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in FPGA Structures with Embedded Array Blocks
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Abstract—Statechart diagrams, in general, are visual formal-
ism for description of complex systems behaiour. Digital con-
trollers, which act as reactive systems, can be very conveniently
modeled with statecharts and efficiently synthesized in modern
programmable devices. The paper presents in details syntax
and semantics of statecharts and new implementation scheme.
The issue of statecharts synthesis is not still ultimately solved.
Main feature of the presented approach is the transformation of
statechart diagrams into Finite State Machine, and through KISS
format, functional decomposition and mapping into Embedded
Memory Blocks. Embedded Memory are part of the modern
programmable devices.

Keywords—digital controller, statechart, FSM, decomposition,
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I. INTRODUCTION

IGITAL controller design is a process which begins

with informal description behavior and finishes with
implementation in electronic devices [1]. First step of the
process is to transform informal specification into formal one.
This step is the most difficult, hence many formalisms have
emerged, from very simple to very sophisticated ones, where
statechart diagrams seem to be most efficient. Implementation
process in modern programmable devices, especially equipped
with Embedded Arrays Block or Configure Logic Blocks,
requires using dedicated new methods [2], [3]. The traditional
ones, like Espresso, are inefficient, sometimes giving results
worse than without minimization. Presented in the paper new
algorithm uses functional decomposition.

Digital controller acts like a reactive system. Such controller
can be designed as traditional FSM, but this approach exhibits
state explosion problem. Mainly, in case of modeled behavior,
which features concurrency, number of states of the FSM
grows exponentially. To cope with this inconvenience designer
can use Petri net model, which directly allows to describe
concurrency. State explosion is not the only problem in mod-
eling complex behavior. Abundance of states, events, transi-
tion and parallel dependencies, makes that diagram become
unclear. Then, good engineer practice is to divide modeled
complex behavior into simpler sub-behaviors, according to
classic paradigm: divide and conquer. Proceeding in this way,
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designer treats the modeled behavior like a tree of hierarchi-
cally connected sub-behaviors. This approach is supported by
statechart diagrams.

The statechart diagrams were developed as a visual for-
malism for complex systems [4]. It is a state-based graphical
notation which can be perceived as an extension of state
transition graph of traditional finite state machine. In compar-
ison to FSM they are enhanced with concurrency, hierarchy
and broadcasting mechanism. At present time statecharts, also
called state machines, are mainly used in UML technology [5],
where are employed in behavior modeling of program objects
(in sense of C++ or Java language).

The issue of hardware synthesis of statecharts is not
solved ultimately. There are many implementation schemes,
depending on target technology. Historically, first methodology
published by [6], consists in transformation of statechart into
set of hierarchically linked FSMs. Next, these FSMs can
be implemented traditionally. Other approach is presented
by [7] and is targeted at PLA structures, where main idea
is to code craftily statechart configurations. The drawback
of this method is that diagram can model only transitions
between simple states. In 1999 [8] enhanced Drusinsky coding
scheme by introducing so called prefix-encoding. Common
drawbacks of the presented methods are lack of support for
history attribute and broadcast mechanism. It is worth to
mention other implementation methods such as using HDLs
[9] or presented by [10] which is based on ASIP (Application
Specific Instruction Processor).

The proposed Authors’ design method, developed partly in
HiCoS system [11], directly transforms behaviour specified
with statecharts into Register Transfer Level, where register
file codes global state. The transformation is realized as one-
hot mapping [12], this means that one state corresponds to
one flip-flop. Next, by means of symbolic methods [13], the
RTL-like description is transformed into FSM form, which
can be implemented in embedded array blocks in modern
programmable devices [14], [15].

The rest of the paper is organized as follows. Section 2
presents syntax of statecharts, where main feature is modular-
ity (ie the transitions cannot cross states borders). Section 3
describes an industry plant which is controlled by statechart-
based controller. This more complicated example, where some
syntax and semantics issues are presented in detail, is at the
same time a bench mark. Section 4 presents semantics of
dynamic behavior, mainly response of statechart-based digital
circuit to an external and internal events. Section 5 describes
digital synthesis of statechart-based controllers realized by
means of flip-flops and Boolean functions. Section 6 presents
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the transformation of statecharts into FSM described in KISS to prevent removing away an activity from a sequential
format. Section 7 describes the idea of ROM-based syntheaigomaton before the end state became active. Such elements
algorithm and mapping into Embedded Memory blocks, arat factored transition paths and time were rejected. Other

section 8 presents experiments results. syntax characteristic like cross-level and composite transitions,
synch states have been shifted to the farther stage of the
II. SYNTAX OF STATECHARTS research. An example of statechart is depicted in figure 1,

The statechart diagrams [4] have been devised in orgip€reé event € X is an input to the system and evént Y/
to improve the specification of reactive systems of complé " output. Eventb andc are of local scope.
behavior. It is a state-based graphical notation which enhances
the traditional finite automata with concurrency, hierarchy I1l. CHEMICAL REACTOR— CASE STUDY
and broadcast mechanism. States are connected by arcs withhe industrial reactor, for the first time presented in [17]

predicates. A complex state can be assigned a group of staeg part of hydraulic-mechanical plant, whose functioning
(simply or complex), thus creating hierarchy relationshipgs governed by a discrete controller (Fig. 2). The reactor
States can be in a concurrency relationship. An activity cafeasures out two substances, mixes them together and pours

be removed from subordinated states in the exception sty product into the wagon which transports the outcome to
through firing transition from their ancestor. The presence g§ destination station.

the final state (in the diagram bull’'s eye) prevents exception
transitions, unless the final state is active. . o
The big problem with statecharts is syntax and semantiés, R€actor Working Description

A variety of application domains caused that many authorsThe detailed working of the reactor is as follows. Initially

proposed their own syntax and semantics [16], sometimiée reacting substances are kept in containers SV1 and SV2.

differing significantly. Syntax and semantics presented in thidie emptied wagon waits in its initial position on the right.

paper are intended for specifying the behaviour of binaAfter the signalx0 a technological cycle starts: valvgsd

digital controllers which would satisfy as much as possibRndy2 are opened and scales MV1 and MV2 are poured in,

the UML statndard. The selection of language characteristi@gd wagon starts moving to the left (signd). The pouring

was made based on application domain and the technologiehthe substrates lasts until sensotsand x3 in the scales

constrains of programmable logic devices. indicate exceeding upper limits. After both sensors indicate
exceeding upper limits valves andy4 emptying scales MV1

Vet St N and MV2 become on simultaneously and the main reaction

( ., S slz\ process starts. The agitfator A is_ ready to switch on. After the

S, ) ] substance in reactor main container R is over the seds e
)

Sa

agitator becomes on. When the substance is beneath again, the
ty: at+c agitator becomes off and ready to start again. While emptying
scales and pouring main container R, the wagon is moving to

) its position on the left. Next, when scales MV1 and MV2 are

I
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entry /b meantime the wagon has reached its left position (sexigor

the main container valvg5 is opened and the container is
emptied till the level of substance drops below the reading of

the sensok6. Next the wagon starts moving right (signe).

When the wagon reaches the far right position (ser8prthe

\ ) wagon is emptied (valvg6). The end of emptying is signaled
N do/c 4 by x9 sensor, and after that the technological cycle is finished

E. ={abcd} x ={a} v ={d} and the whole plant is ready to start again.
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Fig. 1. Example of Statechart diagram. B. Statechart Diagram

Fully modular statechart diagram is a diagram whose com-

As a result of those considerations it was assumed thpbund component behaviors are only defined by its sub-
syntax of statecharts HiCoS is to be intended for untimewmponents. This generally means, that the transitions cross-
control systems which operate on binary values. Hence, ang the state borders are forbidden and broadcast events are
statecharts feature hierarchy and concurrency, simple statisp forbidden. The benefits of full modularity are clarity of the
composite state, end state, discrete events, actions assigtiagram and a more efficient verification. This stems from the
to state éntry, do, exif), simple transitions, history attributefact that the dynamic properties of the complex behavior can
and logic predicates imposed on transitions, whereas crolss-obtained from already verified properties of its component
border transitions are forbidden. Another very essential isss&b-behaviors.
is to allow the use of feedbacks, it means that events generateBigure 3 presents statechart diagram of the controller. In this
in a circuit can affect its behavior. The role of an end statase it is good to model some of its component sub-behaviors,
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AN}
. . . . ‘ t14: Ix6
nanely the agitator control (simple statéAfaiting and Stir- \_ \ * )
ring), agents dispensing to main reactor container (consisting J 5 6
of one stateEmptyingReactorand two completely parallel \ & J
processes: statedsmptyinMV1 EndStateand EmptyingMV?2 1
EndStat¢ and wagon motion to the left (staté&¥agonLeft
and WagonWaitingy These three concurrent processes neither
start nor finish at the same time. They are started with 12 x8
transitiontl andt4 and finished witht10 andtl11. This means

that they overlap and must be synchronized with these four
transitions. This is realized by means of variakle which

is being broadcast in staMagonWaitingand is a predicate Fig. 3. Chemical reactor — statechart diagram.
on transitiontl0. This behavior cannot be modeled fully

modularly, internal variablezl must synchronize the three

processes and the presence of the variable slightly distujRsigure 4 a simple diagram and its waveforms illustrate the

modularity. assumed dynamics features. When transitipfis fired (T =
350) eventt; is broadcasted and becomes available to the
system at next instant of discrete time £ 450). The activity

A digital controller specified with a Statechart and realizeghoves from stateSTARTto state ACTION Now transition
as an electronic circuit is meant to work in an environmep} pbecomes enabled. Its source state is active and predicate
which prompts the controller by means of events. It is assummsjposed on it (event;) is met. So, at instant of tim& = 450
that every event (incoming, outgoing and internal) is bounfle system transforms activity to the st&&OPand triggers
with a discrete time domain. The controller is reacting to th&entt,, which does not affect any other transition. The step
set of accessible events in the system through firing a seti@finished.
enabled transitions called a microstep. Because of feedback,
execution of a microstep entails generating farther events and V. STATECHART DIAGRAMS SYNTHESIS

causes firin bsequent microste 18]. E i . . .
uses fifng subsequ icrosteps [18]. Events trlggeredStatechart diagram synthesis is process by which controller

during a current microstep do not influence transitions bein ) . X ) :
realized, but are only allowed to affect behavior of a controll scribed by statecharts is tuned into design implementation
' n terms of logic gates and flip-flops.

in the next tick of discrete time, that is, in the next microste;.').
A sequence of subsequently generated microsteps is called a

step and additionally it is assumed that during a step no eveAtsFoundations of Hardware Implementation

can come from the outside world. A step is said to be finishedThe main assumption of a hardware implementation be-
when there are no enabled transitions. Figure 4 depicts a st@iour described with statecharets diagram is that the sys-
which consists of two simple microsteps. After the step &ms specified in this way can directly be mapped into

finished the system is in sta®TOP Summarizing, dynamic programmable logic devices. This means that elements from
characteristics of hardware implementation are as follows: a diagram (for example states or events) are to be in direct

IV. SEMANTICS

« System is synchronous, correspondence with resources available in a programmable
« system reacts to the set of available events througkvice — mainly flip-flops and programmable combinatorial
transition executions, logic. Basing on that assumption and taking into account

« generated events are accessible to the system during ressumed dynamic characteristics, following foundations of
tick of the clock. hardware implementation has been formulated:
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ACTION the basis of activity of flip-flops assigned to the superordinate

i/{tt t/{ T ; ;
START |- 1} IentryTent i) STOP states. The state is said to be active when every flip-flop bound
do/d

with the states belonging to the path (in sense of hierarchy

\exit/ext )
tree) carried from the state to the root state (located on top
Nams Lo L 0 e 0 v M0 v 0 v of a hierarchy) is asserted. Formally activating condition is
'else; calculated in the following way:

£ clocl _,_l_,_l_,_l_,_l_,_l_,_l_

o START oo | I activecond(s) = H Si (1)

o s;Epath(root,s)

v L wheres; is a signal from flip-flop output.

e T OL i . Having established a role that flip-flop is to play in a digital

= el ol circuit it is possible to formulate general assumption regarding

T . [ its excitation function. This function yields when the state

DL S ' bound with given flip-flop is:

- t2 ________ L . . . . . .

e ! « not active and in next iteration will be active,

« an active state or is, so called, a recently active state (it
can take place in case of state with history attribute) and
in next iteration will also be active or recently active.

One characteristic feature of these two assumptions is causal
, i i . relationship which consist in that before state became most
- ead state is assigned one flip-flop — activity means thal, oy active it must be prior active. This observation leads

state associa}ted With the f|i_p-f|op_ can be active or in Cags state flip-flop excitation function of following shape:
of a state with history attribute is remembered its past

Fig. 4. Simple diagram and its waveform.

activity; activity of state is established on the basis of 6(s) = activate(s) + s * inactivate(s) 2
activity of flip-flops assigned to superordinate states (in a b
sense of hierarchy), . . wherea andb, respectively, are:

« each eventis also assigned one flip-flop — activity meansg) activating componentgtivate: it assumes logicl
occurrence of associated event and it is sustained to when the state bound with a flip-flop is not active and
the next tick of discrete time when the event becomes in next iteration will become active; this corresponds
available do the system, - to the situation when directly incoming transitions to

« based on diagram topography and rules of transition the state fires or, in case of default states, the state
executions, excitation functions are created for each flip- activated is by directly superordinate state
flop in a circuit. b)  sustaining component: it assumes logighen 1) the

state bound with a flip-flop is active (it means that
componentctivatemust have been fulfilled before)

SYSTEM STATECHART

! |
i i and in next iteration the state will also be active or 2)
:L ) L — _ J: in case of the state is attributed history property the
H signal excitation flip-flop 1 . . . . . .
i functions functions |—s|  registry ly state is recently active gnd in next iteration will also
dlock T ! ' ﬁ—» be recently active; factanactivateassume valud,
reset | } : when the state loses activity and at the same time is
b ' not recently active, this corresponds to the situation
Fig. 5. Statechart diagrams Hardware Implementation when one of some output transitions Is fired.
Fartrer statechart diagrams synthesis description is mainly . . ol L
revolving around specification of flip-flop excitation functions Inactivate p Q s
of two types: state flip-flops and event flip-flops. activate s 5
—c L

B. State Flip-flop Excitation Functions
Every state is assigned one flip-flop. Lodion its output

means occurrence of one of two situations: A variables in equation 2, is a feedback signal and its role is to

» activity of state (to whom the flip-flop was assigned), sustain flip-flop activity since the moment specifieddayivate

« remembering that the state was most recently active component till the moment determined lyactivate factor.

this takes place in case of states with history attribute.The excitation function defined in that way leads to the logic

These two circumstances are essentially different. Thereforelidgram presented in figure 6. Farther descriptions of synthesis
is necessary to define the rules which will allow to determimelles of state flip-flop excitation function are focused around
the former and the latter situation in an unambiguous wagetailed definition of activating components and inactivating
As far as activity of a state is concerned, this is realized dactor.

Fig. 6. Logic diagram of flip-flop excitation function.
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1) Activate ComponenfThe conclusion which results from without an end state:
what is stated in point a) is that to form an expression for

componengctivateis necessary to investigate two cases. inactivate(s)

« The first case holds when a normal state (i.e. not being a
default state) is examined. Then activation of such state
depends only on transitions which directly come to the
state. Formally, it is defined by following equation:

(si) (5)

si€path(root,parent(s))

b
Flip-flop is reset by firing of directly outgoing transitions
from states (component) or by firing output transitions
of superordinate states. The latter case, in equation,
is represented by negated activity condition of directly
superordinate state (compondmt
state without history attribute belonging to an automaton
with an end state,
state with history attribute belonging to automaton with-
out an end state,

activate(s) = Z encond(t;)

t;E®

3)

« Second case takes place when it comes to a state which is
the default state. Then activation of such a state depends
not only on directly incoming transition, but additionally
depends on activity of directly superordinate state. When*
directly superordinate state becomes active it means that
one of its directly subordinate states must also become®
active. It is as if activity “comes from above”. Equation

which describes this case presents as follows: « state with history attribute belonging to automaton with
an end state:
activate(sq) = Y encond(t;) + inactivate(s) = Y encond(t;) (6)
1, €% t;€s®
a In these three cases only directly outgoing transitions can
+ H d(si) * reset a flip-flop. This results from semantics and from
sj€path(root,parent(sa)) taken assumption as to what role plays activity of a flip-
N flop.
_ ) Now there is an end state case left to investigate. An end state
* Z o can have or not history attribute, so it gives two next situations
si€hre(parent(sq)) to analyze:
c « end state without history

Componenta is responsible for activating which comes
from directly incoming transition, similarly as it is in
previous case (eq. no. 3). Factbris referring to the

inactivate(s) =
siEpath(root,parent(s))

activation which is caused by directly superordinate state.
This factor is, in fact, modified activating condition (see
eg. no. 1).6 is a flip-flop activating function and as

a signal is taken from flip-flop input. This means that
factor b represents activity of the parent state in next «

b

An end state must not have directly outgoing transitions,
but its activity can be taken by transitions of higher levels
of hierarchy (see also eq. no. 5).

end state with history attribute:

tick of discrete time. Factot allows to activate flip-flop
only when there is no other active flip-flop. Activity of
other flip-flop means that default state flip-flop must not
be activated, because the other flip-flop remembers past
activity of the other state to which is bound with.

(8)

Attribution of history property to an end state means that
a flip-flop bound with such a state will never be reset,
because an end state must not have directly outgoing
transitions and reactivating automaton with such a state,
as result of firing transition of higher levels of hierarchy,

inactivate(endst) = 0

2) Inactivate Factor:This factor is to assume valdewhen
the state to which a flip-flop is bound with is to lose activity
and at the same time is not recently active state. The situation Will always cause activating the end state. In general,
arise in consequence of firing some output transitions. The ascribing history attribute to the automaton with an end
issue is which are these output transitions. This depends both State makes no sense and hence is not recommended.
on whether investigated state is an end state or a normal state
(in this context normal state means not an end state) and ©n Event Flip-flop Excitation Functions
presence of history attribute and also on whether investigateq_mmWare implementation ifPGA structures is based on
state belongs to an automaton with an end state. The latter Gage,ssmption that the circuit responds to the set of currently
means that transitions of higher levels of hierarchy cannot taéﬁ?ailable events in next tick of discrete time. Between an
activity. Firsj[, to put it in an order, let us consider four Cas&Kent and a respond to it there is a period of time equal to
when state is a normal state and has or not history attributg. ering of clock signal. To fulfill this assumption there is

« state without history attribute belonging to the automatan necessity to bound with every place in circuit where event
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can be triggered one flip-flop. The flip-flop’s assignment is tA. Statechart as a FSM

sugain information about an event for the clock signal period.

Basically, there are four possible places where an event carptatechart diagrams in some sense can be perceived as a
be generated: finite state machine of Moore type. Then, such a FSM formally

1) Transition: Firing transition can be assigned broadcasta" Pe defined as follows: . .
ing set of events. Excitation function of such a flip-flop is a Definition 2: A statechart FSM (SFSM) is defined as a

simple enabling transition condition: 6-tuple: SESM = (m,n,r,0s, As, Init) where:m is the
number of Boolean inputs; is the number of Boolean state
d(er) = encond(t) (9)  variables (all flip-flops)y- is the number of Boolean outputs,

2) Entry Action: Every state can be assigned an entr§s iS the functional vector of the state transition functions
action, which is executed when state is being activated. This: : {0,1}™ x {0,1}" — {0,1} and1 < i < n, As is
is, of course, broadcast set of events. Activation of a stdfte functional vector of the output functions; : {0,1}" —
takes place when, at given moment of discrete time, state{fs 1} and1 < j <, Init is the initial state.
not active (factora) and at next instant of time will become For the diagram from figure In = 1, n = 13, r = 1.
active (factorb): Because output functions depends only on state variables,
_ statechart FSM is of Moore type. The set of equivalent FSM
d(een) = activecond(s) II 9(s:) (10 input signal is the sef{ of stariechart input ev?ants, the set
si€path(root,s) of FSM output signals is the sé&t of statechart event visible
b to the environment. Cardinality of both sets is, respectively,
3) Do Action: Sometimes called static action is a set ofX| = m and|Y| = r. For example for the diagram from
events which are broadcast at every tick of clock signal, as lofig- 1 X = {a} andY = {d}. The setS of equivalent
as state to which the action is ascribed is active. Therefore,BBM states, transition functiod,; and output functiom,
excitation function boils down to the state flip-flop excitatiomeed referring to statechart state transition graph (STG, see
function (see section V-B). fig. 7). STG presents global states of statechart and transitions
4) Exit Action: This action complements entry action andpetween them. The transition is fired when events imposed
is being executed when given state is active (fagjoand at on it are being broadcast, whether coming from environment
next instant of time will lose activity (factdb): (bolded in the fig. 7) or generated internally in the diagram.
Then, the setS of equivalent FSM states is the set of all
d(eex) = activecond(s) * II (i) (1D statechart global states from STG (see def. 3), FSM transition
M si€path(root,s) function ,, is a relationship between STG transition source
b and target states, FSM output functian, is a relationship
between STG global states and events assigned to them which
VI. STATECHART DIAGRAMS TRANSFORMATION INTO  gre visible to the environment (bolded in the fig. 7).

a

FSM MoDEL
Transformation of statechart diagrams into FSM model —  ~———-v— —
consists in constructing equivalent finite state machine, which Go| 8:51151,5:5:5,55€1,5:5,€,8,8; | y={C}
for external observer behaves just the way statechart does. t;: {c}
Definition 1: Finite state machine of Mealy typéenoted L
as M, is a following tuple: B ——
g p Gl SlSllSIZSZ833435e123637eleZe3 y:{bac}
M = <XﬂSaYa5M7)\M>
to: {b} t, ts: {a, ¢}
where: G, G3
X = {xl, . xm} — set of input signals 15113123 S3 S, 2S elzs S. ele 63 18118125 S; S S, 5€1,5¢ S e, €. 63
S = {si1,...s,} — set of internal states y= {ac},[3 t {a, c\ /1 {a, c} y={a,c}
Y {y1,...y-} — set of output signals
and: G| 5:51151,5,5:5,5:€1,565,€,6,€; | y={c,d}
oy : Ds,, +— S —is a transition function ts: {c}
A Dy, +— Y —is a output function E— Ep—
D M C X « S p G5 51511512325334556125657616263 y:{b’c}
61\[ =
D)\]\/[ g X X S t6 {b}
When D,,, C S_the.automaton.is.of Moo_re type. Ge [ 5:5.:5.,5,5,5.5.6,,5,5,6,8,8, | y={c}
The construction involves building equivalent Moore-type

automaton from statechart elements, where members of the N _ '
sets are explicitly enumerated and functions are given syﬁig' 7. Statechart state transition graph for the diagram fromifig
bolically in tabular form, eg KISS format [19].
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B. Global State of a Statechart D. Transition Relation

The global state of the statechart is defined as follows: Transition relation is a relation which relates transition’s
Definition 3: Global state Gs a set of all flip-flops’ states source and target states with an event (or events) imposed on
in the system, bound both with local states and with distributdiis transition. This notion symbolically can be expressed by
events, which can be generated in several parts of the diagraeans of characteristic function:
and separately memorized. Definition 5: A characteristic functiory;, of the transition
Figure 7 presents state transition graph for the diagraelation of the functional vectais is a Boolean functiorys, :
from figure 1. The diagram consists of 10 state flip-flopf0,1}™ x {0,1}" x {0,1}" — {0,1} defined as follows:
{51, S11, 812, S2, $3, S4, S5, €12, S6, 57} and 3 event ﬂlp-ﬂOpS
{e1, e2, e3}. The flip-flop denoted as; corresponds to the exit Xos (', 2, 8) = {
eventa assigned to state, e; corresponds to the entry action
b assigned to state;, and ez corresponds to the transitionwhere s’, s and x are sets of state variables of next state,
action (broadcasting of everif) bound with transitionts present state, and input signal variables, respectively.
firing (from states; to statesg). Global state comprises all In practice, the functiorys. is calculated using the follow-
information about the statechart both about currently activeg equation:

1 <= s =d5(x,s),
0 otherwise.

states and their past activity. Number of global states is 7. n
Technically, global state can be expressed as a conjunction Yo (8, 2,8) = H[Sg © 8s;(z,5)] (14)
formula, where variable in formula are bound with flip-flops’ -1

where the symbaob represents the logic XNOR operator and
n is the number of state variables.
C. Characteristic Function The relationys, (s, xz,s) = 1 implies that in states there

To implement the algorithm of transformation statecha?tx'StS a transition to staté on inputz.

FSM into FSM there are needed means to represent symboli-

cally set of global states. The set of states can be implemenkedSymbolic State Space Generation

by means of notion of characteristic function represented byHaying defined notions of statechart global state and charac-

Boolean equation. teristic function it is necessary to present an algorithm which
Definition 4: A characteristic functiony 4 of a set of ele- computes symbolic state space of statechart, where set of

mentsA C U is a Boolean functiony4 : U — {0, 1} defined glopal states symbolically is represented by its characteristic

as fO"OWS: function_
xa (z) = { 1z Gﬁ (12) The algorithm traverses the state transition graph of stat-
OeadA echart FSM in breadth-first manner, moving from a set of

current states to the set of its fan-out states. In this approach

The characteristic function is calculated as a disjunctig) sets of states are represented by means of characteristic
of all elements ofA (i.e. the set of all global states). Op-functions. The key operation required for traversal is the
erations on sets are in direct correspondence with operati@@mputation of the range of a function, given a subset of its
on their characteristic functions. Thugiaus) = x4 + XxB. domain. The symbolic state space exploration of statecharts
X(AnB) = XA * XBy X(7) = Xa» X0 = 0. The charac- relies in [21]:
teristic function allows sets to be efficiently represented in, association excitation functions to state and event flip-
computer memory by means of BDDs [20]. For example, if, flops,
for the state transition graph from figure 7, the global state, association logic functions to signals,

is defined as a conjunction of flip-flop variable (eg. initial representation of Boolean function as BDDs,

state Go = s1 511 S12 52 53 54 55 €12 56 57 €1 €2 e3) then | yapresentation of sets of states using their characteristic
the characteristic function of the set of all global states is functions,

a disjunction of respective Boolean expressions, where one, computation of a set of next states as an image of the

expression represents one global state: state transition function on the current states set for all
input signals.

Xc = Go+G1+G2+Gs+Gi+ G5+ Ge = Starting from the default global state and the set of signals,
= 51511 812 82 53 S4 55 €12 56 57 €1 €2 €3 + symbolic state exploration methods enable the computation
=  S1 811 S12 S2 53 54 S5 €12 86 57 €1 €3 €3 + of the entire set of next global states in one formal step.
— 51811 S12 53 S3 51 85 €13 86 57 €1 €3 €3 + The symbolic state space algorithm of statechart is presented

below.

51 811 S12 S2 S3 S4 S5 €12 S S7 €1 €2 €3 +

51 811 S12 S2 S3 S4 S5 €12 S6 S7 €1 €2 €3 +

Listing 1. Symbolic traversal of state space

= 5151185125253 35485€1256S7€1€2€3+ 1 symb_trav_of_Statechart(Z, init_mark) {
= 51811 812 S2 53 84 S5 €12 S 57 €1 €2 €3 (13) X[Goy = curr_mark = init_mark;
3 while (curr_mark != 0) {

next_mark = im_comp(Z, curr_mark);
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5 curr_mark = next_marks Xico) in " <current-st-" and "<next-st-" columns,reset-statas the
X(Goy = curr_mark + xicq); symbolic name of the start state.is a sequence gfum-inputs
! of {0,1,—}, outis a sequence afium-outputsof {0,1,—}.
} current-standnext-stare symbolic names for the current state
The variables in italics represent characteristic functions 8fd next state transitions of the FSM. Format of this type
coresponding sets of configurations. All logical variables a&escribes automaton as an automaton of Mealy type.
represented by BDDs. Several subsequent global states aré) The Algorithm:The algorithm of transformation consists
simultaneously calculated using the characteristic function igf establishing a map between statechart FSM and FSM-
current global states and transition functions. This computatig@scription. The FSM set of inputX{ is equivalent to the sets
is realized by thém_compfunction, which calculates image ofOf inputs in statechart model, the FSM set of outpif$ (s
function for given subset of the domain. The set of subsequeftuivalent the sets of outputs in statechart model. The elements
global states is calculated from the following equations: ~ Of the set of states' in FSM are coded as a global state
in statechart (see definition 3). The parameteusn-inputs
num-outputsfrom KISS format is a cardinality of the sets,
next_mark = Js3z(curr_mark respectively,X andY. In case of transitions, from SFSM side
-, we have automaton of Moore type and from FSM-description
H[Si ©  (eurr_mark *dsi(s,2))]) (15 \e have model of Mealy automaton, where transitions are

i=1 ) . .
B , explicitly enumerated. Hence, the transformation involves two
next_mark = next_mark(s’ «— s) (16 major steps:

where s, s,z denote the present state, next state and inpud) transformation Moore automaton into Mealy automaton,

signals respectivelys); and3, represent the existential quan- p) generation, transition by transition, KISS 4-tuple.
tification of the present state and signal variablesis a The transformation Moore automaton into Mealy automaton
number of state variables) and x represent logic operators. y

. ) . -is very simple [22]. If we omit the answer of Moore’s
XNOR and AND, respectively; equation 16 means swapplﬁ : : .
variables in expression. a%tomaton on empty inpuat this means in fact that we exclude

For example a characteristic function of the set of all globgpswer of automaton at the first state, the two automata differ

states for the diagram from figure 1 is presented by equati%ﬂly n thelr_ output lfuncnons. Len be Moore automat.on
13. output function and\’ be Mealy automaton output function.

Then we have:

F. The Transformation Ny (,8) = Aar (6o (0, 8)) (17)

The construction of a FSM state transition table of the
function §,; can be carried out in many ways. Authors’ and we must remember to add one extra state (the initial
proposal is not an optimal approach, but is relatively simple fiate) to the set of state of Mealy automaton and one extra
coding on the one hand and not so computationally complégnsition from this extra state to the so far first state. Hence,
on the other hand, that testing benchmarks has been condu$fi€dparametenum-statesn KISS format is cardinality of set
quickly and successfully. Construction of FSM state transition plus 1. The transition is unconditional (empty inpyf and
table consists in checking for every pair of statechart glob#le output is an output from first state of Moore automaton.
states whether exists transition between them (see listing 2)As far as transition functiod,, is concerned, in format
and if exists, in calculating an event or a set of events impos&tSS, the function is given in tabular form; one 4-tuple for
on this transition. Result of the transformation, state transiti@me transition. The problem is how to generate the elements
table with outputs, is in KISS format [19]. of the 4-tuple.

1) FSM Textual Form:FSM-description is a textual form  The algorithm depicted in listing 2 starts with characteristic
of Finite State Machine, also known as KISS format [19Function of global states spacgc,, and with characteristic
which in tabular way defines FSM according to the followindunction x;,, of functional vectors,,. The transition, regard-
grammar: ing input signals, is represented by productwhich is a
relation between current{;) and next G;.) state, represented
as conjunction formulae (line no. 4). For every pair of states:
current state and next stat€';, G;) is being checked whether
there is a transition between them (line no. 5). In line no. 6
states variabless(s’) are removed from transition produtt
hencet, represents this part of the expression which solely
depends on input variables Then current and next states
are put into 4-tuple (lines 7 and 8). Between lines 11 and

wherenume-inputds the number of inputs to the FSMum- 17 is being computed input vector. For each mintermn
outputsis the number of outputs of the FSMum-termsis expression is being checked how this minterm depends on
the number of "<n> <current-st- <next-st- <out>" 4- input variables. This is realized by means of logic differential,
tuples,num-statess the number of distinct states that appeawhich can formally be computed according to the following

<num i nput s>

<num out put s>

<numterns>

<nunm st at es>

<reset-state>

n> <current-st> <next-st> <out>

- T O —

<
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isting 2. Transiti . orithm VII. ROM-BASED SYNTHESIS
Transitions_Generation(Z, xigy) :Xsn) 1

. for each global stateG: xw (G1)=1; { .The pre§ented implementation sche.me (developed under
for each global stateG) yia, (G}) =1; { HiCoS project) allows the transformation of statechart di-
4 t = Xop (5,2,8) * Gy % G ; agrams into FSM-description. Using this scheme we can
if t=0 then continue; implement FSMs in field programmable gate array devices.
6 te =33t Although most of the methods gathered and discussed in
\ ﬁg;{fgfitdﬁl s); [23] can be effectively used for synthesis of FSM implemented
for each minterm m, in t, { with gates and flip-flops, they are not efficient for today’s
10 for each input z; € X { programmable structures, particularly for FPGA devices with
if % #0 then { // deps onu, embedded memory blocks [23]. Such implementations would
12 if mi*xz; #0 then in[j] =1 benefit from a structure with a separate memory block which
else in[j] = O; is common in microprogrammable circuits. However, an ad-
" } | S vanced apparatus for design of address modifier is required
" else in[j] = = to support the synthesis based directly on the FSM transition
} table.
18 for each output y; €Y { A limited size of embedded memory blocks available in

if Gj(s" < s)*Au; #0 then out[i] =1 FPGA devices is the main argument behind the application

20 else out[i] = 0; of this structure. For example, Altera FLEX family devices
» } } have 2048-bit EAB memory blocks. In [24] it is demonstrated

} that the ROM-based implementation of an example sequential
2} circuit — thetbk benchmark — requires 16,384 bits of memory;
this considerably exceeds the resources available in the FLEX
10K device. An alternative implementation of this circuit with
LUTs requires 895 logic cells (a result from the Altera Quartus
formula: Il ver. 8.1 system); this also exceeds the resources available in
o ¢ wf (19 the FLEX 10K device, as it has only 576 cells. Thus, thie
O; e implementation with this device must rely on the new FSM

wheref,,, fz, are respectively, positive and negative algebraiemh'tecwre' . .

cofactor and symbob represents XOR operator. In lines 12, Cléarly, a considerably larger number and size of embed-
13 and 15 is determined how signgi affects the transition. In d6d memory blocks in the newer programmable Stratix and
lines from 18 to 21 output vector is being computed. AlthoughY¢On€ devices do not eliminate this problem, as there will

this is not presented in the algorithm, it is enough to exectfVays be FSMs whose implementation requires more memory
these 4 lines one time per next state than is available in the state-of-the-art programmable devices.

In case when efficient memory utilization is essential, the
FSM can be implemented in a structure that includes an
G. The Example of the Transformation address register and ROM memory, in which the reduction

of ROM memory size is obtained by the introduction of an

Fig. 1 presents statechart diagram which is, on one hangiional block for address modification (Fig. 8).
complex enough to show nearly every syntax feature and, on

the other hand, simple enough to give and discuss its state

In
diagram (fig. 7). The diagram, although very similar to FSM %u;s R
state transition graph, exhibits statecharts perspective. States v
are coded as a statechart global states, according to HiCoS fu ADDRESS
implemental scheme. Depicted events are both input, output MODIFI)ER
and internal, but input and output events are bolded. Names {r-v
. - - REGISTER |
in labels at the transitions, put before colon, are transitions ¢W wemtp
names (ex.t;), which correspond to the transitions from
the diagram in figure 1. Below is a FSM-description, where ROM
abstract names of states (€%, G1) were preserved and one
extra state (start) was added. —
1 0GL &0 outputs
.01 1a G3 0 Fig. 8. FSM implementation with the addition of an address modifier
.p 8 1@ ¢A1
.s 8 18 A1
.r start - 4 &1 The address modifier can be synthesized with advanced
- start €0 - & &GO algorithms of functional decomposition, applied until recently

- @& GL O exclusively to synthesis of combinational circuits. Such an
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inputs TABLE |
*m p{— FSM TRANSITION TABLE AND T MAPPING
| REGISTER | y ;

| address z1,22 | 00 01 11 10 zi,22 | 00 01 11 10
S vy vy V3 V4 S vy vy  v3  v4
ROM s1 s1 S4 - 52 s1 1 2 - 3
S92 - S4 S5 - S2 - 4 5 -
S3 83 83 S1 82 83 6 7 8 9
1 — sa | s2 s1 sa - sa |10 11 12 -
OUtpUtS S5 s3 S2 S4 S1 S5 13 14 15 16

Fig. 9. FSM implementation using ROM memory

Let partitions in IT correspond to the state variables and
. . _ rtitions in © correspond to the input variables. ITf =
approach to address_ modifier synthesis was proposed in [Zgﬁhm’%} is the set of two-block partitions or§ and
[24] (and extended in [14], [15]). O = {61,...,0,} is the set of two-block partitions of,

The implementation of an FSM shown in Fig. 8 can bﬁ/hile Py is a partition on the sef’ which is related to either

seen as a serial decomposition of the memory block included j 0, thenp — {P., ..., Pni,) is the set of all partitions

in the structure of Fig. 9 into two blocks: an address mOdifi?élated to partitiong 0, 0}
and a memory block of smaller capacity than required for theé 1 .0 " 10 achieve u’n;r;wbi;;uofjsmencoding of address

rgaliz_ation Of. Fhe structure of_Fig. 9. As a res_ult, Sequenti%riables and, at the same time, maintain the consistency
circuits requiring large-capacity ROM memories (and th lation T with the transition function, two-block partitions

not implementable in the architecture of Fig. 9) can — (P P,} have to be found, such that:
implemented using a memory block with a smaller numbér A ' '
of inputs and an additional combinational logic block — the P -Py-...-P, < P.. (19)

address modifier. N
Assuming FSM implementation with FPGA device, the Although some of the partitions for thg set can be selected

advantage of the proposed architecture lies in that the addr§" thep set, the selection is made in such a way that the
modifier can mapped into a network of LUT cells or into glmplest. adgressm_g unit (address modifier) is produced. Such
PAL matrix, while the memory block can be mapped into th@ Selection is possible thanks to the method of [15], based on
built-in EAB matrices. The application of this concept (withouf€ notion of r-admissibility, [26]. _ _
the optimization of the state encoding) to the synthesis of the' "€ encoding of state variables can be obtained using the
earlier discussed benchmaiik: results in a design composednethod of construction and coloring of weighted graphs, [15].
of 333 logic cells and a 4096-bit embedded memory block, Assume that partitions {y,...,m} and {6y, ..., 0u}
which fits entirely in the limited resources of the FLEXWVEre chosen. These partitions correspond to the address lines
structure. driven by a single variable, either a state variabl®r an

The promising results of other design experiments reportgyiernal variabler. The result is the state and input symbol
in [24] confirm the effectiveness of the architecture of Fig. artial encoding; e.g.,
The results of the subsequent studies in this area are presented
in [14] and [15].

1) Example.: Partition description and partition algebra Corollary. Inequality (19) can be written as:
introduced in [26] are applied to describe logic dependencies

a1 =q1,.-,0; =q,a141 =01,...,ay = 0y_.

|n SUCh an FSM. P11PL2PLu iu«#ll"'.PL‘w <P(/7 (20)
Based on [26], for the FSM and functiGhshown in Table where p, = P, - P, - ... P, is related to the partitions
I, the characteristic partition is: {m1, 72, ..., m, 01,00, .. .’gu_l}f
P, = {1,8,11,16;3,9,10,14;6,7, 13, 2, 4, 12, 15; 5 }. The encod_ing pf the sFate va_riables remaining after_the
N partial encoding (input variables, in general) can be obtained
The partition from the following rules:
Pl = {17253745576577859;10711512713)14715716} T -Tg- ... T -TT = ’/T(O)7 91 '92 teen 'eu,l -0 = 9(0),
is related to the partitionr = {s1,55,53;54,55}, While the \here v and 6 represent partitions corresponding to these
partition remaining state variables.(0) as well asf(0) are partitions
P, = {1,2,4,6,7;10,11, 13,14 3,5,%,9; 12, 15, 16} whose blocks are equal to their elements.

Inequality (20) can be transformed into:
is related to the sefr, 0}, andd = {v1, v2;73, U4 }.
For set T = {1,2,3,4,5,6} and partitions P, = Py - Pg < Pe. (21)
{1,2,5;3,4,6}, P, = {1,2;3,6;4;5}, the quotient partition
is:

Corollary. A partition P; has to be constructed, such that:

Pi|Py = {(1,2)(5); (3,6)(4)}- P > Py, (22)
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wherePg = P, -...-P;, and Py is related to the partition  Table Il presents the results of FSM synthesis according
set{r,0}. to the algorithm described in section 5. BloGkcorresponds
Partition Py, can be constructed in the following way: to block ADDRESS MODIFIERrom figure 8, and blockH
corresponds to block calleldOM The number of bits of the
Py = Ps - Py,, (23) memory blocks #bit) is calculated according to formula:

wherePs is the partition related ta(0) on the set of statesS,
and Py, is the partition related té.

The triple(Py, E1, P1) —whereP; is a relation representing
incompatibilities in quotient partitionPy|P. on the setT
and F; is the set of pairs in the relatiof; — is a multi-
graphM;(Py, E1, P1). Relation of incompatibility in quotient S —
partition Py | P, is a relation among all elements in each block RESULT OF DECOMPOSITION AS AESM
of the partition separately.

#bit = 27" . #out, (27)

where#in is the number of address bits a#idutis the length
of the memory word.

. . . block G block H
The coloring of theM; multi-graph determines thé name #in #out #cube #bit #in #out #cube #bit
partition. demol 43 7 48 3 4 7 32
deno2 3 2 5 16 2 6 4 24
The value of Garage 9 2 38 1024 6 10 27 640
TVrm 10 4 36 409 8 11 45 2816
p = |U| + [logy(x(M1))] (24) Reactor 16 5 433 327680 11 27 534 55296

ReaWw 13 2 57 16384 9 19 87 9728

determines the size of the required memory, whe(é/;)
denotes the chromatic number of th& multi-graph.

The size of the required memory is equal Table IV compares results of the synthesis from before
_on ROM-based synthesisbéforg and after synthesisafter).
M =2%-(r+p). (25) Implementationbefore ROM-based synthesis is realized ac-

In the case of: > w, a new partitionP;, can be constructed. cording to idea from figure 9 and the number of memory bits
Then, Py has to be multiplied by appropriately chosen twol#bit) is calculated as follows:
block partitions related to those which are generated by input 4
variables from thé/ set. In that case the resultis a non-disjoint #bit = 2#mHesFID . (doyt + [log, (#tr)]),  (28)
decomposition, [15].

Then, the size of the required memory is equal where #in and #out are, respectively, number of inputs and
outputs to the controller an#tr is the number of transitions
M =2 (r+p). (26) in FSM. Number of bits#bits) after synthesis is a simple sum
of memory bits of blockss andH from table Ill. The gain in
VIIl. EXPERIMENT RESULTS memory bits is calculated according to the following formula:
As it was stated FSM-based statecharts are transformed . H#bitpe fore — #bitafier
into FSM KISS format. The number of resulting FSM ele- gawmn = Hbitye fore -100%. (29)

ments (i.e. states and transitions) grows exponentially. Table

Il presents syntax properties of the controllers both statechafttained gain reaches more than 90%, especially in complex
and FSMs. The controller calleReaWWis described in examples(!). The gain is so huge that decrease in memory bits
detail in section 4. The statechart diagram of this controlles better to express bglecreasing ratio

covers nearly all main syntax feature of statechart formalism.
Equivalent FSM consists of 33 transitions and 263 states. Two
first controllers, respectivelgemolanddemo2 correspond to
diagrams from figures 1 and 4.

#bitbefore

- . 30
#bltafte'r ( )

decreasing ratio =

The more complicated controller, the decrease in memory bits

TABLE I is bigger and is even tenfold or more!
SYNTAX PROPERTIES OFCONTROLLERS

statecharts FSMs TABLE IV

name #st #tr #seq #aut #hier #in #out #st  #tr COMPARISION: ENCODEDFSM BEFOREDECOMPOSITION ANDAFTER

aut_whist depth before  after gain dec

gszzl 38 26 14 00 13 11 41 58 69 name #in #out #q #cube #bit #bit % ratio

TVrm 8 8 4 1 3 8 s 12 55 den2 1 4 3 6 112 40 6429 28
Reactor 20 19 8 3 3 10 15 137 986 Garage 6 3 4 49 7168 1664 76.79 4.3
Reactor 10 15 8 986 6029312 382976 93.65 15.7
where abbreviations aret — sttes,tr — transitions,seq aut— sequential ReaWWw 10 9 6 263 983040 26112 97.34 37.6

automataaut whist— automata with historyhier depth— hierarhy depthin
— inputs,out — outputs
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IX. CONCLUSION [11]

transformation presented above lies in the decomposition of
the combinational section of the FSM into two modulei:ls]
an address modifier and a ROM memory. In general, it is

possible to view the address modifier and the memory as sepa-
rate combinational blocks and implement them independent|
applying different strategies for decomposition of these two

components. In particular, an alternating application of serial
and parallel decomposition has been shown to be an effec ¥§
strategy to design a structure with both logic cells and EMBS.

Presented synthesis method seems to be very attractive

yet another implementation scheme in modern programmaBi@
structures equipped with EMBs. Obtained results shows that
the method is especially efficient in case of complex con-

trollers.
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