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Numerical Implementation of the Fictitious
Domain Method for Elliptic Equations

Almas N. Temirbekov and Waldemar Wjcik

Abstract—In this paper, we consider an elliptic equation with
strongly varying coefficients. Interest in the study of these
equations is connected with the fact that this type of equation is
obtained when using the fictitious domain method. In this paper,
we propose a special method for the numerical solution of elliptic
equations with strongly varying coefficients. A theorem is proved
for the rate of convergence of the iterative process developed.
A computational algorithm and numerical calculations are
developed to illustrate the effectiveness of the proposed method.
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I. INTRODUCTION

HE fictitious domain method is efficient for the numerical

solution of elliptic equations in irregular shape domains.
In paper [1] an efficient (with respect to the number of
operations) alternately-triangular scheme of second order
accuracy for the numerical solution of an elliptic equation is
proposed. In [2], a modified alternate-triangular iterative
method with Chebyshev parameters for the solution of the
Dirichlet problem for elliptic equations of second order
accuracy is built. In V.I. Lebedev’s monograph [3], the
application of the method of composition for finding solutions
for eigenvalue problems, time-dependent problems, the
Dirichlet problem for the biharmonic equation, and grid
problems is considered. In [4], the difference stationary
problem for the Poisson equation with piecewise constant
coefficients in subdomains is considered. Poisson equation at
the interface can be approximated in a special way, i.e.
difference equation coefficients are chosen as a quotient, in the
denominator of which is the sum of the coefficients in
subdomains. A two-step iterative process based on the method
of dividing the area is built.

Papers of Bugrov A.N., Konovalov A.N., Smagulov Sh.S.,
Orunkhanov M.K., Kuttykozhayeva Sh.N. [5-9] are devoted to
the fictitious domain method for the equations of mathematical
physics. In these references, they study different modifications
of the fictitious domain method with continuation upon low-
order coefficients for the Poisson equation. Estimates of the
method’s convergence rate depending on a small parameter
were obtained.

In this paper, we propose a special method for the numerical
solution of elliptic equations with strongly varying
coefficients. The basis of the suggested method is in the
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special replacement of variables which reduces the problem
with second order discontinuous coefficients to the problem
with first order discontinuous coefficients. An iterative process
with two parameters taking into account the ratio of the
coefficients of the equation in subdomains is built. A theorem
for the rate of convergence of the developed iterative process
is proved. A computational algorithm is developed and
numerical calculations to illustrate the effectiveness of the
proposed method are conducted.

Il. STATEMENT OF THE PROBLEM

Let Q be a bounded domain in R? with piecewise smooth

boundary oQ. For  definiteness, we  consider
Q=Q,uQ,,QnQ,=I, where Q, is the interior
subdomain. In Q, consider the elliptic equation
—div(kVu) = f (X), X e Q 1)
with the boundary conditions
u(x)=0,xeoQ, (2)
where

K(X) = k, = const, Rf Q.
k, = const, (X), X € Q,.

The function f(X) is assumed to belong to the Hilbert
space of real functions L,(Q2), and in subdomains, it is defined
as follows:

@
f(i):{f ! (X)IXEQZ,
0,xeQ.

We make the replacement of variables in (1) in the form
u=2v/k, , and after simple transformations, we obtain

Av +div(wVv) =T (X), 3)

w—l. Let us designate szk—kz—l.
1 1

where o =

We introduce the notation ﬁ:(wﬂwﬁ_v] and write the
X, OXy
equation (3) as the following system of equations:

AV+Vp =—f(X),

/w—ﬂ* “
Ps ox,

lw— =0.
p,/w ox,
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I1l. COMPUTATIONAL ALGORITHM

For the numerical solution of equations (4) with the boundary
conditions v|,,= 0, we consider the iterative method:

Byt + AV 4V, B = — (%), (5)
=n+l  =n pn+1
AP -p)+
(0]
where B is an operator of the iterative method, g is an

iterative parameter, the index h is the difference analog of the
differential operator. The operator B in the iterative method
(5) is chosen as follows:

B={1-17)A; —adiv,(pV4) (6)

_ thnJrl — 0 )

where p=(8+1/w)™

ol 0l
Assume that v° eW(Q) and p°=vq, where geW>. In

particular, this condition is satisfied if (v°, p°) =0.

01
Hereinafter, we assume that B >0 in W2. For this, the
following equation must hold:

.
1-7——>0. (7
b
0 l
In this case, B in W satisfies the operator inequality:
“HASB<-1A, 8

the constants y; and y, can be chosen independenton 6 >1.

Substituting the operator B, defined as (6), to (5), we
obtain

AV = F (), 9)
B = Bop" + pVivt, (10)

where
F(X) = @-7)Ap" —divy, (BoV V") — ddiv, (Bop") (11)

We present an algorithm of the numerical implementation of
the method (9), (10). One step of the iterative method (9), (10)

consists in finding values v"™' using the known values of
v", p". This requires to solve the Dirichlet problem for the

Poisson equation (9) in Q.. Then, the value of p"*! is defined
by the known values of p" and v"** using the formula (10).

IV. THE STUDY OF CONVERGENCE

Let us prove some auxiliary estimates that will be needed in
the study of the iterative method. Let H(Q,) be the closure, in

W, (Q,), of the set of smooth functions orthogonal to the unit

Ol
on T', and H(Q,) be the closure, in W2(Q,), of a set of

smooth functions vanishing on I". We introduce the norm in
H(Q;) as follows:

12

2
Moy =I9¥lg, =| 194 ax
Qi
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Let ¢ be defined on T', and (o) =.[¢ds =0. We denote
r

O oo = SUP (2.7) /Vn (12)

s =, 30 00 ]

A. Lemmal

Let v, eW,(Q,) be a generalized solution of the problem

ov
n =
and v, be a generalized solution of the problem
Av; =0, XeQ, (14)
oV
a_nl|r =0, V|0 =0.
then
[Vealfo, <Cavuilg, (15)
where C; does not depend on ¢ .
B. Proof
We introduce the norm
lolyor = sup (@) Ml (16)
yew)'3(r)

A generalized solution of the problem (13) is a function in
H(Q,) which satisfies the relation

(VV,, V)= (@, ), Y e H(Q,) 17)

According to the embedding theorem, the right side of (17)
is a bounded linear functional in H(Q;). According to the

Riesz's theorem, there exists a function v, € H(Q,) such that
(p.m)r = (VVg, V77)q,
and

(. m)r
VVp|[= sup
Il rer @) [V,

Then, using (17) and (18) we have
V2 =Vo and [V, =] 50,
Similarly, we prove that

[Valo, =lels120,

Norms (12) are equivalent for i=1, 2. In fact, according to
the embedding theorems, we have the chain of inequalities:

(@ w)r| < "(p"—1/21‘"l//"—l/21‘
[Vl [v7lg

On the other hand, every function y e W2(I") (in the case
of i=2, the function y satisfies the condition (1) =0)
can be extended to Q; so that the extended function v
belongs to H(Q;), and

(18)

< C||¢’||—1/2,r :
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[Vlo, <l yar

Thus,

|(<0.t//)r|_ (@, w)r|
Wl yor V9,

It follows that the norms |g] 1120, @re equivalent
- I

According to the equality ||Vvi||Q, =||¢||_1/2Q_ , we obtain the
I I

estimate (15). The lemma is proven.
Now we estimate the rate of convergence of the method (9),
(10). Let us denote

{y. ik={y" r"}={v-v"
{9, r‘.}:{ynJrl’ rn+1}l

Then, equations (5) can be rewritten as

,p-p"},

01
(By;, V) + (Vi Y, ViV) + (VF,v) =0, Vv e W 2,

Pt + /0,9 =0,

(19)
(20)
ol
{y°, r%eWox L, where y, =(Y-y)/z.
A function y in L, is a piecewise gradient function if it
can be represented in the form

y =Vg; in Q;; where g; eW;(Q)) (21)

9ilaonoo, =0, 1=12,.,N
and a function w is a gradient function, if it is in the form

01
w=Vg in Q, where geW2(Q).

ol
Since p®=Vg, geW; and w is a piecewise constant, then

r® is a piecewise gradient function.
We take the inner product of both sides of the equation (20)
with 24 in L, and set v=27 in relation (19). Adding these

equalities, we have
I91 =I5 + =Ml + 2wl + el - el

27 i~
el <o

Let us investigate the form of r". Since
P r+ L \%
B+lYw  pf+lw
and r is a piecewise gradient function, then 7 is a piecewise

gradient function. Thus, all r" are piecewise gradient
functions.
Let G be the space of piecewise gradient functions, and G,

be the space of gradient functions. It is obviously that G, c G .
Let us show that there is a strict embedding G, c G, and we
will show the orthogonality, in L,, of the complement G, to
G. If y isorthogonal, in L,, to all elements of G;, then for

z,::

every element Vg e G; we have (y, VQ), =0. If the function
Vg is sufficiently smooth and it has a support in Q; then

(¥, VO)q = (v, V9)q, =—(divy, 9)o, =—(Ag;, 9)g, =0-
Since g is arbitrary, the last relation implies
Ag;=01in Q. (23)
It is clear that the relation holds in every Q;,i=1,2.. Thus,
the element y G, orthogonal to all elements of G;, is
represented in the form (21), where g; is a harmonic function

in Q;. Let us find conditions which must be satisfied by w
being orthogonal to G, on I'. Let Vq e G, , then

0= (l//, vq)Q = (vq]_, Vq)Ql + (qul Vq)Q2 =

J'g qlds+jg andS J'g o0 8q2
o, on, on
(here n; are vectors of the outward normal on 0Q;); i.e., the

values of the normal components y; = Vg, and y, =V(, on

I' are the same. Thus, the normal component of the vector
function w is continuous (in the integral sense) when passing

through T". This implies that orthogonal, in L,, complement
G, of the space G, to the space G consists of all functions of

the form (21), the normal component of which is continuous
when passing through the adjacent border, and functions g;

forming them are harmonic in Q; .

Let us continue studying the convergence of the iterative
method (9), (10). As it was discovered before, F e G. Let us

represent 7 in the form f=G+h, where GeG,, and heG,.
In this case, (19) takes the form

(By,, V) + (V§, Vv) + (G, VV) + (h, Vv) =0, (24)

0
for YweW, .

Last scalar product in (24) vanishes because VveG,;.
Dividing both sides of (24) by |Vv| and assessing the member
containing ¢, we obtain

AV CHYNGALS i
X2 |Yillg HIVnY
v~ Jav 2 o t||B [Vadl-

Since the right side of this inequality does not depend on
0 1

veW, and (eG,, ie. it is represented in the form

1
4=Vvg(g eV(\J/Z), then taking sup by v on the left side of the
inequality, we obtain

léll < V2 vl + 951

where V.9 = 9], Let us square both sides of this inequality
and estimate the right side:

JalF < 20zll + 9315
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We multiply this inequality by gz%4 (A>0 is arbitrary)
and add it to (22). As a result, we have

91 +7*a-28202 )l + 270 pe)|vidif +

. L . (25)
g + 2 1. o el < I+ el

We estimate the scalar product (f,f/w). For any &,
0 < 6 <1 the following inequality holds:

PR
w [0 w w
>a-5) 5 +(1—1j(ia]

w oNw

2 142
¢ (-2

Since he G , according to Lemma 1, we have the estimate:
Jp

>

(26)

oo, -

< cg”h
2

2
Q o
thus,

2 N
o, <0 c3)“h

NTVA Al
Il =[F
therefore, (26) yields
ro. ~12 14 _
(;, r] > c,0- o] +(1_Ej||q||2 Co= ey
Using the last inequality, we reduce (25) to the form
[91 + =* @~ 2622)y. [} + 220~ el +

el + pe 2l + 20— oyed[ +

2 N 2
+ “h ,
Q1 Q

(27)

1A
. 27(1—gj||q||2 < + el

We fix g >0 and choose 7 >0 so that for any 6 >1 the
condition g >0 holds. We choose A satisfying

1-2py, >0, 1- Bz >0,

and we set 5=L<1.Then
4+ Bri

2 2 pPA ﬂTzﬂ, BiA
A+2r(1-1/8) = A-2r5 2= 1-6= .
prid+2Q-Yo) = prir-2, 2 4+ oA

The inequality (27) for such & is in the form

[“C;_TJIWIIZ +prreelf <yl + pell. @8)
2

2" 4+ pra
It is obvious that the constants g, r, y,, 4 can be selected
the same for all 9, 1<0<ow. Thus, we have proved the
following theorem.

where ¢; =7(1-28y,), Cs :min{i 26 }
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C. Theorem1
For any pB>0 there exists 7 =7(f) independent on @ >1
such that —y,A<B<—y,A for <7, the constants y,, y, do

not depend on .

In this case, the iterative process (9), (10) converges at a
geometric rate, and speed of convergence does not depend on
a .

D. Remark

N
It is obvious that Theorem 1 holds when Q, = UQ, or when
1

i should be

N
Ql:UQ'i. In this case, subregions Q,
1

typologically separable with piecewise smooth boundaries. In
the first case, the parameter @ do not necessarily match in the

subdomains ©; and Q;.

V. NUMERICAL CALCULATIONS

Using the method described above, the test problem (1) - (2)
was solved. The subdomain Q, was chosen in the form of a

square  Qp =Xy <X <Xy p,i Xom <Xp <X fi  Where
Xk, = 0,25, Xy, =0,75, X5, =0,25, X, p, =0,75.  The area
Q covers the subdomain Q,, Q={0<x <1 0<x, <1}

The subdomain Q, is defined as Q, =Q\Q,. The right side
is defined in Q, as follows:

f(x, %) = 2(X§ = (Xo,my + Xo,m, )Xo + Xo,m Xo,m, ) +

2(xf - (Xy iy T Xekp )X+ X Xk, )
where x =0,25, X, =0,75, Xp , = 0,25, X, pp, =0,75.
f(x,%)=0. The

iterative parameter r is chosen as 7 =10"°+10", the
parameter S is determined so as to satisfy the condition (7). It
is necessary to follow the sign of the parameter @ in the
subdomains since -1<w<1.

In the subdomain Q; the function

<SS
S S
SERRERI2
650260 %¢ IO
SISIIISTIZIIIZIIIEIIITS
SOOI 6%6%6 %66 %
SRR
SRR
$%626%¢%6%6% %0 % 2902050565665 %
SSIIISIRIS REIISIESSIEIEI2
) P NN
X SRR ] ISR
P R S S S S S
SRR N
5560505050565 | P00 090%6°0%6%4%4 %%+ %
D s e N A N e e e
9 SISIIIRIIIIEIIIIIIIRSE S, RS SSSSSE e SEIESTSTII
g SSISIIIIIIEIIIIIIIIIIIIS RRSSSISIIIIIIEIEIEIIIE>
CSIRIIIIIIIIIEIIIIIIIIRIISA ROSSIIZITIIIIIIIEIIIIIIIIII2>
S S SIS S SSRSRIIIIIIIIIRIIIRIIITI>
SIIIRSZIZSIIZIIIZIEIIIEIZIES2S] RESSISISIIIIZLEIIIIIIIRIRIIR>
5505005050506 5050505650 %0 % %" | 9090040050506 %0%6 20969629 %%
SIS SIS SIS RESSIIRIIIRIIEIEISIIIIISIIISII>
[} SRS SSIIRIIIIIRIIIIIIISS | RISSSITIEIIITITIIIIIIIIIIIIITIID>
g ZIZIREIIIIIIIIIRIIIIIIRIRIRSS SSRSRIIIRIIIRIIEIIIIIILIIIIIIIII
SRR | RS W
o~ 5965665956566 56565656 %% %% I ICICICICICICITITICITITIS” WS
SIRIIIIISIIIIIIIIIISIIIRIIIIIISN SRS IIRISIIIIIIIIIISESIET
EEIESEEIEIIIEIEEEIIILISII L SIRIIIIRIRIIRIIIIIIIIIIIIIISEIH
D e O O S S S e T e e S eSS es ey SIS
SIS DS S S TS
D T e S T T D N S S O e e
SRS S A IS SIS IIRIIIRIRTS
S S O 0SS S e S e S e S S e S Sere e S Y
35355002 SIS SIS &F
R IRIRIIIRIIIIIIEIEEIIIIIIIIIIEIIIIIIRIISISIIIIIIIL
s SIRIISIIIRLEIIISIIIRIIIIISISIRIRIRS
K SR IIREIITIIIIIIIEISS
e
550°62650566656566. 566504
SIIIIRSIIILLIIIISIIIRLISL
SISZIZSIIIIIIIIEIIIIIIIIIISL
5505056.56505056.56.56. 56565064
S
SIRSSISSIESESESESIIISIIIIITIK
FREEEEEEEEIRESS
965656565656 % %%
<P < <> :‘ -5

Fig. 1. Graph of the exact solution at the grid nodes 101x101
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Fig. 2. Graph of the approximate solution at grid nodes 101x101

The problem for the elliptic equation with strongly varying
coefficients was solved using the fictitious domain method,
following the higher coefficients. Figures 1-2 show the results
of the exact and the approximate solutions at grid nodes
101x101, respectively.

In the calculations, the uniform mesh sizes of 101x101,
501x501, and 1001x1001 were used. To carry out numerical
experiments on a fine grid, a numerical experiment was
conducted on a supercomputer URSA based on 128 quad-core
processors Intel Xeon series E5335 2.00GHz at Al-Farabi
Kazakh National University. The developed method is based
on building a computational algorithm for the elliptic equation
with strongly varying coefficients. The developed algorithm
uniformly converges for a certain amount of iterations, and the

results were obtained with an accuracy of 107°. The results of

numerical experiments were visualized in the modeling
package named Surfer.
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