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route refers to the last mile connection path between a source 
and destination pair. 

For this analysis, the fundamental models that are needed to 
represent the inter-working multi-hop wireless networks are: 

1) A model for the spatial distribution of nodes in the 

inter-working network. 
The network has been represented as Poisson Point process 

in two dimensions. The Poisson Point process is the most 
popular choice for modeling network nodes’ spatial 
distribution [1] [5] [18] [19] [20]. Nodes are independently 
located and the average density of the nodes is uniform 
throughout the network. 

2) A model for the link distance between nodes. 
The model gives the probability that a node has a link to 

other nodes in the network. If the maximum transmission range 
of any node is R, then an independent communication link is 
available for any two nodes separated by a distance less than 
or equal to R. If β is the distance between two nodes, a link is 
available between them as long as β≤ R. Note that β refers to 
the distance between specific node pairs. The distance may be 
a single hop distance between and it may be the multi-hop 
distance between any source-destination pair. 

The outline of this paper is as follows. In section 2, the node 
distribution, the inter-working network, and the node degree 
models are described. An analysis of the link models is given 
in Section 3. Section 4 presents the route availability model 
and section 5 concludes the paper. Numerical results of the 
link availability and route availability models are presented. 

II. NETWORK MODEL 

A. �ode Distribution 

Since nodes’ locations are completely unknown a priori in 
wireless networks, they can be treated as completely random. 
The irregular location of nodes (in fig. 1), which is influenced 
by factors like mobility or unplanned placement of the nodes 
may be considered as a realization of a spatial point pattern (or 
process) [1]. 

A spatial point pattern in fig. 2 is a set of location, 
irregularly distributed within a designated region and 
presumed to have been generated by some form of stochastic 
mechanism. In most applications, the designation is essentially 

on planar R
d
 (e.g. d=2 for two-dimensional) Euclidean space 

[7]. The lack of independence between the points is called 
complete spatial randomness (CSR) [6]. According to the 
theory of complete spatial randomness for a spatial point 

pattern, the number of points inside a planar region P follows a 
Poisson distribution [7]. It follows that the probability of p 

points being inside region P (Pr (p in P)) depends on the area 

of the region (Ap) and not on the shape or location of the 

plane. Pr (p in P) is given by (1), where µ is the mean number 
of points (spatial density of points). 
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This is a reasonable model for networks with random node 
placement such as the inter-working multi-hop wireless 
networks. 

B. Inter-working Multi-hop Wireless �etwork 

Fig. 1 represents network Ω, which is a set of inter-working 
multi-hop wireless networks (sub-networks A, B, and C). Each 
network is considered as a collection of random and 
independently positioned nodes. The nodes in the network are 

contained in a Euclidean space of 2-dimensions (R
2
). These 

sets of multi-hop wireless networks have some inter-domain 
co-ordination between them. The total number of nodes in Ω is 
denoted by NΩ, while the number of nodes in sub-networks A, 
B, C are Na, Nb and Nc respectively, where Na+ Nb+ Nc = NΩ. 
The mean number of nodes (spatial density) of each sub-

network is given by µA, µB, µC (µ=NNNN/aaaa, NNNN is the number of 

nodes in a sub-network, aaaa is the sub-network’s coverage area 

and µ is given in nodes /unit square). Theorem 1 states the 
merging property of a Poisson Point process.  

Theorem 1: The superposition of N independent Poisson 
processes with spatial densities Фi �i ∈∀  is a Poisson 

process with intensity ∑ Φ=Φ
�

i i
 [11]. 

Using Theorem 1, the entire inter-working network can be 
considered as a merging Poisson process with mean number of 
nodes (spatial density): µNet = µA+µB+µC. Nodes in the network 
may communicate in a multi-hop manner and transmit at a data 
rate of Ψ bps.  

 
 
Fig. 1.  Inter-working network model for multi-hop wireless networks with 
overlapping service area. 
  

 
 
Fig. 2.  Spatial point pattern. 
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In this paper, source-nodes are referred to as transmitter-
nodes (t-nodes) while destination-nodes are referred to as 
receiver-nodes (r-nodes). Lnll ∈= },......3,2,1:{  represents 

the links between nodes, where L is the set of all links in the 
entire network. β represents the link distance (length of a 
communication link) between a T-node and an R-node. 

C. �ode Degree 

The degree of a node in wireless multi-hop networks is 
defined as the number of neighbor nodes that it has [14]. A 
node is said to be a neighbor node to another node if the 
distance between the two nodes is less than or equal to their 
transmission range, which means that both nodes have a direct 
link to each other. Therefore, a node’s degree is the number of 
nodes within its transmission range.  

The degree of a node is denoted by D(.). In an instance 
where for a node, D(.)=0, the node is termed a “lone node”. 
The existence of a “lone node” in a multi-hop wireless network 
is an undesirable condition. Although a lone node maybe 
useless in terms of connectivity in a static multi-hop wireless 
network, yet in a mobile scenario, it becomes useful as it 
moves into the transmission range of another node or when 
another node moves into the node’s transmission range. The 
desirable condition for connectivity in a multi-hop wireless 
network is for all nodes to have D(.) > 0. The probability that 
D(.) > 0 for any node is the same as the probability that a link 
is available for the node and it is given by equation 2. R is the 
transmission range of the node and f(x) is the probability 
density function (PDF) of the distance between any two nodes 
in an inter-working multi-hop wireless network. 
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III. LINK MODELS 

A. Link Distance Distribution Model 

It is important to analyze the distribution of the link 
distances between nodes because the probability that a 
communication link is available for any node is related to the 
link distance distribution [17]. Also, in multi-hop wireless 
networks, the probability that a multi-hop communication path 
is available is related to the availability of the individual links 
that make up the path.  

Let β denote the distance between a t-node and its nearest 
neighbor (a potential r-node). With Theorem 2 stated below, 
the probability that β>R can be evaluated. 

Theorem 2: For a Homogeneous Poisson Point Process in 

R
2
, the probability that there are no points within a distance x 

of an arbitrary point (p) is e-λπx
2

, where the parameter λ is the 
mean number of points per unit area [6]. 

For any t-node within the network in fig. 1, the above 
theorem applies in the following ways: 

 
 1) The probability that there are no nodes within a distance 

β ≤ R, (probability that a t-node node has no neighbor) is: 
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2) Also, the probability that the distance between a t-node 
and its nearest neighbor node is less than the t- node’s 
transmission range (the probability that a t-node has at least 
one neighbor) is: 
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Equation 5 represents the cumulative distribution function 
(CDF) of the distance between any two randomly positioned 
nodes in the network in fig. 1. The CDF is represented by 
Fβ(R). Equation 5 also represents the probability that a link 
exists between a t-node and an r-node. Assuming that links 
become non-existent independently, this quantity can be taken 
as the probability that a link exists in a binomial trial. If the 
trial is repeated z times, then an estimate of the number of 
existing links for any node is given by z × Fβ(R) [17]. 

B. Link Availability Model 

As long as β≤ R, a link is available (exists) between any two 
arbitrary nodes. Therefore, the CDF of the link distance β can 
be taken as the probability that at least a link is available for 
transmission [12]. Thus, the availability of a link in a network 
is a function of R, β and µNet in the network. If Plink 
represents the availability of a 1-hop link for any node in the 
network, then, Plink can be expressed as: 
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Fig. 3 gives a plot of the availability of a link as the value R 
takes on increases. A network scenario in which N=20 nodes 
in a 10 square unit area has been considered. At R=0.2, only 
22.2% of the total nodes are available for a 1- hop link to any 
node and 99.8% of nodes are available if R =1. 

 
All (100%) of the links are available once R >1, which 

means that every node has a link to all other nodes in the 
network. This phenomenon indicates that the network is fully 
connected.

 
For a network with N nodes in area A, as R increases, Plink 

increases. From Poisson distribution, equation 4 is analogous 
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Fig. 3.  Link Availability vs Normalized transmission range. 
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to equation 7, which is the probability of > 0 nodes within a 
node’s radio coverage area of πR

2
, for any value of R. The 

probability that the degree of a node is equal to n is expressed 
in 8. 
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The number of available 1-hop links for a t-node, given its 
transmission radius can be expressed as Plink (N-1)

 

for N nodes 
in the network. Note that a maximum of N-1 links are 
potentially available to all node in a network of N nodes. 

From fig. 3, it can be observed that the CDF of β, (Fβ(R)) 
given by equation 5 is a monotonically increasing function. 
Consequently, in a network with area A and N nodes, Plink 
increases as R increases.  

Fig. 4 gives a plot of Plink at fixed transmission range (R) as 
the number of nodes in the network increases. Also, A=10 
square units, and N was increased from 20 nodes to 120 nodes 
at fixed node transmission values of 0.1, 0.3, 0.5, 0.7 and 1. 
From fig. 4, generally for all the cases considered Plink 
increases as N increases; indicating that the probability of 
having an available link is higher in a dense network. For high 
values of R, the Plink is at very high values for large N in the 
network. If R is the same for all nodes, then the upper bound 
for Plink is: 
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IV. ROUTE AVAILABILITY MODEL 

If the distance (β) between a source and destination is 
greater than R, then from equation 6, Plink=0, therefore a multi-
link (multi-hop) route has to be utilized for packet 
transmission. In this case, multiple hop routes in the direction 
of the destination node are used. [4] explains the different 
methods, which can be used to achieve this. To ensure end to 
end route availability, each intermediate node on the route 
must have at least two neighbour nodes. These two neighbours 

are for the purpose of packet reception from the preceding 
node and packet transmission to the subsequent node.  

Let l represent the links (or hops) between any two nodes in 

the network, where Ll ∈  and L is the set of all links that exists 

in the network. If a transmitted packet from a node have to hop 
on a total of l links to arrive at the destination node, then, l-1 

intermediate nodes will be required on this route. The number 
of hops depends on β, and the transmission range (R) of the t- 
node and the intermediate nodes. For analytical tractability, the 
transmission ranges of all nodes in the network are assumed to 
be equal. Thus, the minimum number of links (hops) that can 
connect any two nodes together is: 

 
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 x  represents the greatest integer that is greater than x. 

However, a bound for l exists in every network. The bound 

occurs when β happens to be equal to the maximum distance 
(βmax) that can be between any two nodes in the network. In 
this case, the maximum number of hops lmax= βmax/R cannot be 

exceeded. 
Fig. 6 shows a plot of the number of hops versus the 

distance between a source-destination node pair. As in section 
III B, a 20 node network with an area of 10 square units has 
been considered. The value of β was increased from 0.2 units 
to 1.8 units, while the number of hops was observed for 
constant transmission range (R= 0.2, 0.3, 0.6 and 0.7). Fig. 6 
confirms that the longer the distance between node pairs 
relative to their transmission range, the more the number of 
hops (links) that will be utilized to transmit a packet from 
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Fig. 4.  Plink vs Number of Nodes (N) for different values of R. 
  

 
 
Fig. 5.  A Subnetwork. 
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Fig. 6.  Number of hops (l) vs distance between nodes. 
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source to destination. Equation 11 summarizes the minimum 
number of hops (lmin) for different values of β, and a general 

expression for evaluating lmin is obtained. 














=

≤<−∀

≤<∀

≤<∀

≤<∀

lRRll

RR

RR

R

l

β

β

β

β

)1(,

..............................

32,3

2,2

0,1

min  (11) 

 

22

22

))1((

!

)))1(((

)(

!

))((

1

1

1

1

Rl
e

n

Rl

lR
e

n

lR

�et�et
�

n

n

�

n

n

�et�et

−−
∑

−
−

−∑

−

=

−

=

−

πµπµ

πµπµ

(12) 

Consider the sub-network in fig. 5 with N nodes. If a route 
is to be established between Xi and Xj, where Xj is the 
destination, there will be N-2 intermediate nodes between Xi 
and Xj. Depending on β and R, the maximum number of hops 
that can be used to transmit packets from Xi to Xj is N-1and 
the minimum number of hop is 1. To establish a route with a 
definite number of hops (e.g. l hops), R has to be at a certain 

maximum value as illustrated in fig.6. If R is lower than the 
maximum value, more hops will be utilized to set up such a 
route. In order to evaluate the probability that any source-
destination node pair is linked by a certain number of hops, the 
following must be fulfilled: 

The distance between the source-destination pair must fulfil 
the general expression for lmin in equation 10.  

There should be at least a node between the distance (l-1)R 

and l R and; 

Every node along the route should have at least a 
neighbour node that is within the transmission range of 
another node 2hops away from it. 

The condition in (2) is such that nodes must exist between 
distance (l-1) R and lR and the probability of this happening is 

expressed in equation 12 (stated below this page). For 
condition (3), let Aint be the area of intersection of the 
transmission ranges of any two nodes along the route, which 
are 2-hops away from each other. From [16] Aint can be 
expressed as:  
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The probability of at least 1 node in area Aint, where nint is 
the number of nodes in area (Aint) is: 
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For an l-hop route, equation 14 is expressed as: 
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Finally, the probability of an l-hop route, (Pl-hop) between Xi 

and Xj is given by the multiplication of equation 12 and 15. 
However, as the network’s node density increases, for constant 

R, equation 15 tends towards 1. From equation 4, 7 and 12, an 
asymptotic probability for an l-hop route can be evaluated with 

equation 16. 
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Using the network scenario in section III B, Pl-hop versus l is 

as shown in fig. 7. The sum of Pl-hop=1. From the data obtained 

for fig. 7, the probability that l > lmax tends to zero. In case of 

node or link failures, an alternative detour needs to be 
available at any point in order to ensure end-to-end packet 
transmission. This alternative route may require more than the 
minimum number of hops or the same number of hops as l.  

So now, what is the probability that a source-destination 
pair will be connected irrespective of the number of hops from 
source to destination?  

Let Proute denote the probability that a route is available. 
Equation 17 gives the route availability for β/R ≤ l ≤ lmax. Pr 

depends on the probability of establishing an l -hop route 

between any pair of source-destination node in the inter-
working multi-hop wireless network. It also depends on β 
(distance between the source-destination nodes) and R 
(transmission range of nodes). 
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V. CONCLUSION 

The research work focuses on connectivity in inter-working 
multi-hop wireless networks. The paper provided a study of 
link availability and presented a model for route availability 
for inter-working multi-hop wireless networks. In multi-hop 
wireless networks such as ad-hoc networks, a network 
connectivity analysis is needed. However, in inter-working 
multi-hop wireless networks, an analysis of the route 
connectivity is more desirable. Thus the emphasis of this paper 
was on route connectivity in inter-working multi-hop wireless 
networks. 

For there to be connectivity between a source-destination 
node pair in an inter-working multi-hop wireless network, a 
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Fig. 7.  Probability of l-hops vs number of hops in a 20 node network. 
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route has to be available. A route is available if a link exists 
between the node pairs on that route. The paper presented 
numerical results of the route availability model presented. 

 However, in case one or more links on a specified route 
fails, an alternative detour must be a link that can ensure 
continued connectivity and also maintain the quality of service 
required by the traffic in transit. Therefore, how can traffic be 
routed through optimal paths that will ensure optimal 
connectivity and maintain quality of service in inter-working 
multi-hop wireless networks? The major challenge in ensuring 
route connectivity is the fact that the multi-hop wireless 
networks that are inter-working may be operating with 
different networking standards. 

Thus, the future research work includes the evaluation of 
route connectivity with a consideration of the effect of physical 
layer factors such as inter-node interference. In addition, 
ensuring optimal route connectivity in a network with diverse 
physical layer schemes will also be considered.  
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