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Abstract—A novel method for calculation of the entropy
measure in wavelet space is proposed. This perceived-based
entropy measure uses a Second Order Model entropy estimator,
in which the occurrence of neighbors is considered in formulation.
It has the intention to allow the implementation of a more suitable
measure in coding processes and a relationship between the
metric and the description of perceptual features. This method is
used for the Rate-Distortion optimization in order to improve the
bit-allocation coding algorithm, demonstrating that the wavelet-
based entropy estimates a truncation step close to the target
rate. The hypothesis is founded in the effect of distortion on
the coefficient allocation. Because entropy measure is a close
approximation of the conditional probability of image in multi-
resolution space, it provides an adequate representation for the
information of a Detail feature. A definition of Detail–based
homogeneity variance criteria is used for the information quantity
– wavelet representation space, in order to find the image that fits
a given Quality Level criteria. Experimental results are obtained
for artificial and natural databases.

Keywords—Entropy, Wavelet transform, Information measure,
Rate distortion.

I. INTRODUCTION

FOR the design of a coding system, an efficient balance
between the estimation time and the quality of estimation

of signal is a challenge, and it can be addressed by the
estimation of rate values for an arbitrary quality level, in
order to define which portion of signal can be transmitted for
some rate restriction. Moreover, to support feature extraction
techniques or another processes into the coding scheme, an
adequate representation of signal in the coding process should
lead to the suitable number of components that construct the
portion of signal, and also it could minimize the distortion
required for the rate restriction. The Rate-Distortion curve
is a scheme that calculates the distortion produced by the
coding process at the target rate. With this scheme, the
amount of data required to transmit a portion of a image
for some distortion criteria is calculated by optimization. A
common optimization method uses the convex hull analysis of
the Lagrangian approximation [1]. However, the optimization
search is possible only after the coding process, and it does not
take into account the features of the signal, i.e., when a feature
of a signal is required, the extraction process requires another
transformation different of the coding one. Some advantages
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are presented in cases where the distortion is minimized by
feature estimation. Because the representation space covers
the coding process for reduction of computing time and the
representation of features for minimization of distortion, a
better coding system for the feature can be stated, if the
representation used in the coding process can be integrated.
In this work, a Wavelet–based information entropy measure is
proposed, in order to estimate a convenient optimized value
of the Rate–Distortion curve, reducing the Lagrangian search,
and to define the informativity of features with adequate
representations for components in the multi–resolution space.

This work is intended to explain the advantages and chal-
lenges of the Wavelet space as an adequate representation in
the case of entropy measure for Rate-Distortion curve opti-
mization. In Section II-A we define the approximations and the
occurrence calculation criteria proposed for the estimator, and
the methodology for the calculation of the optimal argument
for the coding scheme in Section III-C. In Section IV the
results are discussed and some applications that use the method
are detailed, by using some perceptual rules on Wavelet space.
Conclusion is in Section V.

II. BACKGROUND

The Shannon entropy, noted H1 (XXX), estimates for a given
image matrix XXX with elements x(mmm), mmm ∈ R2 the occurrence
probability Px = P{x(mmm) = x}, by using a first order model as
follows:

H1 (XXX) =
maxx

∑
x=1

Px log2 (Px) (1)

where the occurrences that are considered statistically inde-
pendent can be calculated based on histogram, as discussed in
[2]. To get a more suitable description of the image features,
in cases of edge and texture processing, an analysis of the
nearest neighbor y ∈ XXX (see Fig. 1(a)) must be considered,
specially because the feature extraction techniques are based
either on the conditional probability of elements or on the joint
probability [3]. By instance, the estimation of the conditional
informativity can be carried out using a conditional or second
order model entropy:

H2 (XXX) =H1 (YYY |XXX) =
maxx

∑
x=1

Px
maxy

∑
y=1

P(y|x) log2P(y|x), (2)

being P(y|x) = P{x(mmm) = y|x(mmm±1) = x} the probability of
occurrences, and calculated as discussed in [3].
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Fig. 1. Calculation of occurrence elements. In the calculation ofH1 (TTTDCTXXX) for a JPEG coded image, the DCT term denotes a Discrete Cosine Transform
operator

A. Estimation of Entropy using Variation Coefficient

Because of simplicity of implementation, the first order
model–based entropy usually is carried out [2]. Besides,
estimation of eqs. (1) and (2) needs an adequate procedure
of occurrence position searching, which often is provided
heuristically [3]. Computational cost depends on alphabet size.
Thus, for a givenb–bit alphabet that represents an image
matrix of sizeM×N, the number of possible elements needed
to calculate the conditional or second–order entropy yields

Λy|x =
(Λx ·ρy)!

(ρy · (Λx−1))!
, Λx = 2b (3)

where ρy is the number of elements surrounding the pixel
x whether the second order model is assumed. When the
image is large, a table of huge size is required for counting
occurrences (e.g.,H2 (XXX) requiresΛy, and Λy|x). Therefore
the computing time dramatically increases. So, since the
occurrence calculation for a given image is computationally
expensive, sayb = 30, thenΛ = 230 [4], then, the translation
of those measures to a multi–resolution space might be really
considered to reduce the number of operations. Thus, approx-
imations by using spectral representations are proposed in this
paper, which are depicted in Fig. 1(b). Specifically, a first
approximation is achieved for the entropy measure by using
Quadtree decomposition (QD) based on variation coefficient
criteria.

The variation coefficient values of same blocks of sizeBBB and
BBB′, denoted asCv and C′

v, respectively, can be generated by
QD as shown in Fig. 2. The advantage of using those dyadic
squares relies on the fact that the number of occurrences
must be reduced, because only the occurrences that fit the
homogeneity conditioncv > 1 are considered. It locates the
neighbor nearby the element, reducing the number of neighbor
occurrences by 2 for each pixel. Moreover, because the size
of BBB is higher than one (size of pixel element), the number
of occurrences per image also decreases, e.g., instead of
computing four times the single pixel element occurrence, the
4 pixel element calculation is once accomplished. Thus, for
those cases when it holds thatCv = ν andC′

v = ν′ respective

values ofHh, are estimated as follows:

H1(BBB) =
1

∑
ν=0

Pν log2Pν

H2(BBB) =
1

∑
ν=0

Pν′
1

∑
ν′=0

P(ν|ν′) log2P(ν|ν′)

B. Estimation of Entropy using Wavelet Coefficients

Further refinement of Entropy estimation is reached if the
probability measuring is stated by calculation of occurrences
in the spectral representation rather that in the original spatial
plane [5]. Namely, the metric termed asWavelet Transform–
based Entropy(WTE) Hh

(
TTTψXXX

)
, whereTTTψ is the wavelet

operator, is proposed. Thus, the neighbor of the pixel is located
in the same spatial position, but being at the same time in
a nearby spectral position. This change in the calculation
allows to define the number of occurrencesΛ linearly (by
j decomposition levels) instead of combinatorially (see eq.
(3)). Algorithm 1 describes the computation of WTE, where
the following Hh expression for first, second and third order
models, respectively, are rewritten as:

H1
(
TTTψXXX

)
= ∑TTTx

PTTTx log2PTTTx (4a)

H2
(
TTTψXXX

)
= ∑TTTxPTTTy∑TTTyP(TTTx|TTTy) log2P(TTTx|TTTy) (4b)

H3
(
TTTψXXX

)
= ∑TTTx

PTTTx∑TTTy
P(TTTy|TTTx)

×∑TTTz
P(TTTz|TTTy,TTTx) log2P(TTTz|TTTy,TTTx) (4c)

wherePTTTx is the occurrence probability of the Wavelet coeffi-
cient ccc( j) = TTTx, ccc( j −1) = PTTTy the probability of occurrence
of the neighborTTTy, for some decomposition scalej, and TTTz
is the event afterTTTy.

III. E XPERIMENTAL SET–UP

A. Validation Databases

Concrete results of estimation for proposed Wavelet-based
Entropy measure are achieved for the following three consid-
ered image databases:

– Art - Artificially drawn images composed by 5 images
shown in Fig. 4.

– Nat - Photography images, extracted from [6], com-
posed by 29 photograph images. Because the images
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Fig. 2. Calculation of occurrence elements by Quadtree Decomposition
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Fig. 3. Calculation of occurrence elements in Wavelet space

Algorithm 1 CalculateWTE{X} = Hh
(
TTTψXXX

)

Require: ccc = TTTψXXX approximation coefficientsa(kkk) ∈ ccc
Ensure: ∃c′j ,o(kkk) as descendant ofc j ,o(kkk), so thatc′j ,o(kkk) =

c j−1,o(kkk).
Normalize coefficientsccc = ccc ·2−J

The approximation coefficientsa(kkk) = cJ(kkk) have descen-
dantsc′j ,o(kkk), for j = 1. . .J ando = 1,2,3.
for all ccc do

Calculate the counts of occurrencesc j ,o(kkk) = TTTx for h =
1,2,3, c j+1,o(kkk) = TTTy for h= 2,3 andc j+2,o(kkk) = TTTz for
h= 3, by quantized beans ofx1/maxcccy, as shown in Fig.
3. ⌊.⌋ denotes floor operation.

end for

are RGB, they have been converted to gray–scale. Those
images contain default quality index valuesQ0 defined as
Differential Mean Observed Scores(DMOS) [7]. Some
examples are shown in Fig. 5.

– ROI-Mammogram- Mammogram image, shown in fig-
ure 6(a), with inclusion of the Region-of-Interest (ROI)
enhancing process, as explained in [8].

It must be quoted that the all image sets have 8–bit
resolution, in order to homogenize the quantization space for
the three databases. Besides, each studied image is encoded
in truncated segmentsti , where the target quality restriction
Q0 can be found in some of the calculated intervalsQ(ti).
Specifically, a target quality ofQ0 = 85 for the ROI enhancing,

based on a previous analysis of radiological images, is used
for the ROI-Mammogramdatabase. For the Rate–Distortion
optimization process, the used IQ metric is proposed in [9]
for the calculation of theti .

Testing and validation of discussed methodology, proposed
for Wavelet-based entropy measure oriented to Rate-Distortion
curve optimization, comprises the following two stages: i)
Comparison of entropy calculated for each orderh, and ii)
Rate–Distortion curve optimization.

B. Comparison of estimated entropy

Before accomplishing the optimization process, the entropy
is calculated by using Equations (4a), (4b) and (4c) by using
theArt andNat data bases, in order to show their performance
between natural and artificial images. Moreover, the Shannon
Entropy from Equations (1) and (2) is measured to establish
how long the proposed measure changes. Considered compar-
ison is carried out according to the Algorithm 2.

C. Rate–distortion curve optimization

Recent data coding techniques use Quality–Layer–supported
structures that allows streams to be sent progressively with
a high–indexed layer feature. For this structure, theLayer–
Resolution–Codeblock–Precint(LRCP) coding scheme is used
[1]. This scheme provides the sequence of estimated rates for
a numberI of Quality layersQi , i = 1, . . . , I . The target rate
Ri is calculated from the discrete number of truncation steps
ti required for displaying a given section of imageXXXm×n.
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(a) V-bars (b) Center square (c) Chessboard (d) H-bars (e) Small squares

Fig. 4. Test images. SetArt

(a) Bikes (b) House (c) Plane (d) Womanhat

Fig. 5. Some test images from setNat

(a) Mammogram sample with arbitrary
ROI

(b) ROI detail, source image (c) ROI detail at truncation step
τ(1)

(d) ROI detail at truncation step
τ(2)

Fig. 6. Test of ROI extraction method. Type of image: 8-bit gray-scale Mammogram. Size of image: 1024x1024. Coordinates of ROI selected polygon:
m(rows,cols) = {(210,507),(225,670),(438,743),(655,706),(728,471),(587,367),(427,387),(210,507)} . The image belongs to the mini-MIAS database of
mammograms. Data selected: mdb209.pgm. See [10] for details.

Algorithm 2 Comparison ofHh

Require: TTTψXXX
for all Images inArt andNat databasesdo

for h = 1,2,3 do
CalculateHh

(
TTTψXXX

)
, by using Algorithm 1. The haar

wavelet family is used.
CalculateH1 (XXX) andHSLB(XXX).

end for
end for

Then, for a fixedti , there is a sequence of truncated streams{
TTTψx

}
(ti) ⊆

{
TTTψXXX

}
, each with lengthLti , that is sent at

rate Ri . Under preassumption of a noiseless condition, the
stream is transmitted inL(ti)/Ri time. Each block

{
TTTψx

}
(ti) is

transmitted in a given order depending on the feature required
to be displayed firstly, i.e., energy–relevant feature data should
be sent at the beginning to display the estimated portion of
the image. Thus, if the overall length is limited byLmax,

the rate allocation problem consists in the searching of the
largest truncation point,τ ∈ ti , such that the total length of the
streams matches the inequality,∑i L(τ) ≤ Lmax, and thus the
set minimizes the distortion value [11]:

D = ∑i D(ti) (5)

where D(ti) = d
(

XXX, X̃XX
)

, and X̃XX = TTT−1
ψ∗

⋃
i

{
TTTψx

}
(ti), is the

estimated image. Thus, assuming that the corresponding rate-
distortion slopes∆D(ti)/∆Hh

(
TTTψXXX

)
are strictly decreasing,τ

is the argument to find the suitableλ that fits the following
optimization function [1], [12], [13].

min
{(

−∑b
E {D(XXX,tλ

i )}
)

+ λ
(
∑b

L(XXX,tλ
i )
)}

(6)

where D(XXX,tλ
i ) is the distortion metric associated to the

imageXXX, at truncation levelti for the stream{TTTx}(ti), E {·}
stands for the expectation operator, andL(XXX,tλ

i ) is the length
of stream

{
TTTψx

}
ti
. The hypothesis states that the entropy

Hh
(
TTTψXXX

)
is located close to the length valueL(τ) that
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corresponds toτ so that the following expression might be
minimized:

D(τ) = d
({

TTTψx
}

(τ),TTTψXXX
)

d

(
τ−1

∑
ti=1

{
TTTψx

}
(ti),TTTψXXX

)

The calculation ofτ(h), discussed in [14], is described in
Algorithm 3. The rate steps are calculated by using the LRCP
JPEG2000 coding scheme. TheKakadu V6.0 software is used
for this step. Each stream

{
TTTψx

}
(ti) that is associated with

an estimator of valueL(ti), as well as a relatedQuality level,
Q(ti), is compared with Wavelet–transformed versionTTTψXXX,
by using an objective metric. The distortion of the decoded
imageTTT−1

ψ∗ ∑τ(h)
t1=1

{
TTTψx

}
at stepτ(h) is measured by the Mean

Square Error (MSE).

Algorithm 3 Calculateτ(h) for RD Curve
Require: ccc = TTTψXXX

for all h = 1,2,3 do
repeat

CalculateL̃(τ′) = Hh
(
TTTψXXX

)

By using the LRCP scheme estimated by (6),α is the
step calculated by the scheme for eachR(ti) by ti =
1, . . . , I intervals.
Calculate the candidate set

{
R̃(ti)

}
:

{
L̃(ti)

}
=
{

L̃(τ′)−α, L̃(τ′), L̃(τ′)+ α
}

Calculate the set{D(ti)} where, for someti

D(ti) = d
({

TTTψx
}

(ti),TTTψXXX
)

Calculate the set{∆(ti)} where, for someti

∆(ti) =
D(ti)−D(ti −1)

Lh(ti)−Lh(t1−1)

if ∆(ti) < 0 then
∆0 = min∆(ti)
ti = ti+1

end if
until ∆0 < ε
τ(h) = τ′

end for
CalculateD for τ(h)

IV. RESULTS AND DISCUSSION

A. Comparison of estimated entropy

Even though expression (1) assumes that the occurrences
are statistically independent, still considerable variations of
distortion lead to a relevant modification of image density
probability, validating the need for the calculation of (2),
and showing that Wavelet–based information quantity is a
good approximation for the conditional probability parameter.
Results of this comparison, depicted in Tables I and II, show
that information quantity measured at Wavelet representation
space can be used to estimate the adequate truncationτ.

Moreover, estimation ofH2
(
TTTψXXX

)
is sensible to transitions

between neighbor occurrences, and it could indicate where a

Fig. 7. Rate Distortion curve for the images in databaseArt, with the τ(h)
values. Circles: Distortion calculated atτ(1). Crosses: Distortion calculated
at τ(2). Squares: distortion calculated atτ(3).

detail set for a featurekc accomplishes the variance criteria,
because this measure can be separated by orientation, i.e.,
for a given index{ j,k,o}, the event

{
ccc : c j ,k,o ∈ TTTx

}
can

be statistically independent of
{

ccc : c j ,k,o±1 ∈ TTTy
}

. Thus, the
definition ofdetail set, as function of a directional component
of ccckc, is useful for feature analysis. As result of this work, one
can state that the features are not necessary to be represented
in a space different from the used for the coding scheme, and
thus the metric used for the Wavelet space gives information
about the effect of directions, regarded as a feature of relevant
information for detail set. Finally, for the test databasesArt
andNat, the following inequalities take place

1) Hh
(
TTTψXXX

)
< H1 (XXX)

2) Hh
(
TTTψXXX

)
< Hh−1

(
TTTψXXX

)

3) Hh
(
TTTψXXX

)∣∣
j < Hh

(
TTTψXXX

)∣∣
j+1

After comparison of outcomes of Tables I and II, it can be
seen that only in case ofH1

(
TTTψXXX

)
the variation of entropy

regarding to j should be accepted as remarkable. Therefore,
testing is afterward provided for the fixed valuej = 4.

B. Rate–Distortion optimization

Fig. 6(c) and 6(d) show a detail of the ROI boundary when
the image is coding by usingHh

(
TTTψXXX

)
as target rate. In

comparison to 6(b), when the coding of the image by using
the τ estimated fromH2

(
TTTψXXX

)
, there is an improvement in

the preservation of the ROI. Besides, since the result in 6(d)
turns to be similar to 6(c), the analysis based on the third order
model estimator is assumed not to be further required. Fig. 7
and 8 evidences thatτ(h) decreases ash grows in the Rate–
Distortion curve and the localization ofτ(h) is very close to the
Hh
(
TTTψXXX

)
value. This result also points out that the entropy

takes advantage of the redundancy during its calculation.
Because images can be represented by spatial–spectra

spaces, a image feature, e.g., contours, edges and objects, can
be classified in some component in order to give a description
of the image features. Another representations to be considered
are fractal statistical auto–similar transformation. It has shown
that can generate close representations of images, especially in
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TABLE I
ESTIMATED VALUES OF Hh FOR A CONSIDERED SET OFArt DATABASE

H1 (XXX) H1
(
TTTψXXX

)
H2
(
TTTψXXX

)
H3
(
TTTψXXX

)

j = 3 j = 4 j = 5 j = 3 j = 4 j = 5 j = 3 j = 4 j = 5
V-bars 1.0 1.36 1.16 0.98 0.43 0.48 0.48 0.15 0.15 0.14
Centered squares 0.81 0.17 0.14 0.11 0.14 0.14 0.12 0.05 0.05 0.04
Chessboard 1.0 1.67 1.41 1.01 0.81 0.79 0.69 0.33 0.33 0.32
H-bars 1.0 1.36 1.16 0.98 0.41 0.46 0.45 0.32 0.32 0.32
Small squares 0.54 1.2021 1.01 0.82 0.78 0.71 0.65 0.38 0.34 0.34

TABLE II
Hh FOR SETNat

H1 (XXX) H1
(
TTTψXXX

)
H2
(
TTTψXXX

)
H3
(
TTTψXXX

)

j = 3 j = 4 j = 5 j = 3 j = 4 j = 5 j = 3 j = 4 j = 5
Bikes 7.35 2.77 2.15 1.69 0.77 0.91 0.98 0.15 0.22 0.32
House 7.18 2.04 1.53 0.96 0.93 0.99 0.87 0.33 0.39 0.48
Plane 6.33 1.78 0.94 0.51 1.02 0.82 0.54 0.36 0.39 0.28
Womanhat 7.11 1.79 1.34 0.68 0.96 0.97 0.66 0.39 0.44 0.35
Mean value 7.33 2.32 1.61 1.14 0.88 0.91 0.84 0.27 0.36 0.38
Std. dev. value 0.34 0.49 0.48 0.40 0.11 0.09 0.15 0.09 0.07 0.07

Fig. 8. Rate Distortion curve for the imageROI-Mammogram, with theτ(h)
values. Circle: Distortion calculated atτ(1) as detailed in Figure 6(c). Cross:
Distortion calculated atτ(2) as detailed in Figure 6(d). Square: distortion
calculated atτ(3).

order to find tumor growing and organ textures [15]. In another
case, Artificial Neural Networks are used to define relevant
coefficients used for a selected data base, e.g., lungs in Thorax
radiography, breast contour in mammogram [16]. Techniques
used to topological dissimilarities, based on a standard-defined
structure, are also developed.

V. CONCLUSIONS

An entropy measure based in Wavelet transform is proposed
to provide a shorter search in the Rate-Distortion optimization
for image coding. This measure has the property that makes
clear the neighbor occurrences, giving information of the
relevance of the features that use the redundancy properties of
signal. Because the features are described by multi–resolution
indexes, some features can be defined by strict information

of components, e.g., entropy of edges can be calculated by
using Wavelet detail coefficients from orientation indexes. For
instance, this measure is restricted for coding schemes based
on Wavelet Transform. However, because the entropy measure
involves reduction of spaces, another representations like PCA
or Fractal can be considered for specific applications that need
a measure of informativity as property of the representation.

Obtained experimental results show that the order of the
entropy h measures the level of spectral dependency of the
coefficients. Thus, in order to find a higher dependency order,
a scheme forh> 3 can be implemented. However, ash grows,
a higher number of decomposition levels is required, growing
its complexity. Finally, the Rate-Distortion optimization initial
step can be found by the calculation ofHh

(
TTTψXXX

)
.

As future work, the estimation of the gradient by
information–based entropy remains an open issue. This mea-
sure could be used by directional Wavelet families, like
Wedgeletsor Contourlets[17], in order to state a directional
information for the information stored in Wavelet coefficients,
and to find the approximation of the functionalg ∈ Wk,2

in Sobolev spaces. Another work contemplates the use of a
statistical information metric to estimate the most–correlated
region that can be accessed, by using the Slepian–Wolf Coding
[18], and the use of representation set for finding the closest
filter that suits for the image region and its neighbors, by using
perceptual metrics and information criteria.
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