
Abstract— The growing need for computationally demanding
systems triggers the development of various network-oriented
computing systems organized in a distributed manner. In this
work we concentrate on one kind of such systems, i.e. public-
resource computing systems. The considered system works on the
top of an overlay network and uses personal computers and other
relatively simple electronic equipment instead of supercomputers.
We assume that two kinds of network flows are used to distribute
the data in the public-resource computing systems: unicast and
peer-to-peer. We formulate an optimization model of the system.
After that we propose random algorithms that optimize jointly
the allocation of computational tasks and the distribution of the
output data. To evaluate the algorithms we run numerical
experiments and present results showing the comparison of the
random approach against optimal solutions provided by the
CPLEX solver.

Keywords — Computing Systems, Overlay, P2P, Unicast,
Optimization

I. INTRODUCTION

N recent years we can observe the advent of new
architectures that provides powerful capabilities for creating

advanced information technology services. Both academia and
industry need effective computing systems to address various
research problems e.g. data analysis, protein folding,
experimental data acquisition, financial modeling, earthquake
simulation, and climate/weather modeling, astrophysics and
many others [14], [19]. Two architectures of computing
systems are widely used to meet the growing need for
computational power: public-resource computing systems and
Grids. Public-resource computing systems also known as
global computing or peer-to-peer computing are focused on
the application of personal computers and other relatively
simple electronic equipment instead of supercomputers and
clusters [1], [12]. As an example of the public-resource
computing project we can enumerate SETI@home started in
the 1999 [1]. SETI@home has been developed using BOINC
(Berkeley Open Infrastructure for Network Computing)
software [1]. Even though both public-resource computing and
Grid computing has the same goal of better utilizing various
computing resources, there are differences between them. Grid
computing uses more formal organization – elements of the

This work was supported by The Polish Ministry of Science and Higher
Education under the grant which is being realized in years 2008-2011.

Grzegorz Chmaj is with Chair of Systems and Computer Networks,
Wroclaw University of Technology (e-mail: grzegorz@chmaj.net).

Krzysztof Walkowiak is with Chair of Systems and Computer Networks,
Wroclaw University of Technology
(e-mail: krzysztof.walkowiak@pwr.wroc.pl).

grid (supercomputers, clusters, research labs, companies) are
centrally managed, permanently available online, connected by
high bandwidth network links. In contrast, participants of
public-resource computing projects are individuals with PCs
running Windows, Macintosh or Linux operating systems
connected to the Internet by DSL access links.

Since most of current computing systems including Grids
and public-resource computing systems are mostly
implemented in a distributed manner, the network has an
important role [14]. Most of previous research on scheduling
and resource management of Grid systems do not consider
comprehensively the network aspects – usually the simplest
unicast transmission is applied and very few constraints on the
network layer are considered [14]. Consequently, in this paper
we focus mainly on the problem of data distribution in network
computing systems with a special focus on public-resource
computing. Since many distributed systems based on the Peer-
to-Peer (P2P) approach use some kinds of randomness [6],
[18], the main goal and contribution of the paper is the
evaluation of random algorithms in comparison against
optimal results and other heuristics.

The remainder of the paper is organized in the following
way. In Section II we formulate and motivate the optimization
model of a public-resource computing system. Section III
includes description of random algorithms. In Section IV we
show results of experiments. Section V contains the related
work. Finally, the last section concludes this paper.

II. MODELS OF OVERLAY PUBLIC-RESOURCE COMPUTING
SYSTEMS

In this chapter we will formulate optimization models of
overlay public-resource computing systems. The model
assumptions are based mostly on the most popular public-
resource computing system, i.e. the BOINC system [1] and
recommendations of earlier authors included in [6-8], [10-14]
[16-18] [19-24]. In our research we focus on the problem of
data distribution, therefore we do not deal in detail with a
number of issues related to network computing systems such
as: management, security, diverse resources. Nevertheless, due
to the layered architecture of both: computer networks (e.g.
ISO/OSI, TCP/IP, overlays) and computing systems (e.g.
Globus Toolkit) the proposed models can be used in many
scenarios independent of protocols and technologies related to
computer networks and computing systems.

Nodes (vertices) of the public-resource computing system
(e.g. PCs or other computers) representing peers are denoted
using index v = 1,2,…,V. Each vertex v is connected to the
overlay network using an access link with limited download
rate (dv) and upload rate (uv). In addition, each vertex v has a

Random Approach to Optimization of Overlay
Public-Resource Computing Systems

Grzegorz Chmaj, Krzysztof Walkowiak

I

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2010, VOL. 56, NO. 1, PP. 55-62
Manuscript received December 13, 2009; revised March, 2010.

10.2478/v10177-010-0007-2

limited processing power pv (e.g. CPUs, FLOPS) that denotes
how many uniform jobs can be calculated on v in a particular
time.

We assume that the computational project to be processed
(calculated) in the public-resource computing system is
divided into uniform tasks (jobs) having the same processing
power requirement (e.g. CPUs, FLOPS). Each task is
represented in the overlay system as a block, which is the data
that is generated due to the processing of the particular task.
Since jobs are uniform, every block is of the same size and is
denoted using index b = 1,2,…,B. Note, that for the sake of
simplicity, in the remainder of the paper we use the term block
in two senses: computational job and data block.

In this paper we concentrate on two kinds of flows: unicast
and P2P. There are numerous papers on network optimization
that use unicast flows. Modeling of flows in Peer-to-Peer
systems is much more difficult that in the case of unicast
flows. One of the most challenging problems encountered in
modeling of P2P is the time scale. As in [8], [10], [13], [20-
22], [24] we propose to divide the time scale of the system into
time slots of the same length, that can be interpreted also as
subsequent iterations of the systems. We use index t = 1,2,…,T
to denote subsequent time slots. In each iteration t, vertices
may transfer blocks between them. After each iteration the
information on blocks’ availability is updated. Using the P2P
approach, each block b may be uploaded in iteration t only
from nodes, which posses that block at the start of iteration t.

Each block (task) must be assigned to exactly one vertex for
processing. We use the decision binary variable xbv to denote
the assignment (scheduling) of block b to vertex v for
processing. The second decision variable – ybwvt – is associated
with blocks’ transfer and equals 1 if block b is transferred from
node w to node v in iteration t; 0 otherwise. Note that both
variables are coupled – scheduling of blocks influences the
transfer process. The computational project is collaborative –
each peer of the public-resource computing system
(represented by the vertex) wants to receive the whole output
of processing. For the sake of fairness of the system, we
assume that each vertex participating in the system must be
assigned with at least one block (job) for processing.

To enable rational comparison of unicast against P2P, in the
unicast model we must use concepts and assumptions
developed in the context of the P2P approach. Therefore, the
same kind of modeling of the time scale is applied in the
unicast model. The main difference in unicast model –
comparing against P2P – is that the block b can be
downloaded only from the node that computed that block, i.e.
node v for which xbv = 1. Fig. 1 and 2 show the unicast model
and the P2P model, respectively.

We assume that input data of each computational task is
delivered prior to initiation of the computing system.
Consequently, we do not model transmitting of the input data
for processing. So, the time scale of the system starts when all
source blocks are calculated on nodes. This assumption
follows from the fact that usually source data is offloaded from
one network node. If we assume that the size of input and
output data is the same, then to transmit input blocks we need
at most B (number of all blocks) transfers in the overlay
network, because each block must be delivered to exactly one

vertex. To transmit the output data to all participants we need
B(V – 1) transfers, where V is the number of all vertices. From
this simple example we can see that if input and output data is
of comparable size, much more network traffic is issued in the
output data delivery. Moreover, the cost of the input data
delivery is included in the cost of processing block b on node
v. However, models presented below can be easily modified to
incorporate also source data delivery. For the sake of
simplicity, we assume that the download and upload rates of
vertices are expressed in blocks per time slot – but can simply
change the model to use b/s.

The cost function denoting the cost of the whole system
includes two elements: processing cost of block b in vertex v
denoted as cv and the cost of transfer from source vertex w to

Fig. 1. Unicast flows for the output data distribution in public-resource

computing systems.

Fig. 2. P2P flows for the output data distribution in public-resource

computing systems.

G. CHMAJ, K. WALKOWIAK56

destination vertex v denoted as kwv. The processing cost
denotes all aspects of IT infrastructure (energy, maintenance,
hardware amortization etc.). Various issues of grid economics
can be found in [14]. The second part of the objective function
is associated with the transmission cost kwv between vertices w
and v. Constant kwv can be interpreted in several ways, e.g.
economical, network delay, number of hops, RTT. For a good
survey on participating costs in a P2P network refer to [5].

First, we present the problem using unicast flows. We use
the notation as in [15].

indices

b = 1,2,…,B blocks (jobs) to be processed (computed)

and transferred

t = 1,2,…,T time slots (iterations)

v,w = 1,2,…,V vertices (peers, overlay network nodes)

constants

cv cost of block processing in node v

kwv cost of block transfer from node w to node v

pv maximum processing rate of node v

dv maximum download rate of node v

uv maximum upload rate of node v

M large number

variables

xbv = 1 if block with index b is processed in node v; 0

otherwise (binary)

ybwvt = 1 if block b is transferred to node v from w in

iteration t; 0 otherwise (binary)

objective

minimize F = bv xbv cv + bvwt ybwvt kwv (1)

subject to

b xbv  1 v = 1,2,…,V (2)

v xbv = 1 b = 1,2,…,V (3)

b xbv  pv v = 1,2,…,V (4)

xbv + wt ybwvt = 1 b = 1,2,…,B v = 1,2,…,V (5)

bv ybwvt  uw w = 1,2,…,V t = 1,2,…,T (6)

bw ybwvt  dv v = 1,2,…,V t = 1,2,…,T (7)

v t ybwvt  M xbw b = 1,2,…,B w = 1,2,…,V (8)

The objective is the cost of the computing system including

both: processing cost and transmission const. Constraint (2)

guarantees that each vertex must process at least one block. (3)

assures that each block is assigned to only one vertex.

Constraint (4) is the limit on processing power. To meet the

requirement that each vertex (peer) must receive all blocks we

introduce condition (5). Notice that block b can be assigned to

node v for processing (xbv = 1) or block b is transferred to node

v in one of iterations (ybwvt = 1). (6) and (7) are upload and

download capacity constraints, respectively. Since we consider

only unicast flows, the blocks can be downloaded only from

the nodes that calculated these blocks, i.e. xbv = 1. Therefore,

we use condition (8) to denote the constraint.
In the case of P2P flows, the model is the same as (1)-(8)

except condition (8) which is substituted by the following
constraint

v ybwvt  M(xbw + i < ts ybswi) b = 1,2,…,B

w = 1,2,…,V t = 1,2,…,T (9)

Note that (9) is specific for P2P systems and guarantees that

block b can be sent from peer w to peer v only if w keeps block
b in time slot t.

Both unicast and P2P models are Integer Programming
problems with binary variables. To solve them in optimal way
we can use exact methods like branch-and-bound or branch-
and-cut algorithms. However, these methods can provide
results only for relatively small systems (in terms of the
number of nodes, blocks and iterations). Thus, to obtain results
for larger systems we must use some heuristics.

III. RANDOM ALGORITHMS

In this section we will present random algorithms for the
models presented above. The motivation to use random
strategies in optimization of public resource computing
systems comes from the fact that many distributed systems
based on the P2P approach applies random strategies in some
extent. The most famous example is the BitTorrent system [6].

First we describe the algorithm used for the case of unicast
flows. The proposed algorithm – called Unicast Random
Algorithm (URA) – uses randomness in the process of
allocation of blocks to nodes. The random allocation is
performed by UR1 sub-algorithm, which works as follows. At
the beginning the UR1 sub-algorithm allocates one block to
each node. Remaining blocks are allocated to random nodes
with regard of computation limit (pv) and other model
constraints. Random trials are limited to V

2
B

2
 attempts, also

attempt which does not result in allocation (e.g. randomized
node has already pv blocks allocated) counts to the V

2
B

2
 limit.

If V
2
B

2
 limit is reached, UR1 sub-algorithm quits, no matter if

allocation is completed. When allocation performed by UR1 is
completed, blocks are computed and distributed among all
nodes using the heuristic sub-algorithm called UH2, which is
described below. At the initial step, two lists are created: Lv
containing all nodes, and Lb containing all blocks. Let’s
introduce two variables: fv – indicator of element in Lv list, and
fb – indicator of element in Lb list. These two indicators may be
increased – then they point to the next element on the list, but
when last element of the list is reached – increasing of the
indicator causes it to be set to point to first element. UH2 starts
distribution in iteration t = 1 and sets lists indicators fv and fb to
point to the first element on each list. Then it performs the
following procedure for each subsequent node from Lv: if node
v pointed by fv is not able to do download (node v made more
downloads in iteration t than dv – 1), then increase fv; otherwise
select block to download. The block selection procedure is as
follows: if block b indicated by fb in Lb is not present on v, and
node w that computed block b is able to do upload (due to uw
limit) – then selection is successful. In that case UH2 sends
block b to node v. If mentioned conditions are not satisfied – fb
is increased by 1 to point to next block on the list, and
conditions are checked for new block. Blocks on the list are

RANDOM APPROACH TO OPTIMIZATION OF OVERLAY PUBLIC-RESOURCE COMPUTING SYSTEMS 57

checked until block to transfer is found, or until all blocks are
examined for the same node v. Then fv is set to point the next
node in list Lv and above procedures are repeated. Indicator fv
is increased until every node was examined by above
procedures and there was no transfer made during last V
checks. Then, if all nodes have complete set of blocks (5) UH2
exits, otherwise steps to next iteration: t = t + 1. If t > T UH2
exits, otherwise sets fv and fb to first positions and starts node
and block selection procedures again as described above.

As we have UR1 and UH2 defined, we can now simply
describe URA algorithm:

Algorithm URA

Step 1. Execute UR1 to assign source blocks to nodes.

Step 2. Perform blocks’ computation.

Step 3. Execute UH2 to distribute result blocks to nodes.

Next we will focus on the P2P case. Again the optimization

process is divided into two parts: allocation of blocks and
distribution of blocks. For the first part we use either random
allocation sub-algorithm UR1 (the same as in the case of
unicast flows) or an heuristic approach named PH1. The idea
of PH1 is as follows.

Blocks are assigned to nodes regarding constraints (2)-(7),
(9) according to a special metric defined for each node. First,
PH1 allocates av nodes to each node v, basing on the following
formula



 

otherwise

if

1

0TdBTdB
=a

vv
v (10)

The idea behind formula (10) is as follows. Recall that (7)

indicates that each node v during all T iterations can maximally
download dvT blocks. Constraint (5) denotes that each vertex v
must download all blocks that are not allocated to v for
processing. Thus, if dvT < B the number of blocks allocated to

v must be (B – dvT). Otherwise, if dvT  B node v is assigned
with one block, which follows from (3).

If ∑vav < B, (there are some blocks, which are not allocated
for processing), PH1 performs the second phase of allocation.
For each node, the metric is computed taking into account both
the cost of computation and the cost of distribution. A special
coefficient m is used to adjust the importance of blocks’
computation cost as part of total processing cost. Three values

of m are used: m1 = 1, 








V

B
=m2 , 









2

B
=m3 . The value of m

is set to particular value set m1, m2, m3 for which the total cost
(1) was the smallest. Blocks are allocated subsequently to the
most attractive nodes (regarding limits on processing rate (4))
unless all blocks are allocated. Then blocks are computed,
what produces result blocks ready for distribution.

The process of blocks’ distribution also can be done either
at random way (sub-algorithm UR2) or using an heuristic
procedure (sub-algorithm PH2). The sub-algorithm R2 is
based on randomizing all parameters of transfer that is to be
performed. There are maximum V

2
B

2
 random attempts allowed

in each iteration. One attempt consists of random selection of:

source node v, target node w (different than source node) and
block b. Then the following checks are made: if source node v
is able to send block (upload limit is not exceeded), target
node w is able to receive block (download limit is not
exceeded), source node v has block b available to send and
target node w does not have block b. If all checks are satisfied,
then transfer between nodes v and w is set (ybwvt = 1). If the
random attempt results in transfer that is acceptable in scope of
the above checks, but would not be correct regarding any of

model constraint, transfer is not set. After v uv transfers or
V

2
B

2
 random attempts performed in a iteration, PR2 proceeds

to the next iteration (if current iteration is not the last one) or
quits (if current iteration is the last one). The sub-algorithm
PR2 quits also when all nodes received all blocks.

The second sub-algorithm PH2 is defined in the following
way. Distribution of blocks is the process performed in T
iterations to saturate the network. Let q denote the maximum
number of allowed transfers in one iteration. In the beginning,
the PH2 sub-algorithm creates the list of network connections,
sorted by cost ascending. Each element of the list contains the
source node, the destination node, and the elementary cost of
transfer between them. In each iteration, the following steps
are made. For top-most positions of list (the cheapest cost),
PH2 checks if there are blocks available to send between
nodes assigned with this position, and if such transfer is
possible (regarding download and upload limits). If these
conditions are satisfied, this transfer is performed. PH2
analyses top-most elements of the list. If the transfer for a
particular list element is not possible, then next, more
expensive element from the list is considered. The iteration is
finished, either if number of transfers equals q or ∑vuv, or if
there is no element on the list, for which transfer would be
possible to make. The q limit is not used in last iteration t = T.
In this iteration, when all transfers originating from connection
list are performed, PH2 checks if the network is saturated. If it
is not, the sub-algorithm tries to transfer missing blocks.

Now we can define the three random algorithms proposed
for the P2P flows.

Algorithm PRA

Step 1. Execute UR1 to assign source blocks to nodes.

Step 2. Perform blocks’ computation.

Step 3. Execute PH2 to distribute result blocks to nodes.

Algorithm PRB

Step 1. Execute PH1 to assign source blocks to nodes.

Step 2. Perform blocks’ computation.

Step 3. Execute PR2 to distribute result blocks to nodes.

Algorithm PRC

Step 1. Execute UR1 to assign source blocks to nodes.

Step 2. Perform blocks’ computation.

Step 3. Execute PR2 to distribute result blocks to nodes.

IV. RESULTS

The presented random algorithms were implemented in C++
and extensive experiments were run to evaluate their
performance. The major goal was to compare results of

G. CHMAJ, K. WALKOWIAK58

random heuristics against optimal results obtained using
CPLEX 11.0 solver [9]. To measure the percentage difference
between two results, the following indicator is used

%100
ALG2

ALG1ALG2ALG1
ALG2 




F

FF
D (11)

where FALG1 indicates the value of criterion function returned
by algorithm ALG1.

Optimal comparison was made only for 116 small networks
whose parameters are shown in Table I, because for larger
problem size the CPLEX optimizer is not able to return
optimal solution in a reasonable time. Let us denote algorithms
that provide optimal results as UOA (for unicast) and POA
(for P2P). These algorithms are implemented in CPLEX
optimization package which internally uses branch and cut
method. Comparison between optimal results and random
results are presented as histogram on Fig. 3. For unicast flow
(denoted as UOA-URA), most of results ranged between 0-
20%, because this kind of flow does not allow much flexibility
in the scope of data allocation. Value of D indicator ranged
between 0-33% with the average value equal to 7,6%. In the
case of Peer-to-Peer flows, three random algorithms were
examined. For PRA algorithm (random allocation) most of D
values were in the range 10-30%, there were also several
results in the range 0-10%. This gives the conclusion, that
random allocation does not have very significant influence on
final cost both in unicast and P2P flows. For many networks,
the number of blocks could not be much bigger than the
number of nodes (because of problem size), what also causes
that there were not many blocks available for random
allocation. The percentage difference between POA and PRA
(denoted on the figure as POA-PRA) was in range 0-45%, the
average value was 14%. PRB algorithm (random transfers) had
the difference mostly ranged between 10-40%, there were also
several results with D indicator bigger than 40% and few
results in the range 0-10%. Values of the percentage difference
for PRA were in the range 1-60% with the average value 26%.

Results of PRC algorithm were similar to PRB, but in this case
we got most results with D difference >40%. Average value of
D indicator for PRC value was 30% within range 2-62%. We
conclude that random transfers have much more influence on
the final cost than random allocation.

The next step was to make the comparison between random
strategies and other heuristics introduced in [4]. In this case
much larger networks were considered – the experiments were
made for 20 networks having parameters shown in Table II.
Results are presented in Fig. 4. In all cases the algorithm UHA
outperformed the algorithm URA, the percentage (denoted as
UHA-URA) was in the range 7-12% and the average value
was 9%. In the case of P2P flows and PRA-PHA comparison,
there were no D values in 0-10% range, all values were in the
range 10-30%. The average value of the percentage difference
was 21% within the range 17-24%. Far more different results
appeared for PRB and PRC algorithms. For PRB algorithm all
D values were in the range precisely 72-78% with the average
value equal to 75%. In the case of PRC algorithm, the average
percentage difference was 78% within the range 74-79%. For
the two largest networks PRC algorithm was not able to return
proper result. Experimentation results for random algorithms
lead us to the following conclusions. Constructive heuristics
proposed in [4] outperforms random strategies. Overall,
differences for the random-optimal case were smaller than in
the case of random-heuristic differences, because to make the
problem feasible in most optimal cases the number of blocks
had to be close to number of nodes. Thus, there was smaller
share of random choices than for larger networks and heuristic
algorithms, where the problem included many blocks and
random algorithms made much more random choices. The
procedure of random transfers in P2P flows may cause that
random algorithm is not able to provide the correct solution.

V. RELATED WORK

The last section of [17] describes a new concept for content
delivery services by linking capabilities of grid computing and
peer-to-peer (P2P) computing. The system has the goal to

TABLE I

PARAMETERS VALUES OF NETWORKS USED TO OBTAIN OPTIMAL SOLUTIONS

parameter range of value

number of nodes 3-8

number of blocks 3-39

number of iterations 3-5

0

10

20

30

40

50

<0, 5)% <5, 10)% <10, 20)% <20, 30)% <30, 40>% >40%

percentage range between random and optimal result

n
u

m
b

e
r

o
f

re
s
u

lt
s
 i

n
 r

a
n

g
e

UOA-URA

POA-PRA

POA-PRB

POA-PRC

Fig. 3. Comparison between optimal and random results.

TABLE II

PARAMETERS VALUES OF NETWORKS USED TO OBTAIN HEURISTIC SOLUTIONS

parameter range of value

number of nodes 100-200

number of blocks 200-314

number of iterations 15

0

4

8

12

16

20

<0, 10)% <10, 20)% <20, 30)% (70, 80)%

percentage range between random and optimal result

n
u

m
b

e
r

o
f

re
s
u

lt
s
 i

n
 r

a
n

g
e

UHA-URA

PHA-PRA

PHA-PRB

PHA-PRC

Fig. 4. Comparison between heuristic and random results.

RANDOM APPROACH TO OPTIMIZATION OF OVERLAY PUBLIC-RESOURCE COMPUTING SYSTEMS 59

design a secure, reliable, and scalable system for efficient and
fast delivery of content. The proposed approach is a
combination of nondedicated servers and peers. The IBM
Download Grid (IDG) – an IBM internal prototype built based
on the proposed approach – is described and discussed.

The authors of [16] present algorithms of parallel rendering
with inexpensive commodity components based on multiple
PCs connected by network are presented. The idea of k-way
replication is applied to distribute a large scene database
across components. Experimental results presenting
performance of load balancing object assignment algorithms
are included and discussed.

An interesting example of a P2P-based file distribution
system is BitTorrent protocol [6]. The BitTorrent uses a
centralized software called tracker that stores information
which peers have a particular file. To facilitate the process of
downloading, each file is divided into smaller pieces (e.g. 256
KB). A peer that wants to download a file can receive from the
tracker a random list of peers that have got the file. A peer that
has got the complete file is called seed. Then, the downloader
requests pieces from all the peers it is connected to. Next,
when a peer downloads some pieces, it can upload them to
other peers. Since the main objective of the system is effective
file sharing, peers are encouraged not only to download but
also to upload files.

In [10] the overlay network content distribution problem is
considered. All content is organized as set of unit-sized tokens
– files can be represented as sets of tokens. The distributed
schedule of tokens proceeds as a sequence of timesteps. There
is a capacity constraint on each overlay arc, i.e. only a limited
number of tokens can be assigned to an arc for each timestep.
Two optimization problems are formulated: Fast Overlay
Content Distribution (FOCD) and Efficient Overlay Content
Distribution (EOCD). The goal of the former problem is to
provide a satisfying distribution schedule of minimum number
of timesteps. The latter problem aims at minimizing the
number of tokens’ moves. Both problems are proved to be NP-
complete. An Integer Program formulation of EOCD is
presented. Various online approximation algorithms for
distributed version of overlay content distribution problem are
proposed and tested.

The authors of [23] develop several protocols for P2P based
file distribution. A centrally scheduled file distribution (CSFD)
protocol, to minimize the total elapsed time of a one-sender-
multiple-receiver file distribution task is proposed. A discrete-
event simulator for the problem is applied to study the
performance of CSFD and other approaches (e.g. BitTorrent).

The paper [8] concentrates on the problem how to
disseminate a large volume of data to a set of clients in the
shortest possible time. A cooperative scenario under a simple
bandwidth model is solved in an optimal solution involving
communication on a hypercube-like overlay network.
Moreover, different randomized algorithms are analyzed.
Finally, noncooperative scenarios based on the principle of
barter are discussed.

Arthur and Panigrahy show several routing algorithms
designed to distribute data blocks on a network with limited
diameter and maximum degree [3]. The time scale of the
system is divided into steps. A special attention is put on

upload policy – a randomized approach is proposed and
examined.

The problem we addressed in this work is related to the
resource-constrained project scheduling problem (RCPSP). In
Chapter 19 of [14] a multi-mode RCSPS is formulated to
model the workflow in Grid systems. A detailed description
and 0-1 linear programming formulation are presented.
Various metaheuristics (e.g. local search, simulated annealing,
tabu search and genetic algorithm) are proposed as solution
approaches.

In the literature there are many network optimization
problems related to unicast flows. For a good survey on these
problems see [15] and references therein. Predominant number
of these problems assume that network flows are constant in
time and are given in bits per second. However, due to
dynamics of P2P systems, modeling of flows of P2P systems
need other approaches.

In our previous works we proposed and examined a model
of flows in P2P systems [20]. In [21] we introduced four
optimization models related to the problem of data distribution
in public-resource computing system applying the following
approaches: unicast, anycast, multicast and P2P. Next, in [4]
we presented a heuristic algorithm for the P2P flows
optimization in public-resource computing system.

For other issues on P2P systems, networks, Grids and public
resource computing refer to [1-8], [10-24].

VI. CONCLUDING REMARKS

In this paper we have addressed the problem public-
resource computing systems optimization. The objective was
to minimize the cost of the public-resource computing system
including both the processing cost and the transfer cost. To
solve the formulated problem we have applied random
strategies following from real P2P systems. The results of the
numerical experiments show that random algorithms yield
results much worse than optimal solutions for small networks
and other heuristics for larger networks. The main conclusion
is that the application of the random approach can provide
some feasible solutions, but the quality of these results –
expressed as the cost function – is not satisfactory.

REFERENCES

[1] D. Anderson, “BOINC: A System for Public-Resource Computing and

Storage,” In Proc. of the Fifth IEEE/ACM International Workshop on

Grid Computing, Pittsburgh, 2004, pp. 4-10.

[2] N. Andrade, E. Santos-Neto and F. Brasileiro, “Scalable Resource

Annotation in Peer-to-Peer Grids,” In Proc. Of 8th International

Conference on Peer-to-Peer Computing, Aachen, 2008, pp. 231-234.

[3] D. Arthur and R. Paningrahy, „Analyzing BitTorrent and Related Peer-

to-Peer Networks,” In Proc. of the 17th ACM-SIAM symposium on

Discrete algorithm, Miami, 2006, pp. 961-969.

[4] G. Chmaj and K. Walkowiak, “Peer-to-Peer versus Unicast: Two

Approaches to Data Transmission in Overlay Public-Resource

Computing System,” In Proc. of the 4th International Conference on

Broadband Communication, Information Technology & Biomedical

Application BroadBandCom, 2009.

[5] N. Christin and J. Chuang, “On the Cost of Participating in a Peer-to-

Peer Network,” Lecture Notes in Computer Science, Vol. 3279, 2004,

pp. 22-32.

[6] B. Cohen, “Incentives Build Robustness in BitTorrent,”

http://www.bittorrent.org/bittorrentecon.pdf, 2003.

G. CHMAJ, K. WALKOWIAK60

http://www.springerlink.com/content/105633/?p=a23e914e003444349ef5378ca271d4d2&pi=0

[7] I. Foster, A. Iamnitchi, “On Death, Taxes and Convergence of Peer-to-

Peer and Grid Computing,” Lecture Notes in Computer Science, vol.

2735, 2003, pp. 118-128.

[8] P. Ganesan and M. Seshadri, “On Cooperative Content Distribution and

the Price of Barter,” In Proc. of the 25th IEEE Intern. Conf. on

Distributed Computing Systems, Columbus, 2005, pp. 81-90.

[9] ILOG CPLEX 11.0 User’s Manual, France, 2007.

[10] C. Killian M. Vrable, A. Snoeren, A. Vahdat and J. Pasquale, “The

Overlay Network Content Distribution Problem,” UCSD/CSE Tech.

Report CS2005-0824, 2005.

[11] K. Krauter, R. Buyya and M. Maheswaran, “A Taxonomy and Survey of

Grid Resource Mangement Systems for Disitributed Computing,”

Software - Practice and Experience, vol. 32, No. 2, 2002, pp. 135-164.

[12] D. Milojicic and others, “Peer to Peer computing,” HP Laboratories Palo

Alto, Technical Report HPL-2002-57, 2002.

[13] J. Munidger and R. Weber, “Efficient File Dissemination using Peer-to-

Peer Technology,” Technical Report 2004--01, Statistical Laboratory

Research Reports, 2004.

[14] J. Nabrzyski, J. Schopf and J. Węglarz, (eds.), Grid resource

management :state of the art and future trends, Kluwer Academic

Publishers: Boston, 2004.

[15] M. Pioro, D. Medhi, Routing, Flow, and Capacity Design in

Communication and Computer Networks, Morgan Kaufmann

Publishers, 2004.

[16] R. Samanta, T. Funkhouser and K., Li, “Parallel Rendering with K-Way

Replication,” In Proc. of IEEE Symposium on Parallel and Large-Data

Visualization and Graphics, San Diego, 2001, pp. 75-84.

[17] R. Subramanian and B. Goodman, Peer to Peer Computing: The

Evolution Of A Disruptive Technology, Idea Group Publishing, 2005.

[18] R. Steinmetz and K. Wehrle (eds.), Peer-to-Peer Systems and

Applications, Lecture Notes in Computer Science, vol. 3485, Springer

Verlag, 2005.

[19] I. Taylor, From P2P to Web services and grids : peers in a client/server

world, Springer-Verlag, 2005.

[20] K. Walkowiak, “Offline Approach to Modeling and Optimization of

Flows in Peer-to-Peer Systems,” In Proc. Of the 2nd International

Conference on New Technologies, Mobility and Security, Tanger, 2008,

pp. 352-356.

[21] K. Walkowiak and G. Chmaj, “Data Distribution in Public-Resource

Computing: Modeling and Optimization,” Polish Journal of

Environmental Studies, vol. 17, no. 2B, 2008, pp. 11-20.

[22] C. Wu and B. Li, “On Meeting P2P Streaming Bandwidth Demand with

Limited Supplies,” In Proc. of the Fifteenth Annual SPIE/ACM

International Conference on Multimedia Computing and Networking,

San Jose, 2008.

[23] G. Wu and C., Tzi-cker, “Peer to Peer File Download and Streaming,”

RPE report, TR-185, 2005.

[24] X. Yang and G. De Veciana, “Service Capacity of Peer to Peer

Networks,” In Proc. of INFOCOM’04, Hong Kong, 2004, pp. 2242-

2252.

RANDOM APPROACH TO OPTIMIZATION OF OVERLAY PUBLIC-RESOURCE COMPUTING SYSTEMS 61

http://www.springerlink.com/content/105633/?p=a23e914e003444349ef5378ca271d4d2&pi=0
http://www.springerlink.com/content/105633/?p=a23e914e003444349ef5378ca271d4d2&pi=0
http://www.springerlink.com/content/105633/?p=a23e914e003444349ef5378ca271d4d2&pi=0
http://www.springerlink.com/content/105633/?p=a23e914e003444349ef5378ca271d4d2&pi=0
http://www.springerlink.com/content/105633/?p=a23e914e003444349ef5378ca271d4d2&pi=0

