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Abstract—An autofocus algorithm employing orthogonal series
expansions is proposed. Several instances of the generic algo-
rithm, based on discrete trigonometric, polynomial and wavelet
series, are reviewed. The algorithms are easy to implement in
the transform coders used in digital cameras. Formal analysis
of the algorithm properties is illustrated in experiments. Some
practical issues are also discussed.
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I. INTRODUCTION

THE advent of CCD/CMOS sensors shifted the digi-

tal imaging-related researches from a niche of mainly

’academic-oriented problems’ to the mainstream topics and

resulted in various applications in both applied and physical

sciences and in consumer electronic devices. A plethora of

the ’off-the-shelf’ theoretical results developed in various

disciplines like signal and image processing, image analysis,

harmonic analysis and information theory, probability theory
andmathematical statistics, or eventually in control theory,

have found, in consequence, their applications in many real

devices. We refer the reader to the special issue of IEEE Signal
Processing Magazine, [1], for the selection of introductory

articles encompassing the variety of digital imaging.

In the paper we consider the problem of autofocusing in a

generic digital camera. The proper, fast and reliable focusing

algorithm is a conditio sine qua non of a ’good image’ not

only from aesthetic vantage point, but also in automated shape
from focus applications, where the three dimensional scene is

recovered from the sequences of images, and where the precise

information about the depth of scene is of the paramount

importance, see e.g. [2], [3].

The problem of autofocusing attracted many authors and

various approaches were proposed. An important class of AF

algorithms (to which belongs the algorithm proposed in the

paper) are those in which the focus functions are evaluated

exclusively from the data acquired by the image sensor (that

is, the optical/electric path used to capture an image is also

exploited to assess the focus function).

Intuitively, the image (or its fragment, referred further to as

the region of interest) is ’in-focus’ if it is ’sharp’, viz. it is the

most detailed one amongst all other images. This observation

led to various heuristic contrast-detection algorithms; cf. [4],
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[5], and the following functions – amongst others – were

proposed as the sharpness index:

• the sum (or maximum) of absolute values (or squares) of

differences of adjacent pixels,

• the amplitude of pixel brightness (viz. the span of a

histogram brightness), or

• the image (or histogram) entropy.

The other (but equivalent) observation that ’the sharper

image, the larger amplitudes of higher frequencies in the image

Fourier transform’ was used and formally examined in [6], [7].

Also in [7], the use of the image variance as the focus function

was mentioned. Eventually, an application of the continuous

wavelet transform was proposed in [8].

Fig. 1. The block diagram of the considered AF system

The algorithm proposed in the paper exploits the equiva-

lencies between the image variance and the image orthogonal

series expansion and is based on the observation that the focus

function can quickly be evaluated using the orthogonal series

transform and thus can readily be available in all digital camera

devices equipped with the embedded transform coders like the

JPEG, [9], JPEG 2000, [10], or JPEG XR, [11].

II. PROBLEM STATEMENT AND THE AF ALGORITHM

The formal background of the approach is thoroughly

motivated in the ongoing paper, [12], where the theoretical

foundations and properties of the algorithm are examined.

Here we shortly recollect the algorithm assumptions, cf. [6],

[4], [7], [5], [8] and see Fig. 1:

1) The scene is a two dimensional homogenous second-
order stationary process (thus an ergodic (in the wide
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sense) random field) with unknown distribution and
correlation functions; cf. [13].

2) The lens assembly is modeled with the help of the first-
order optics laws, cf. [14], that is, the lens acts as a
simple centered moving average filter with the order
proportional to the distance of the sensor plane from
the image plane and to the size of the lens aperture.

3) A square (i.e. two dimensional) image sensor is mod-
eled either by:

a) the block sampler, or
b) by the impulse sampler preceded by a low pass

(AA – anti-aliasing) filter.
Both sensor models in Assumption 3 are inspired by the

devices widely used in digital photography. The block sampler
approximates the Foveon-type sensors, in which a single pixel
consists of three pairs of stacked color filters and correspond-
ing sensors, see e.g. [15]. The impulse sampler, combined
with the low-pass filter, corresponds to the widespread Bayer’s
Color Filter Array combined with the optical AA-filter, where
the single image pixel is reconstructed from the sensor pixels
via the special interpolation procedure called demosaicing;
cf. [16], [17], [18]. In both cases the lens-produced image
is assumed to be orthogonally projected onto the respective
function subspace. The block sampler projects the image onto
the space of piecewise constant functions, while the impulse
sampler preceded by the low-pass filter projects the image onto
the space of band-limited functions.

Remark 1: The continuous image is projected onto the re-
spective space and gets the approximate discrete representation
in a given basis. Clearly, due to natural physical limitations,
the sensor captures only a finite (square in our case) part of
the scene.

The natural bases on squares are constructed as the tensor
products of the one dimensional bases on the intervals, and
in case of the block sampler they are piecewise-constant
Haar and Walsh-Hadamard bases. In case of the band-limited
functions, the basis constituted by the sinc functions is usually
replaced by the Fourier basis, sine, or cosine bases. Note
however that, regardless of the sensor type (and the resulting
basis), we can treat this representation as the matrix of pixels
values and decompose the matrix using any discrete series
orthogonal on two-dimensional interval.

A. Algorithm

The crucial for the algorithm is the observation that the
image variance can serve as the focus function and that
this variance can be approximated by orthogonal expansion
coefficients evaluated from the image acquired by the sensor;
see Lemma 1. The variance is the largest when the image is
’in-focus’ and the AF algorithm is just an algorithm searching
for the maximum of such function. Various (bi-)orthogonal
expansions can be used; cf. [19], [20], [21], [22], [23], [24],
[25], [26]:
• trigonometric, based on Fourier, cosine, sine, Hartley,

Walsh-Hadamard series,
• wavelet, e.g., orthogonal Haar, Daubechies, biorthogonal

LeGall (5/3) and Cohen-Daubechies-Vial (9/7) series, or

• polynomial, e.g., Chebyshev, Legendre – or in general
– any Jacobi family of discrete orthogonal polynomials
series.

These expansions can be fast computed by the existing
transform coders (implementing transform coding compres-
sion schemes; see e.g. [9], [27], [28], [29], [30], [31], [32],
[10], [33], [34]). The following discrete orthogonal series
transforms used in the available transform coders are thus
considered and compared in the paper:
• Cosine transform (performed in JPEG coder),
• Haar wavelet transform (employed in JPEG 2K (Part

II) coder, and
• Walsh-Hadamard transform (used in JPEG XR stan-

dard).
The JPEG engine is applied in its standardized transfor-

mation of the 8x8 image subblocks, and moreover, used to
implement a hierarchical (progressive) DCT (H-DCT) trans-
form, where the DC components of the 8x8 subblocks are
combined in the 8x8 macroblocks and treated as inputs in the
another 8x8 DCT transform step. The JPEG 2K transform is
performed at various levels – from the maximum level in the
’full transform’, to the single-level one (note that the latter
essentially amounts to the classic contrast-detect algorithm).
The Walsh-Hadamard used in JPEG XR standard is mimicked
by the Haar transform performed at 16x16 subblocks (being
4x4 macroblocks built upon 4x4 subblocks).

B. Algorithm properties
The following lemma describes the formal justification of

the proposed algorithm.
Lemma 1: Under Assumptions 1-3, the variance of the

sensor image is unimodal function with respect to the order
of the lens filter model and attains its maximum value for the
in-focus image.

Proof: Using the first-order optics laws, one can easily
ascertain that the image in the image plane (i.e. the image
before sampling by sensor) is the output of the linear simple
centered moving average filter (viz. the lens) driven by the
scene image. Then, the image, described by the convolution of
the scene image with the filter impulse response, is sampled by
the sensor. The order R of the moving average filter (counted
in pixels of the image sensor) can be determined from the
illustration in Fig. 2.

Assume that the lens aperture is circular. Then the image
of the point light source at the scene is the uniformly filled
circle of the radius proportional to the lens aperture diameter
D and the distance |s− v| between the image plane and the
sensor plane; cf. e.g. [5]:

R ∼ D · |s− v| (1)

Clearly, the image is ’in-focus’ when s = v. Let now

N (R) = 1 + 4
R∑
r=0

⌊√
R2 − r2

⌋
(2)

be a number of square pixels with centers inside the boundary
of a circle of radius R. Let also

n (R) = N (R)−N (R− 1)
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Fig. 2. Geometric construction of the image based on first-order optics laws.
The lens is governed by the well-known relation 1/u+1/v = 1/f , where f
is the lens focal length, u, v, s are, respectively, the distances of the scene, of
the in-focus image, and of the image sensor from the lens. D is the aperture
diameter

be a number of pixels placed on the circumference of this
radius.

By virtue of Assumptions 1-3 (i.e. due to stationarity of
the scene and time-invariance of the lens and sensor) we can
consider a single pixel of the whole image Y (x, y) , x =
1, . . . , IX , and y = 1, . . . , IY . For simplicity, we will denote
this pixel as Y00 = Y (0, 0) and the whole image as Y . For the
radius R, the sensor pixel, Y00, is a (weighted by N (R)) sum
of N (R) image pixels Xrϕ grouped in R+ 1 circumferences
of radii r = 0, . . . , R (each circumference consists of n (r)
points)

Y00 =
1

N (R)

R∑
r=0

n(r)∑
ϕ=n(0)

Xrϕ

The variance of the single pixel is thus (assuming for simplic-
ity that the input process is centered, i.e. that Exiϕ = 0):

varY00 = 1
N2(R) var

 R∑
r=0

n(r)∑
ϕ=n(0)

Xrϕ


= 1

N2(R)

R∑
i=0

n(i)∑
ϕ=n(0)

R∑
j=0

n(j)∑
ϕ=n(0)

E (xiϕxjψ)

= 1
N2(R)

R∑
i=0

R∑
j=0

n(i)∑
ϕ=n(0)

n(j)∑
ϕ=n(0)

ρ (i, j, ϕ, ψ) (3)

The pivotal for the algorithm is the observation that the
variance of the whole image is (in spite of the correlation
structure) a simple sum of variances of each pixels. This allows
us to consider the (simpler) problem of unimodality of the
variance of the single pixel image.

Remark 2: The fact that the variance of the image is simply
a sum of variances of all pixels can easily be shown using
the orthogonal representation of the image. Let {ϕmn (x, y)} ,
m, n = 0, 1, . . . be the two-dimensional discrete orthogonal
basis on the square and let βmn = 〈Y, ϕmn〉 be the coefficients

in this expansion. Then, clearly

Y (x, y) = β00ϕ00 (x, y) +
IX∑
m=1

IY∑
n=1

βmnϕmn (x, y) . (4)

By definition, the image squared energy is the sum of squares
of the orthogonal expansion coefficients, that is

Y 2 (x, y) =

[
β00ϕ00 (x, y) +

IX∑
m=1

IY∑
n=1

βmnϕmn (x, y)

]2

and, by orthonormality of the basis functions, i.e. by the fact
that 〈ϕmn, ϕm′n′〉 = δ (m−m′) ·δ (n− n′), it is equal to the
sum of squares of the expansion coefficients

Y 2 (x, y) = β2
00 +

IX∑
m=1

IY∑
n=1

β2
mn (5)

If in the basis {ϕmn (x, y)}, the first function, ϕ00 (x, y) , is
the constant one (which holds in Fourier, Legendre, Haar and
Walsh-Hadamard bases), then the term β2

00 can be interpreted
as the squared mean value of the image. Hence, the remaining
double sum is just the variance of the sensor image (and the
approximation of the scene image convolved with the lens).

Combining together (3)-(5), one can ascertain that for any
second-order homogeneous stationary process, that is, the
process with the autocovariance function depending only on
a distance between pixels:

ρ (i, j, ϕ, ψ) = ‖Xi,ϕ −Xj,ψ‖lp , 1 ≤ p ≤ ∞,

and vanishing with a growth of the distance, i.e.,

ρ (i, j, ϕ, ψ)→ 0 as ‖Xi,ϕ −Xj,ψ‖lp →∞,

the variance varY00 (and a fortiori the variance of the image)
is unimodal and has a maximum at R = 0.

Remark 3: Noting that (i, ϕ) are coordinates of xi,ϕ in a
polar system with the pole in (0, 0) , the Euclidian distance
between two points in the Argand complex plane can be
computed as ‖xp,q − xr,s‖2where

p = i cosκ (i, ϕ) and q = i sinκ (i, ϕ)
r = j cosκ (j, ψ) and s = j sinκ (j, ψ) .

where κ (i, ϕ) = 2πϕ/n (i) , is the angle (in radians). Hence

‖xp,q − xr,s‖2 =
√

(p− r)2 + (q − s)2.

Example 1: In the simplest case of the white noise input
process we have

ρ (i, j, ϕ, ψ) = %× δ (i− j) δ (ϕ− ψ)

and hence

var y00 = 1
N2(R)

R∑
i=0

n(i)∑
ϕ=n(0)︸ ︷︷ ︸

N(R) pixels

% = %
N(R) .

Example 2: In case of a flat wall (which however is not a
second order stationary process since ρ does not vanish) we
have in turn that ρ (i, j, ϕ, ψ) ≡ % and thus

varY00 = const =⇒ varY = const

AUTOFOCUSING WITH THE HELP OF ORTHOGONAL SERIES TRANSFORMS 35



and the algorithm does not converge. Note however that in
such case the image is always in focus!

Remark 4: The image captured by the sensor is only a
fragment of the scene, and (which is – in fact – well known in
statistic literature) in case when the scene is a highly correlated
process, the estimate of the variance can be very inaccurate
and, in particular, does not resemble its unimodal origin.

C. AF criteria

In order to systematically describe the properties of the
proposed focus function, we discuss the in the context of the
focus function criteria presented in [4]:

1) Unimodality. This condition is fulfilled – as shown
formally in the paper. The sufficient condition of uni-
modality requires only the autocorrelation function of
the scene process to vanish with the distance. In prac-
tice, the unimodality can be lost in low-light situations
because of the then-manifesting random character of the
light due to the shot, thermal and quantization noises
(resulting in the poor signal-to-noise ratio, cf. Fig. 5).

2) Accuracy. It depends on the resolution of the sensor.
Since the same sensor is used in autofocusing and in
capturing the image of interest, the accuracy is clearly
the best attainable. In other words, since the captured
image is the best approximation of the image yielded
by the lens, then the focus function is the largest when
the lens-produced image has the largest variance.

3) Reproducibility. A sharp top of the extremum is – in
theory – the consequence of the fact that the relation
between image variance and the order of the lens filter
is reciprocal; see (3). In practice, the sharpness of the top
can be attenuated by the influence of other (non-target)
objects situated on the scene image.

4) Range. The variance of the image does not vanish for
any finite R ∼ |s− v| and this theoretically guarantees
convergence from any initial position of the lens. In
practice, however, the range is limited by the size of
the sensor: if, e.g., R is larger than the diameter of the
lens aperture, then clearly, the unimodality is lost. This
issue can be – to some extent – attenuated by reducing
the lens aperture diameter; see the experimental results
in Fig. 6; cf. also the results of the analysis performed
in Fourier domain in [6].

Fig. 3. Exemplary scene. Left – in focus, right – at minimum focus distance

5) General applicability. The generic class of processes is
admitted. For instance, it covers all stable ARMA mod-
els, Markov fields, and Cohen’s PSM models; cf. [35].
The texture-rich images can be modeled, for example, by
the uniformly distributed white noise process while the
separated pointwise light sources process corresponds to
the binomial or Poisson process. The first-order optics
law seems to be sufficient to describe camera lenses –
mainly because these lenses are carefully designed to
be free of higher-order distortions; cf. [14]. Finally, both
sensor models are close approximations of the two most
popular sensor types.

6) Insensitivity to other parameters. Clearly, the variance
is independent of the mean intensity of the image, and,
for instance, any change of the mean brightness of the
image (caused e.g. by the varying backlight) does not
affect the focus index function. Note, however, that the
scene objects situated in various distances from the lens
can also affect unimodality of the focus function.

7) Video signal compatibility. The focus function is eval-
uated directly from the captured image. There is thus
no disparity between the image and the data used for
focusing. Such a disparity can rather occur when the
focusing system is the autonomous one and exploits a
separate optical/electric elements (like in e.g. single-lens
reflex (SLR) cameras).

8) Fast implementation. The algorithms based on or-
thogonal expansions are usually fast – be it e.g. the
fast Fourier transform and its real versions (i.e. DCT,
or DST, amongst others), or the fast Walsh or fast
wavelet transform. Furthermore, transform coders offer
hardware implementations which are both speed and
power consumption-optimized; cf. [10], [36], [37], [38],
[39].

D. Experimental results

Several experiments have been performed to illustrate the
accuracy and natural limitations of the proposed algorithm. In
experiments, an assembly of the Canon EOS digital camera
and two lenses with the focal lengths 85mm and 100mm were
used. The camera was controlled by the application built upon
the Canon EDSDK library. In the experiments, the algorithm
was tested for:
• various lens aperture diameters,
• orthogonal series, and various
• AF region sizes.
The focus function was estimated as follows; cf. (4) and (5):

Q̄β = log2

[∑
m

∑
n

β̄
2
mn − β̄

2
00

]
where

{
β̄mn

}
are the empirical (acquired by the image sensor)

image expansion coefficients calculated for a given discrete
orthogonal basis (the log2 function was used only to limit the
dynamic range of the focus function estimate. This is a one-
to-one map and hence does not affect unimodality).

With an exception of the experiment presented in Fig. 4b,
the AF region was always a 256x256 square. Note that CD
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refers to the one-level Haar wavelet transform, XR to the four-
level, and MR-CD to the maximum-level one.

Fig. 4. Focus index for various: (a) aperture diameters (JPEG2K), (b)
transform coders, (c) AF region sizes (JPEG2K vs JPEG XR)

The results confirm our formal findings; cf. the diagrams
of the focus functions presented in Fig. 4. Below we shortly
analyze selected factors affecting in practice the unimodality
of the proposed focus function. To this end we consider the
following two issues (cf. the previous section):

• the noise, and
• the boundary effect.

Presence of the noise is responsible for appearance of the
small and random fluctuations in the focus function. The
formal analysis of the noise sources is difficult since one needs
to consider the combined impact of various noise types like
e.g.: photon shot, dark current, reset, thermal, quantization,
and pattern noises; cf. [40]. For instance, the shot noise is not
the i.i.d. but depends on pixel values, i.e. its mean value (and
variance) are both conditioned by the sensor pixel value.

Solution 1: The simplest countermeasure to this problem
– based on the assumption that all the noise signals satisfy
typical conditions of the strong law of numbers (i.e. they have,
for a given pixel, the finite means and variances) – is an
averaging routine in which the image, for a given position
of the lens, is captured multiple times. This is the standard
averaging technique and one can clearly expect that, with
the growing number of repetitions, such routine cancels the
random fluctuations more and more effectively (at the obvious

cost of a larger computation overhead); see the results in Fig.
5.

Fig. 5. Focus function evaluated from four- and from one-time sampled
image

The boundary problem is responsible for the presence of
nonrandom ’large blobs’ on the focus function diagram, and
is much more difficult to overcome (cf. the Remark 4 and the
diagrams in Fig. 4c). Consider – as an illustrative example
– a single pointwise source of light whose image is situated
outside the image sensor. When the image is in-focus, then
R = 0, and the captured image (or the focused region) is
simply black (that is, it has zero energy and, a fortiori, zero
variance). Otherwise, the image of the point becomes the circle
of some radius R, cf. (1) and (2), and there exists some R′

such that, for all R ≥ R′, the circle intersects with the image
sensor (its region) yielding a non-zero energy of the captured
image and, in consequence, a non-zero variance and the focus
function fails to have a maximum when the image is in focus
(it can even have the local minimum there – see the Fig. 6!).

Solution 2: Recall that the radius R is proportional to the
diameter D of the lens aperture. Thus, reducing the aperture
we reduce the maximum radius and, in consequence, attenuate
the influence of the ’boundary leakage’ on the focus function
values.1 Note however, that the smaller aperture, the smaller
signal-to-noise ratio.

Fig. 6. Illustrations of the boundary effect manifesting in a form of ’light
leakage’ from the light sources outside the sensor. The non-unimodal focus
function occurs here for f/2.8 aperture diameter. For the smaller aperture,
f/16, the unimodality is recovered, however, at the price of the much larger
noise

1The aperture diameter reduction is the technique already adopted in some
newest digital SLR cameras like Canon EOS 500D.
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E. Conclusions and final remarks
An application of the orthogonal series transforms, available

in various transform coders, has been proposed and formally
motivated for usage in AF algorithm. Efficiency of the ap-
proach in real-life tests has been confirmed. It remains, how-
ever, tempting (and easier to apply in practice) to exploit the
whole transform coder rather than only its part performing the
orthogonal transform, i.e. to employ the entropy of the image
rather then its variance in the focus function machinery. This
would allow, amongst others, using the length of the produced
compressed stream as the focus function and employing the
whole transform coder as the focus function calculator. The
following observation may be helpful in derivation of the
formal basis of this proposition.

Conjecture 2: Assume a discrete zero-mean random vari-
able X; its entropy and variance are, respectively, given by
the following well-known formulae:

H (X) = −
n∑
i=1

pi · log2 pi and var (X) =
n∑
i=1

pix
2
i .

where {pi = Pr (X = xi)}ni=1. Assume that pi’s are arranged
in non-increasing order, i.e., pi ≤ pj for i > j. Then, for any
distribution of X such that x2

i ≥ −c log2 pi, some c > 0, the
variance grows along with the growing entropy, which is, in
turn, estimated by the size of the output stream produced by
the transform coder.

Example 3: In a special case of the uniformly distributed
X we simply have

H (X) = −
n∑
i=1

1
n
· log2

1
n

= log2 n

and
var (X) =

1
6

(2n+ 1) (n+ 1)

that is, the variance of X grows with n. That the entropy
grows is merely its natural property.

Fig. 7. The JPG filesize as the focus funtion against various aperture
diameters, D = f/2.8, . . . , f/29, f = 100. All maxima (viz. the largest
sizes of JPG files) correspond to the in-focus images

To illustrate the conjecture we used the standard (lossy)
JPEG coder and to measure the size of the coded (output)
stream we simply used the size of the .jpg file. The results
are presented in Fig. 7 and support the conjecture. We would
like to emphasize that this algorithm can directly be used in
almost all off-the-shelf cameras (viz. without any modification
of the existing hardware and with only slight tweaking of the
camera firmware).
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