [11]. Because of this fact, we

present only the final results in what follows

X
(1)
Tr (f) = H

(1)
Ti (f)Xs (f) ,

X
(2)
Tr (f1, f2) = H

(2)
Ti (f1, f2)Xs (f1)Xs (f2) ,

X
(3)
Tr (f1, f2, f3) = H

(3)
Ti (f1, f2, f3) ×

×Xs (f1)Xs (f2)Xs (f3)

(13a)

Y
(1)
Tr (f) = D

(1)
T (f)X

(1)
Tr (f) (13b)

Y
(2)
Tr (f1, f2) = D

(1)
T (f1 + f2)X

(2)
Tr (f1, f2) +

+D
(2)
T (f1, f2)X

(1)
Tr (f1)X

(1)
Tr (f2)

(13c)

Y
(3)
Tr (f1, f2, f3) =

D
(1)
T (f1 + f2 + f3)X

(3)
Tr (f1, f2, f3) +

+D
(2)
T (f1, f2 + f3)X

(1)
Tr (f1)X

(2)
Tr (f2, f3)+

+D
(2)
T (f1 + f2, f3)X

(2)
Tr (f1, f2)X

(1)
Tr (f3)+

+D
(3)
T (f1, f2, f3)X

(1)
Tr (f1)X

(1)
Tr (f2)X

(1)
Tr (f3)

(13d)

Note that as mentioned above f1, f2, and f3 occurring in

(13a-(13d) represent the frequency variables characterizing the

corresponding multidimensional frequency spaces. That is f1
(denoted here also by f ) characterizes the one-dimensional

frequency space, f1 and f2 characterize the two-dimensional

frequency space, and f1, f2, f3 characterize the three-

dimensional frequency space. Moreover, D
(1)
T , H

(1)
Ti , X

(1)
Tr ,

Xs, Y
(1)
Tr , further D

(2)
T , H

(2)
Ti , X

(2)
Tr , Y

(2)
Tr , and finally D

(3)
T ,

H
(3)
Ti , X

(3)
Tr , Y

(3)
Tr denote the one-, two-, and three-dimensional,

respectively, Fourier transforms of the corresponding impulse

responses and partial responses of the successive orders, oc-

curring in (13a)-(13d). They depend upon the frequencies f1,

f2, and f3 as indicated. Moreover, observe that the functions

D
(1)
T , D

(2)
T , and D

(3)
T describe the corresponding nonlinear

parts (of the first-, second-, and third-order, respectively) of

a generic generalized 2-terminal nonlinear circuit element

in the one-, two-, and three-dimensional frequency spaces,

accordingly. Note also that H
(1)
Ti , H

(2)
Ti , and H

(3)
Ti are also

called the nonlinear transfer functions of the corresponding

orders n = 1, 2, 3 (for n = 1 meaning the standard linear

transfer function).

Using the same procedure as above to transfer the relations

(6a), (6b), (7a), and (7b) derived for the input-output model
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in the time domain, we get now

X
(1)
T (f) = 1 ·Xs (f) = Xs (f) ,

X
(2)
T (f1, f2) = 0 ·Xs (f1)Xs (f2)= 0,

X
(3)
T (f1, f2, f3) = 0 ·Xs (f1)Xs (f2)Xs (f3)= 0

(14a)

H
(1)
Ti (f) = 1, H

(2)
Ti (f1, f2) = 0,

H
(3)
Ti (f1, f2, f3) = 0

(14b)

Y
(1)
T (f) = D

(1)
T (f)Xs (f) ,

Y
(2)
T (f1, f2) = D

(2)
T (f1, f2)Xs (f1)Xs (f2) ,

Y
(3)
T (f1, f2, f3) =

= D
(3)
T (f1, f2, f3)Xs (f1)Xs (f2)Xs (f3)

(14c)

H
(1)
To (f) = D

(1)
T (f) ,

H
(2)
To (f1, f2) = D

(2)
T (f1, f2) ,

H
(3)
To (f1, f2, f3) = D

(3)
T (f1, f2, f3)

(14d)

equivalently in the multi-frequency spaces for our generic

generalized 2-terminal nonlinear circuit element. Moreover,

the meaning of the functions occurring in (14a)-(14d) can be

deduced similarly as it was done in the detailed explanations

beneath (13a)-(13d) for the in-network model.

IV. NONLINEAR ROSENSTARK’S MODEL IN THE

FREQUENCY DOMAIN AND ITS SPECIALIZATION TO

HARMONIC DISTORTION ANALYSIS

In this paper, we understand the nonlinear Rosenstark’s

model in the frequency domain as such one that has a structure

shown in Fig. 9, but all of its composing elements are

described now in the multi-frequency spaces according to

the rules developed in the previous section. Note further that

this structure implies the use of the input-output description

developed to the elements depicted as H1 and HD in Fig. 9,

and the in-network representation to the remaining ones. In

what follows, we also simplify our nonlinear Rosenstark’s

model in a way as it has been done in [5]. That is we assume

here that the following four elements: H1, HD, HF , and H2

in Fig. 9 are linear. Then, only the elements gm and go remain

nonlinear.

The above assumptions lead to simplification of the generic

descriptions (14c) and (14d), which are to be used for H1 and

HD , to

Y
(1)
T (f) = D

(1)
T (f)Xs (f) ,Y

(2)
T (f1, f2) = 0,

Y
(3)
T (f1, f2, f3) = 0

(15a)

and

H
(1)
To (f) = D

(1)
T (f) ,H

(2)
To (f1, f2) = 0,

H
(3)
To (f1, f2, f3) = 0

(15b)

Moreover, the generic descriptions (13b)-(13d), which are to

be used for another two elements: HF and H2, reduce in this

case to

Y
(1)
Tr (f) = D

(1)
T (f)X

(1)
Tr (f) (16a)

Y
(2)
Tr (f1, f2) = D

(1)
T (f1 + f2)X

(2)
Tr (f1, f2) (16b)

Y
(3)
Tr (f1, f2, f3) =

= D
(1)
T (f1 + f2 + f3)X

(3)
Tr (f1, f2, f3)

(16c)

Furthermore, assume the descriptions of the elements gm
and go in Fig. 9 in form of the third-order polynomials

i2gm = gm (v1gm) =

= gm1v1gm + gm2v
2
1gm + gm3v

3
1gm

(17a)

and

i2go = go (v1go) = go1v1go + go2v
2
1go + go3v

3
1go (17b)

with the coefficients gm1, gm2, gm3 and go1, go2, go3 being

real numbers. The series (17a) and (17b), being the truncated

Maclaurin expansions, can be obviously also viewed as the

truncated Volterra series discussed in the previous section.

More precisely, they are now, in this form, the Volterra

series without memory. Hence, because of the above fact, the

procedure and expressions derived in Section 3 encompass

also this case, allowing us to identify the generic D
(i)
T ’s,

n = 1, 2, 3, for gm and go needed in the case of (13b)-(13d).

We obtain then

D
(1)
T (f) = gm1 or go1 (18a)

D
(2)
T (f1, f2) = gm2 or go2 (18b)

D
(3)
T (f1, f2, f3) = gm3 or go3 (18c)

respectively.

Using now the corresponding generic input-output and in-

network descriptions developed to the network elements of

Fig. 9, and taking also into account the simplifications (15a)-

(15b) and (16a)-(16c) together with the particular results for

gm and go, we arrive at the following sets of equations for the

whole network of Fig. 9















































Y
(1)
H1 (f) + Y

(1)
HFr (f) = D

(1)
H1 (f)Xs (f)+

+D
(1)
HF (f)X

(1)
HFr (f) = X

(1)
gmr (f)

Y
(1)
gmr (f) = gm1X

(1)
gmr (f)

Y
(1)
HD (f) + Y

(1)
H2r (f) = D

(1)
HD (f)Xs (f)+

+D
(1)
H2 (f)X

(1)
H2r (f) = X

(1)
gor (f)

Y
(1)
gor (f) = go1X

(1)
gor (f)

Y
(1)
gmr (f) + Y

(1)
gor (f) = X

(1)
HFr (f) = X

(1)
H2r (f)

(19)
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













































































































































Y
(2)
H1 (f1, f2) + Y

(2)
HFr (f1, f2) =

= 0 +D
(1)
HF (f1 + f2)X

(2)
HFr (f1, f2) =

= X
(2)
gmr (f1, f2)

Y
(2)
gmr (f1, f2) = gm1X

(2)
gmr (f1, f2)+

+gm2X
(1)
gmr (f1)X

(1)
gmr (f2)

Y
(2)
HD (f1, f2) + Y

(2)
H2r (f1, f2) =

= 0 +D
(1)
H2 (f1 + f2)X

(2)
H2r (f1, f2) =

= X
(2)
gor (f1, f2)

Y
(2)
gor (f1, f2) = go1X

(2)
gor (f1, f2)+

+go2X
(1)
gor (f1)X

(1)
gor (f2)

Y
(2)
gmr (f1, f2) + Y

(2)
gor (f1, f2) =

= X
(2)
HFr (f1, f2) = X

(2)
H2r (f1, f2)

(20)



































































































































































































Y
(3)
H1 (f1, f2, f3) + Y

(3)
HFr (f1, f2, f3) =

= 0 +D
(1)
HF (f1 + f2 + f3) ×

×X
(3)
HFr (f1, f2, f3) = X

(3)
gmr (f1, f2, f3)

Y
(3)
gmr (f1, f2, f3) = gm1X

(3)
gmr (f1, f2, f3) +

+gm2X
(1)
gmr (f1)X

(2)
gmr (f2, f3)+

+gm2X
(2)
gmr (f1, f2)X

(1)
gmr (f3)+

+gm3X
(1)
gmr (f1)X

(1)
gmr (f2)X

(1)
gmr (f3)

Y
(3)
HD (f1, f2, f3) + Y

(3)
H2r (f1, f2, f3) =

= 0 +D
(1)
H2 (f1 + f2 + f3) ×

×X
(3)
H2r (f1, f2, f3) = X

(3)
gor (f1, f2, f3)

Y
(3)
gor (f1, f2, f3) = go1X

(3)
gor (f1, f2, f3)+

+go2X
(1)
gor (f1)X

(2)
gor (f2, f3)+

+go2X
(2)
gor (f1, f2)X

(1)
gor (f3)+

+go3X
(1)
gor (f1)X

(1)
gor (f2)X

(1)
gor (f3)

Y
(3)
gmr (f1, f2, f3) + Y

(3)
gor (f1, f2, f3) =

= X
(3)
HFr (f1, f2, f3) = X

(3)
H2r (f1, f2, f3)

(21)

Note that equations (19), (20), and (21) regard, respectively,

the amplifier first-, second-, and third-order partial responses.

Moreover, observe that in writing the aforementioned equa-

tions, there was no need to use the relations (13a) of the

in-network description – only the relations (13b)-(13d) were

exploited. Further, the generic subscript “T ” assumed the

meaning of: H1, HF , HD, H2, gm, and go (for H1, . . . ,

and so on) at the corresponding places.

We can now solve the sets of equations (19),

(20), and (21) to obtain successively expressions for

X
(1)
gor (f)

/

Xs (f), X
(2)
gor (f1, f2)

/

[Xs (f1)Xs (f2)], and

X
(3)
gor (f1, f2, f3)

/

[Xs (f1)Xs (f2)Xs (f3)]. These ratios,

according to the input-output description of a generic circuit

element by (14c), are the nonlinear transfer functions of

the corresponding orders (first, second, and third one) of

the whole amplifier of Fig. 9. In our terminology, they are

denoted by D
(1)
A (f), D

(2)
A (f1, f2), and D

(3)
A (f1, f2, f3),

where now the subscript “T = A” means the whole amplifier.

After performing the needed algebraic operations on equa-

tions of (19), we get

D
(1)
A (f) =

X(1)
gor(f)

Xs(f)
=

=
D

(1)
HD(f)+gm1

(

D
(1)
H2(f)D

(1)
H1(f)−D

(1)
HF (f)D

(1)
HD(f)

)

1−gm1D
(1)
HF

(f)−go1D
(1)
H2(f)

(22)

In [5], the linear transfer functions D
(1)
HD , D

(1)
H2, D

(1)
H1, and

D
(1)
HF are denoted by HD, H2, H1, and HF , respectively.

Knowing this, one identifies easily the same expression as

(22) in the paper by Miao and Zhang.

As it will be seen, the following linear transfer function

D̃
(1)
A (f) =

X(1)
gmr(f)

Xs(f)
=

=
D

(1)
H1(f)+go1

(

D
(1)
HF (f)D

(1)
HD(f)−D

(1)
H2(f)D

(1)
H1(f)

)

1−gm1D
(1)
HF

(f)−go1D
(1)
H2(f)

(23)

which one obtains also from equations (19), will be very

helpful in further calculations.

From (20), with help of (22) and (23), we get the following

expression for the second-order nonlinear transfer function of

the whole amplifier of Fig. 9

D
(2)
A (f1, f2) =

X(2)
gor(f1,f2)

Xs(f1)Xs(f2)
=

=
D

(1)
H2(f1+f2)

1−gm1D
(1)
HF

(f1+f2)−go1D
(1)
H2(f1+f2)

×

×
[

gm2D̃
(1)
A (f1) D̃

(1)
A (f2)+

+ go2D
(1)
A (f1)D

(1)
A (f2)

]

(24)

Moreover, we also obtain, as a byproduct, an expres-

sion for another second-order transfer function defined as

D̃
(2)
A (f1, f2) = X

(2)
gmr (f1, f2)

/

[Xs (f1)Xs (f2)]. That is

D̃
(2)
A (f1, f2) =

X(2)
gmr(f1,f2)

Xs(f1)Xs(f2)
=

=
D

(1)
HF

(f1+f2)

1−gm1D
(1)
HF (f1+f2)−go1D

(1)
H2(f1+f2)

×

×
[

gm2D̃
(1)
A (f1) D̃

(1)
A (f2)+

+ go2D
(1)
A (f1)D

(1)
A (f2)

]

=

=
D

(1)
HF

(f1+f2)

D
(1)
H2(f1+f2)

D
(2)
A (f1, f2)

(25)

D̃
(2)
A (f1, f2) given by (25) will be helpful in calculations of

the third-order nonlinear transfer function D
(3)
A (f1, f2, f3).
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Finally, by carrying out the needed algebraic operations on

equations (21) and exploiting also (22), (23), (24), and (25),

we arrive at

D
(3)
A (f1, f2, f3) =

X(3)
gor(f1,f2,f3)

Xs(f1)Xs(f2)Xs(f3)
=

=
D

(1)
H2(f1+f2+f3)

1−gm1D
(1)
HF

(f1+f2+f3)−go1D
(1)
H2(f1+f2+f3)

×

×
[

gm2

(

D̃
(1)
A (f1) D̃

(2)
A (f2, f3)+

+D̃
(2)
A (f1, f2) D̃

(1)
A (f3)

)

+

+gm3D̃
(1)
A (f1) D̃

(1)
A (f2) D̃

(1)
A (f3) +

+go2

(

D
(1)
A (f1)D

(2)
A (f2, f3)+

+D
(2)
A (f1, f2)D

(1)
A (f3)

)

+

+go3D
(1)
A (f1)D

(1)
A (f2)D

(1)
A (f3)

]

(26)

Expression (26) provides us a formula for calculation of the

third-order nonlinear transfer function of the whole amplifier

structure shown in Fig. 9.

Note now that the expressions (22), (24), and (26) for the

amplifier nonlinear transfer functions we derived in this section

are more general than their harmonic distortion counterparts

called nonlinear coefficients (of the corresponding orders),

developed in [5]. The latter ones are useless in evaluations

of such nonlinear distortion measures as, for example, the

intermodulation distortion coefficients of the second- and

third-order [8], [12], [18] or the cross-modulation index [10],

[15], calculated in such situations in which the input signal

consists of two or more sinusoids of different frequencies.

Then, as shown in the literature cited above, more general

schemes are to be used, which exploit the notion of nonlinear

transfer functions derived from the Volterra series.

We complement the material of this section by showing

how to get the nonlinear coefficients presented in [5] using

our expressions found for the amplifier nonlinear transfer

functions. To this end, note that to perform the above task we

must proceed according to the rules explained, for example,

in [8], [12], [18]. That is, having the input signal of the form

xs (t) = Ao exp (j2πfot) ⇔ Xs (f) = Aoδ (f − fo) (27)

where Ao and fo mean the amplitude and frequency of the

complex harmonic signal xs (t), and δ stands for the Dirac

impulse, we need only to substitute f = f1 = fo, f2 = fo,

and f3 = fo in (22), (24), and (26). Then, we get successively

D
(1)
A (fo) =

=
D

(1)
HD

(fo)+gm1

(

D
(1)
H2(fo)D

(1)
H1(fo)−D

(1)
HF

(fo)D
(1)
HD

(fo)
)

1−gm1D
(1)
HF (fo)−go1D

(1)
H2(fo)

(28a)

D
(2)
A (fo, fo) =

=
D

(1)
H2(2fo)

[

gm2

(

D̃
(1)
A (fo)

)2
+go2

(

D
(1)
A (fo)

)2
]

1−gm1D
(1)
HF (2fo)−go1D

(1)
H2(2fo)

(28b)

 

A2 

yA1= xA2 yA2 

xs= xA1= vA1 

A1 

Fig. 10. Cascade connection of two amplifiers.

D
(3)
A (fo, fo, fo) =

D
(1)
H2(3fo)

1−gm1D
(1)
HF (3fo)−go1D

(1)
H2(3fo)

×

×
[

2gm2D̃
(1)
A (fo) D̃

(2)
A (fo, fo) +

+gm3

(

D̃
(1)
A (fo)

)3

+

+2go2D
(1)
A (fo)D

(2)
A (fo, fo)+

+go3

(

D
(1)
A (fo)

)3
]

(28c)

The functions given by (28a), (28b), and (28c) are the non-

linear coefficients of the first-, second-, and third- order,

respectively – in the sense defined in [5] – of the whole

amplifier structure shown in Fig. 9.

V. IN-NETWORK DESCRIPTION OF TWO-STAGE

AMPLIFIER BEING COMPONENT OF THREE-STAGE ONE

At the beginning of this section, we remark once again

that the nonlinear Rosenstark’s amplifier model developed

is treated by us exactly in the same way as all of its

composing elements listed in Fig. 8. Namely, it is modeled

as a generalized 2-terminal circuit element. And as such, it

possesses (see Section 3) two descriptions in the frequency

domain: in-network and input-output ones. The Fourier trans-

forms of the nonlinear impulse responses of the latter one,

D
(1)
A (f), D

(2)
A (f1, f2), and D

(3)
A (f1, f2, f3), have been in

fact derived in the previous section (for definition of this

model in the frequency domain, see equations (14c)). Fur-

ther, it follows from the previous derivations that we obtain

the in-network representation in the frequency domain for

the nonlinear Rosenstark’s amplifier model by substitution

of D
(1)
T (f) = D

(1)
A (f), D

(2)
T (f1, f2) = D

(2)
A (f1, f2), and

D
(3)
T (f1, f2, f3) = D

(3)
A (f1, f2, f3) in equations (13b)-(13d).

Consider now a cascade connection of two amplifiers A1

and A2 (denoted later also as A1 and A2, respectively, in

subscripts of their nonlinear transfer functions and input/output

variables). It is shown in Fig. 10.

Using the assumption that the amplifiers can be described

by our nonlinear Rosenstark’s amplifier model developed, we

can redraw the schematic of Fig. 10 – applying the notion of

equivalent generalized 2-terminal circuit element presented in

Fig. 7 – in the form given by a scheme of Fig. 11.

Note that to write now the equations describing the connec-

tion in Fig. 11 in the frequency domain, we need to use the
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 xs =xA1 yA2 

A1 

yA1 =xA2 

A2 

Fig. 11. Presentation of amplifier cascade connection with use of 2-node
oriented graphs defined in Fig. 7.

input-output description (equations (14c)) for the amplifier A1

and the in-network representation (equations (13b)-(13d)) for

the amplifier A2. Applying this, we get the following sets of

equations










Y
(1)
A1 (f) = D

(1)
A1 (f)Xs (f)

X
(1)
A2r (f) = Y

(1)
A1 (f)

Y
(1)
A2r (f) = D

(1)
A2 (f)X

(1)
A2r (f)

(29)



















Y
(2)
A1 (f1, f2) = D

(2)
A1 (f1, f2)X

(1)
s (f1)X

(1)
s (f1)

X
(2)
A2r (f1, f2) = Y

(2)
A1 (f1, f2)

Y
(2)
A2r (f1, f2) = D

(1)
A2 (f1 + f2)X

(2)
A2r (f1, f2)+

+D
(2)
A2 (f1, f2)X

(1)
A2r (f1)X

(1)
A2r (f2)

(30)































































Y
(3)
A1 (f1, f2, f3) = D

(3)
A1 (f1, f2, f3)×

×Xs (f1)Xs (f2)Xs (f3)

X
(3)
A2r (f1, f2, f3) = Y

(3)
A1 (f1, f2, f3)

Y
(3)
A2r (f1, f2, f3) =

= D
(1)
A2 (f1 + f2 + f3)X

(3)
A2r (f1, f2, f3)+

+D
(2)
A2 (f1, f2 + f3)X

(1)
A2r (f1)X

(2)
A2r (f2, f3)+

+D
(2)
A2 (f1 + f2, f3)X

(2)
A2r (f1, f2)X

(1)
A2r (f3)+

+D
(3)
A2 (f1, f2, f3)X

(1)
A2r (f1)×

×X
(1)
A2r (f2)X

(1)
A2r (f3)

(31)

In the next step, after performing the needed algebraic opera-

tions on equations of (27), we arrive at

D
(1)
CA (f) =

X
(1)
A2r (f)

Xs (f)
= D

(1)
A2 (f)D

(1)
A1 (f) (32)

being the nonlinear transfer function of the first-order (the

linear one) of the cascade of amplifiers A1 and A2 (denoted

by the letters “CA” in the subscript of D
(1)
CA (f)). And

similarly, from (30) with application of (29) and from (31)

with application of (29) and (30), we get, respectively

D
(2)
CA (f1, f2) =

X
(2)
A2r(f1,f2)

Xs(f1)Xs(f2)
=

D
(1)
A2 (f1 + f2)D

(2)
A1 (f1, f2)+

+D
(2)
A2 (f1, f2)D

(1)
A1 (f1)D

(1)
A1 (f2)

(33)

and

D
(3)
CA (f1, f2, f3) =

X
(3)
A2r(f1,f2,f3)

Xs(f1)Xs(f2)Xs(f3)
=

= D
(1)
A2 (f1 + f2 + f3)D

(3)
A1 (f1, f2, f3)+

+D
(2)
A2 (f1, f2 + f3)D

(1)
A1 (f1)D

(2)
A1 (f2, f3)+

+D
(2)
A2 (f1 + f2, f3)D

(2)
A1 (f1, f2)D

(1)
A1 (f3)+

+D
(3)
A2 (f1, f2, f3)D

(1)
A1 (f1)D

(1)
A1 (f2)D

(1)
A1 (f3)

(34)

Obviously, the functions D
(2)
CA (f1, f2) given by (33) and

D
(3)
CA (f1, f2, f3) given by (34) are the nonlinear transfer

functions of the second- and third-order, accordingly, of the

amplifier cascade.

At this point, it is worth noting that the formulas (32), (33),

and (34) for calculation of the nonlinear transfer functions of

an amplifier cascade have been derived or rediscovered many

times in the literature, see, for example, articles [11], [22],

[23] for general framework formulations using the Volterra

series, and the recent ones [5], [24], [25] presentations in the

particular context of harmonic distortion, harmonic balance

method, and use of phasors.

The formulas (32), (33), and (34) are needed in study of

the nonlinear distortion measures of two-stage amplifiers. And

note that such studies with regard to the intermodulation distor-

tion measure were performed by Narayanan [22] already many

years ago, for amplifiers using bipolar transistor technology.

Recently, a number of articles [3], [5], [24], [25] on similar

evaluations of nonlinear properties, but regarding now the two-

stage CMOS amplifiers, has been published. In these recent

papers, the second- and third-order harmonic distortion factors

are analysed.

It is clear that the analysis of a three-stage amplifier built as

a cascade of single amplifier blocks can be performed using

the results presented above. That is by carrying out twice the

operation of cascading. This can be done, for example, by

cascading first A1 and A2 as shown in Fig. 11 to provide a two-

stage “post-amplifier”, which is next cascaded according to the

same rules with a single-stage “pre-amplifier” – altogether re-

sulting in the three-stage amplification block. And it is evident

that in such the procedure, we need to have the in-network

description of the cascade of amplifiers A1 and A2 (which, as

we know, differs from its input-output representation derived

just before). However, its development, though being a little

bit cumbersome, is straightforward. Simply then, we use the

generic procedure for this case defined by equations (13b)-

(13d) together with the expressions for the nonlinear transfer

functions given by (32), (33), and (34) . This results in

Y
(1)
CAr (f) = D

(1)
A2 (f)D

(1)
A1 (f)X

(1)
CAr (f) (35)

Y
(2)
CAr (f1, f2) =

= D
(1)
A2 (f1 + f2)D

(1)
A1 (f1 + f2)X

(2)
CAr (f1, f2)+

+
[

D
(1)
A2 (f1 + f2)D

(2)
A1 (f1, f2)+

+ D
(2)
A2 (f1, f2)D

(1)
A1 (f1)D

(1)
A1 (f2)

]

×

×X
(1)
CAr (f1)X

(1)
CAr (f2)

(36)

Y
(3)
CAr (f1, f2, f3) = D

(1)
A2 (f1 + f2 + f3)×

×D
(1)
A1 (f1 + f2 + f3)X

(3)
CAr (f1, f2, f3)+

+
[

D
(1)
A2 (f1 + f2 + f3) D

(2)
A1 (f1, f2 + f3)+

+ D
(2)
A2 (f1, f2 + f3)D

(1)
A1 (f1)D

(1)
A1 (f2 + f3)

]

×

X
(1)
CAr (f1)X

(2)
CAr (f2, f3) +

[

D
(1)
A2 (f1 + f2 + f3)×

×D
(2)
A1 (f1 + f2, f3) +D

(2)
A2 (f1 + f2, f3)×

×D
(1)
A1 (f1 + f2)D

(1)
A1 (f3)

]

×
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×X
(2)
CAr (f1, f2)X

(1)
CAr (f3)+

+
[

D
(1)
A2 (f1 + f2 + f3)D

(3)
A1 (f1, f2, f3) +

+D
(2)
A2 (f1, f2 + f3)D

(1)
A1 (f1)D

(2)
A1 (f2, f3)+

+D
(2)
A2 (f1 + f2, f3)D

(2)
A1 (f1, f2)D

(1)
A1 (f3)+

+D
(3)
A2 (f1, f2, f3)×

×D
(1)
A1 (f1)D

(1)
A1 (f2)D

(1)
A1 (f3)

]

×

×X
(1)
CAr (f1)X

(1)
CAr (f2)X

(1)
CAr (f3)

(37)

with, obviously, X
(i)
CAr = X

(i)
CA1, Y

(i)
CAr = Y

(i)
A2r, i = 1, 2, 3,

and X
(1)
CAr 6= Xs.

Finally in this section, we draw the reader’s attention to

the fact that the in-network description of the cascade of two

amplifiers, given by equations (35), (36), and (37), has been

developed here for the first time in the literature.

VI. REMARKS ON SOME QUESTIONABLE NOTIONS

In the paper [5], Miao and Zhang use some specific notions

and concepts, which are highly questionable as, for example,

the following ones:

1) nonlinear signals,

2) intermodulation nonlinearity,

3) second-order intermodulation nonlinearity,

4) nonlinear gain function at fundamental frequency,

5) identification of transfer function poles and zeros lying

on the real axis of the complex plane with the related

frequencies, being positive real numbers.

Let us explain here in more detail their incorrectness and recall

the proper names and their usage.

With regard to nonlinear signals: Note that signals are neither

linear nor nonlinear. After performing any nonlinear process-

ing on a signal, it remains still a signal, assuming only another

form. Linear or nonlinear can be systems, not signals.

With regard to intermodulation nonlinearity: Such notions as,

for example, intermodulation, harmonic or cross-modulation

nonlinearities do not make sense. We explain this point on an

example of a circuit element realizing a quadratic nonlinearity

yT (t) = a · x2
T (t), with the coefficient “a” being a real

number. Applying input signal xT (t) = Ao exp (j2πfot) (as

described by (27)) to it, we get the output signal in the form:

yT (t) = a · A2
o exp (j2π (2fo) t). Observe that this resulting

signal is a pure harmonic one at the product frequency 2fo.

Next, using another input signal xT (t) = Ao1 exp (j2πfo1t)+
Ao2 exp (j2πfo2t), being a sum of the two previous signals

at different frequencies fo1 and fo2, in the above quadratic

nonlinearity, we obtain yT (t) = a · A2
o1 exp (j2π (2fo1) t) +

a·A2
o2 exp (j2π (2fo2) t)+2a·Ao1Ao2 exp (j2π (fo1 + fo2) t)

in this case. And note that the output signal consists now of

two harmonics of frequencies 2fo1 and 2fo2, respectively, and

of the intermodulation product at frequency fo1 + fo2.

Comparison of the above two results leads to the conclusion

that the quadratic nonlinearity considered can produce both the

harmonic as well as the intermodulation products (depending

upon the form of the input signal). So, therefore, it is nei-

ther harmonic nor intermodulation nonlinearity. It is simply

a quadratic nonlinearity – and this is its proper name.

With regard to second-order intermodulation nonlinearity:

This notion is also flawed. To see this, recall the example

of quadratic nonlinearity from the previous point with the

input signal xT (t) = Ao1 exp (j2πfo1t) +Ao2 exp (j2πfo2t)
applied to it. This results, as shown above, in yT (t) =
a · A2

o1 exp (j2π (2fo1) t) + a · A2
o2 exp (j2π (2fo2) t) + 2a ·

Ao1Ao2 exp (j2π (fo1 + fo2) t), that is in two second-order

harmonic distortion components a ·A2
o1 exp (j2π (2fo1) t) and

a · A2
o2 exp (j2π (2fo2) t), and the second-order intermodula-

tion distortion one 2a ·Ao1Ao2 exp (j2π (fo1 + fo2) t). There-

fore, the above nonlinearity cannot be solely named a second-

order intermodulation nonlinearity.

With regard to nonlinear gain function at fundamental fre-

quency: The above notion is conceptually false because there

exists no such a single nonlinear gain function, which enables

calculation of the gains for the corresponding harmonics

and the frequencies of intermodulation products, and for the

fundamental frequency. For calculation of the gain at the fun-

damental frequency, one has to use a separate function called

in the literature the describing function [10], [26]. Further, for

evaluation of the gain of the second-order harmonic, another

function must be used – and so on – for other harmonics and

frequencies of intermodulation products.

With regard to making identity between the transfer function

poles and zeros, and the related frequencies: One calculates

single poles and zeros of the transfer functions by equating to

zero the polynomials of the form (s+ ap) and (s+ az), with

ap and az being real positive numbers. Hence, the pole and

zero positions are given by sp = −ap and sz = −az , which

lie on the real axis of the complex s-plane in its left-hand side.

These positions are identified in [5] with the related angular

frequencies, which are obviously positive numbers. Correctly,

the related pole and zero frequencies should be written as

ωp = |sp| = ap and ωz = |sz| = az , respectively.

Furthermore, it should be stressed that the use of the notion

of poles and zeros of the nonlinear coefficients and harmonic

distortion factors of the second- and third-order, as done in

[5], cannot be extended to the other areas as, for instance, to

stability issues (at least in the form presented in [5]).

VII. CONCLUSION

In this paper, a thorough and mathematically rigorous ex-

tension of the linear Rosenstark amplifier model to a weakly

nonlinear one has been presented. It has been also demon-

strated that our model exploiting the Volterra series and the

notion of generalized two-terminal nonlinear circuit elements

is more general than the one using phasors [5], and that it

assumes two forms, named here in-network and input-output

type descriptions of an amplifier. In the paper, the relations

describing these forms have been derived in the time as well

as in the frequency domain. Moreover, it has been shown

how to use them in calculations of any nonlinear distortion

measure. In contrast to this, note that the method of phasors

enables calculations of harmonic distortion only. Furthermore,

note likewise that the descriptions developed enable simple

calculation of the nonlinear transfer functions of any amplifier

topology as, for example, cascade and feedback structures and

their combinations occurring in single-, two-, and three-stage
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amplifiers. Two examples presented illustrate details of such

calculations. Finally, we draw the reader’s attention to the fact

that many outcomes of this paper systematize, in some aspects,

the results achieved recently with the use of the symbolic

analysis applied to harmonic distortion analyses of CMOS

amplifiers [3], [5], [13], [24], [25].
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