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Abstract—In this paper, we consider an elliptic equation with 
strongly varying coefficients. Interest in the study of these 
equations is connected with the fact that this type of equation is 
obtained when using the fictitious domain method. In this paper, 
we propose a special method for the numerical solution of elliptic 
equations with strongly varying coefficients. A theorem is proved 
for the rate of convergence of the iterative process developed. 
A computational algorithm and numerical calculations are 
developed to illustrate the effectiveness of the proposed method. 
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I. INTRODUCTION 
HE fictitious domain method is efficient for the numerical 
solution of elliptic equations in irregular shape domains. 

In paper [1] an efficient (with respect to the number of 
operations) alternately-triangular scheme of second order 
accuracy for the numerical solution of an elliptic equation is 
proposed. In [2], a modified alternate-triangular iterative 
method with Chebyshev parameters for the solution of the 
Dirichlet problem for elliptic equations of second order 
accuracy is built. In V.I. Lebedev’s monograph [3], the 
application of the method of composition for finding solutions 
for eigenvalue problems, time-dependent problems, the 
Dirichlet problem for the biharmonic equation, and grid 
problems is considered. In [4], the difference stationary 
problem for the Poisson equation with piecewise constant 
coefficients in subdomains is considered. Poisson equation at 
the interface can be approximated in a special way, i.e. 
difference equation coefficients are chosen as a quotient, in the 
denominator of which is the sum of the coefficients in 
subdomains. A two-step iterative process based on the method 
of dividing the area is built. 

Papers of Bugrov A.N., Konovalov A.N., Smagulov Sh.S., 
Orunkhanov M.K., Kuttykozhayeva Sh.N. [5-9] are devoted to 
the fictitious domain method for the equations of mathematical 
physics. In these references, they study different modifications 
of the fictitious domain method with continuation upon low-
order coefficients for the Poisson equation. Estimates of the 
method’s convergence rate depending on a small parameter 
were obtained. 

In this paper, we propose a special method for the numerical 
solution of elliptic equations with strongly varying 
coefficients. The basis of the suggested method is in the 
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special replacement of variables which reduces the problem 
with second order discontinuous coefficients to the problem 
with first order discontinuous coefficients. An iterative process 
with two parameters taking into account the ratio of the 
coefficients of the equation in subdomains is built. A theorem 
for the rate of convergence of the developed iterative process 
is proved. A computational algorithm is developed and 
numerical calculations to illustrate the effectiveness of the 
proposed method are conducted. 

II. STATEMENT OF THE PROBLEM 

Let Ω  be a bounded domain in 2R  with piecewise smooth 
boundary Ω∂ . For definiteness, we consider 

,, 2121 Γ=∩∪=Ω QQQQ  where 2Q  is the interior 
subdomain. In Ω , consider the elliptic equation 
 Ω∈=∇− xxfukdiv
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with the boundary conditions 
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The function )(xf
  is assumed to belong to the Hilbert 

space of real functions )(2 ΩL , and in subdomains, it is defined 
as follows: 
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We make the replacement of variables in (1) in the form 
12 kvu = , and after simple transformations, we obtain 
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equation (3) as the following system of equations: 
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III. COMPUTATIONAL ALGORITHM 
For the numerical solution of equations (4) with the boundary 
conditions 0=Ω∂v , we consider the iterative method: 
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where B  is an operator of the iterative method, β  is an 
iterative parameter, the index h  is the difference analog of the 
differential operator. The operator B  in the iterative method 
(5) is chosen as follows: 
 )()1( hhh divB ∇−∆−= ρττ , (6) 

where .)/1( 1−+= ωβρ  
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0 Ω∈Wv  and ,0 qp ∇=  where 
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particular, this condition is satisfied if .0),( 00 =pv  

Hereinafter, we assume that 0>B  in 
1

2
0

W . For this, the 
following equation must hold: 

 .01 >−−
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τ
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In this case, B in 
1

2
0

W  satisfies the operator inequality: 

 ∆−≤≤∆− 21 χχ B , (8) 

the constants 1χ  and 2χ  can be chosen independent on .1≥θ  
Substituting the operator B , defined as (6), to (5), we 

obtain 
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We present an algorithm of the numerical implementation of 
the method (9), (10). One step of the iterative method (9), (10) 
consists in finding values 1+nv  using the known values of 

nn pv


, . This requires to solve the Dirichlet problem for the 
Poisson equation (9) in .Ω . Then, the value of 1+np

  is defined 
by the known values of np  and 1+nv  using the formula (10). 

IV. THE STUDY OF CONVERGENCE 
Let us prove some auxiliary estimates that will be needed in 
the study of the iterative method. Let ( )2QH  be the closure, in 

)( 2
1
2 QW , of the set of smooth functions orthogonal to the unit 

on Γ , and )( 1QH  be the closure, in ( )1
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QW , of a set of 
smooth functions vanishing on Γ . We introduce the norm in 

)( iQH  as follows: 
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Let ϕ  be defined on Γ , and ( ) ∫
Γ
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A. Lemma 1 

Let )( 2
1
22 QWv ∈  be a generalized solution of the problem 
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   (13) 
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and 1v  be a generalized solution of the problem 
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then 
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where 3C  does not depend on ϕ . 

B. Proof 
We introduce the norm 
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A generalized solution of the problem (13) is a function in 
)( 2QH  which satisfies the relation 

 ( ) ( )22 ,),(, QHv ∈∀=∇∇ Γ ηηϕη  (17) 

According to the embedding theorem, the right side of (17) 
is a bounded linear functional in ( )iQH . According to the 
Riesz's theorem, there exists a function )( 20 QHv ∈  such that 
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Then, using (17) and (18) we have 
 02 vv =  and .
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Similarly, we prove that 
 .
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Norms (12) are equivalent for 2,1=i . In fact, according to 
the embedding theorems, we have the chain of inequalities: 
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On the other hand, every function )(2/1
1 Γ∈Wψ  (in the case 

of 2=i , the function ψ  satisfies the condition 0)1,( =Γψ ) 
can be extended to iQ  so that the extended function ψ~  
belongs to )( iQH , and 
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It follows that the norms 
iQ2/1−

ϕ  are equivalent. 

According to the equality 
ii QQiv 2/1−

=∇ ϕ , we obtain the 

estimate (15). The lemma is proven. 
Now we estimate the rate of convergence of the method (9), 

(10). Let us denote 
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Then, equations (5) can be rewritten as 
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A function ψ  in 2L  is a piecewise gradient function if it 
can be represented in the form 

 ig∇=ψ  in iQ ; where )(1
2 ii QWg ∈   (21) 
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and a function ψ  is a gradient function, if it is in the form 
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0 , Wggp ∈∇=  and ω  is a piecewise constant, then 
0r  is a piecewise gradient function. 
We take the inner product of both sides of the equation (20) 

with r̂2τ  in 2L  and set yv ˆ2τ=  in relation (19). Adding these 
equalities, we have 
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Let us investigate the form of nr . Since 
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and r  is a piecewise gradient function, then τ̂  is a piecewise 
gradient function. Thus, all nr  are piecewise gradient 
functions. 

Let G  be the space of piecewise gradient functions, and 1G  
be the space of gradient functions. It is obviously that GG ⊆1 . 
Let us show that there is a strict embedding GG ⊂1 , and we 
will show the orthogonality, in 2L , of the complement 1G  to 
G . If ψ  is orthogonal, in 2L , to all elements of 1G , then for 

every element 1Gq ∈∇  we have 0),( =∇ Ωqψ . If the function 
g∇  is sufficiently smooth and it has a support in iQ  then 
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Since g  is arbitrary, the last relation implies 

 0=∆ ig  in iQ . (23) 

It is clear that the relation holds in every .2,1, =iQi . Thus, 
the element G∈ψ , orthogonal to all elements of 1G , is 
represented in the form (21), where iq  is a harmonic function 
in iQ . Let us find conditions which must be satisfied by ψ  
being orthogonal to 1G  on Γ . Let 1Gq ∈∇ , then 
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(here in  are vectors of the outward normal on iQ∂ ); i.e., the 
values of the normal components 11 q∇=ψ  and 22 q∇=ψ  on 
Γ  are the same. Thus, the normal component of the vector 
function ψ  is continuous (in the integral sense) when passing 
through Γ . This implies that orthogonal, in 2L , complement 

2G  of the space 1G  to the space G  consists of all functions of 
the form (21), the normal component of which is continuous 
when passing through the adjacent border, and functions ig  
forming them are harmonic in iQ . 

Let us continue studying the convergence of the iterative 
method (9), (10). As it was discovered before, Gr ∈ˆ . Let us 
represent r̂  in the form hqr ˆˆˆ += , where ,ˆ 1Gq ∈  and 2

ˆ Gh ∈ . 
In this case, (19) takes the form 
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inequality, we obtain 

 

 yyq hBt ˆˆ 2 ∇+≤ χ , 

where 1
ˆˆ yyh =∇ . Let us square both sides of this inequality 

and estimate the right side: 

 )ˆ(2ˆ 22
2

2 yyq hBt ∇+≤ χ . 

 



A. N. TEMIRBEKOV, W. WÓJCIK 
 

222 

We multiply this inequality by λβτ 2  ( 0>λ  is arbitrary) 
and add it to (22). As a result, we have 
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We estimate the scalar product ( ω/ˆ,ˆ rr ). For any δ , 
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Since Gh ∈ˆ , according to Lemma 1, we have the estimate: 
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Using the last inequality, we reduce (25) to the form 
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 We fix 0>β  and choose 0>τ  so that for any 1>θ  the 
condition 0>β  holds. We choose λ  satisfying 
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The inequality (27) for such δ  is in the form 
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It is obvious that the constants λχτβ ,,, 2  can be selected 
the same for all ∞≤≤ θθ 1, . Thus, we have proved the 
following theorem. 

C. Theorem 1 
For any 0>β  there exists )(βττ =  independent on 1≥ω  
such that ∆−≤≤∆− 21 χχ B  for ττ ≤ , the constants 21, χχ  do 
not depend on ω . 

In this case, the iterative process (9), (10) converges at a 
geometric rate, and speed of convergence does not depend on 
ω . 

D. Remark 

It is obvious that Theorem 1 holds when 
N

iQ
1

'
2 Ω=  or when 


N

iQ
1

'
1 Ω= . In this case, subregions '

iΩ  should be 

typologically separable with piecewise smooth boundaries. In 
the first case, the parameter ω  do not necessarily match in the 
subdomains '

iΩ  and '
jΩ . 

V. NUMERICAL CALCULATIONS 
Using the method described above, the test problem (1) - (2) 
was solved. The subdomain 2Q  was chosen in the form of a 
square { }

2121 ,22,2,11,12 ; mmkk xxxxxxQ ≤≤≤≤= , where 

.75,0,25,0,75,0,25,0
2121 ,2,2,1,1 ==== mmkk xxxx  The area 

Ω  covers the subdomain 2Q , { }.10;10 21 ≤≤≤≤=Ω xx  
The subdomain 1Q  is defined as .\ 21 QQ Ω=  The right side 

is defined in 2Q  as follows: 
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where .75,0,25,0,75,0,25,0
2121 ,2,2,1,1 ==== mmkk xxxx  

In the subdomain 1Q  the function .0),( 21 =xxf  The 
iterative parameter τ  is chosen as 53 1010 −− ÷=τ , the 
parameter β  is determined so as to satisfy the condition (7). It 
is necessary to follow the sign of the parameter ω  in the 
subdomains since .11 ≤≤− ω  

 
Fig. 1.  Graph of the exact solution at the grid nodes 101x101 
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Fig. 2.  Graph of the approximate solution at grid nodes 101x101 

 
The problem for the elliptic equation with strongly varying 

coefficients was solved using the fictitious domain method, 
following the higher coefficients. Figures 1-2 show the results 
of the exact and the approximate solutions at grid nodes 
101x101, respectively. 

In the calculations, the uniform mesh sizes of 101x101, 
501x501, and 1001x1001 were used. To carry out numerical 
experiments on a fine grid, a numerical experiment was 
conducted on a supercomputer URSA based on 128 quad-core 
processors Intel Xeon series E5335 2.00GHz at Al-Farabi 
Kazakh National University. The developed method is based 
on building a computational algorithm for the elliptic equation 
with strongly varying coefficients. The developed algorithm 
uniformly converges for a certain amount of iterations, and the 
results were obtained with an accuracy of 1010− . The results of 
numerical experiments were visualized in the modeling 
package named Surfer. 
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