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A Procedure for Quasi-Equiripple Linear-Phase IIR

Filters Design
Jacek Konopacki and Katarzyna Mościńska

Abstract—The linear-phase IIR filters are described in many
cases, mainly due to distortion-free transmission of signals. One
of the major problems of IIR filter design is stability, which can
be obtained with suitable value of group delay τ . This paper
concerns calculation of filter order N and group delay τ in case
of quasi-equiripple design of IIR filters. We propose a novel
procedure for determining N and τ values; the procedure is
valid for all types of filters with arbitrary number of zeros and
a few non-zero poles. Evaluation of the proposed approach as
well as examples illustrating its application are provided in the
paper.

Keywords—Digital filters, IIR filters, filters design.

I. INTRODUCTION

INFINITE IMPULSE RESPONSE (IIR) digital filters,

which approximate both magnitude and phase response,

are considered in many papers, for example, for linear-phase

filters design. Generally, there are various approaches to design

stable linear-phase IIR filters. Such filters can be achieved by:

1) implementation of a phase equalizing allpass filter cas-

caded with nonlinear-phase IIR filter [1],

2) model-reduction techniques which are applied to approx-

imate the frequency response of finite impulse response

(FIR) filter [2], [3],

3) a direct way, i.e., the cost function of the design opti-

mization problem is directly based on desired frequency

response [4], [5], [6], [7], [8], [9], [10], [11], [12], [13].

In this paper we focus on the latter method. The transfer

function H(z) = B(z)/A(z) of the IIR filter, designed in a

direct way, can be obtained by minimization of the following

cost function:

E0 =

(

L−1
∑

i=0

W0(ωi)
∣
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p

)
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p
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where: D(ω) is the desired complex-valued frequency re-

sponse, W0(ω) is a real non-negative weighting function, and

i = 2πi/L (i = 0, 1, ..., L−1). The case p = 2 is called least

squares approximation, and the case p = ∞ is called complex

Chebyshev or minimax approximation. The minimization of

E0 leads to a nonlinear optimization problem which can be

solved by use of the Gauss-Newton method or by solving

linear equations iteratively when the error (1) is replaced with:
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The new weighting function W (k)(ωi) is updated in each

iteration k, as follows:

W (k)(ωi) =
W0(ωi)

|A(k−1)(ejωi)|p
. (3)

It should be noted that quasi-equiripple approximation of

D(ω) can be also achieved for p = 2 by minimization of E.

For this purpose it is necessary to add another iteration process

that updates the weighting function W0(ω) [7] (Lawson-type

algorithm) or transforms the desired frequency response [11].

The IIR filter design procedures have to guarantee the filter

stability which is generally non-easy task. There exist several

ways of ensuring the stability of filter resulting from optimiza-

tion of (1), with good survey of such methods having been

presented in [12]. The optimization techniques used for stable

IIR filter design can be of either constrained or unconstrained

type. The latter include the concept of prior setting of the

group delay value corresponding to the desired frequency

response of the filter - confer, e.g. [13] - unfortunately with no

explicit formula for calculating this parameter. The former -

constrained optimization related techniques - include methods

involving positive realness stability domain [10], Rouche’s

theorem [6], and methods using argument principle for es-

tablishing stability criterion [5], [4], [9]. However, also for

these methods the filter order should be properly chosen for

the effectiveness of stable filter design procedure. It should be

noted that to our knowledge no solution has been proposed

yet for the choice of appropriate value for IIR filter order and

group delay for a given design specification.

In our previous work [14] we have introduced formulas

(for quasi-equiripple IIR filter design) that provided estimated

filter order and minimum group delay τmin. The formulas can

be applied if the desired frequency response is of the form

D(ω) = |D(ω)|ejτω and transfer function H(z) has unequal

number of poles and zeros (a few poles outside the origin of

the complex variable plane and an arbitrary number of zeros).

The estimation of minimum group delay is important because

for τ ≥ τmin a stable filter is obtained. However, a large

magnitude overshoot appears in frequency response H(ω)
when τmin is imposed and further looking for appropriate

value of the group delay is necessary. In this paper we propose

new formula for group delay estimate that guarantees filter

stability and small magnitude overshoot (usually less than

1 dB). Improved estimate of filter order is also delivered

below. As in [14] we limit our discussion to the filters with

unequal number of poles and zeros. Filters of this type are a

compromise between computational complexity and features
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like roundoff noise, coefficient sensitivity, phase linearity [15],

[16].

The composition of this paper is as follows: section II

presents the problem formulation, whereas section III shows

derivation of practical formulas for group delay and filter order

estimation. The design examples which illustrate practical

usage of proposed formulas are presented in Section IV.

Section V contains comment on weighting function that is

suitable for both magnitude and phase response approximation,

and section VI provides the final conclusions from this work.

II. PROBLEM FORMULATION

Consider the digital IIR filters described by transfer func-

tion:

H(z) =
B(z)

A(z)
=

N
∑

n=0
bnz

−n

M
∑

m=0
amz−m

=

N
∑

n=0
bnz

N−n

zN−M
M
∑

m=0
amzM−m

(4)

for the case M < N . The goal is to determine order N
(for fixed M ) and group delay τ of desired transfer function

D(z) that guarantee a stable filter satisfying given set of filter

specifications for quasi-equiripple approximation of D(ω).
We use passband edge ωp, stopband edge ωs and stopband

attenuation As as specifications (for lowpass filters). The

following two assumptions are also made: firstly, the weighting

function W0(ω) is equal to one in the passband as well as in

the stopband, and W0(ω) = 0 in the transition band; secondly,

the magnitude overshoot in the transition band should be less

than 1 dB. Some comments about other values of the weighting

function W0(ω) in the passband and stopband are made in the

Section V.

III. DERIVATION OF PRACTICAL FORMULAS

The practical formulas for N and τ have been obtained

using algorithm [11] for filter design. Numerous experiments

have been carried out, with various values of τ , N , ωp and

ωs. Hundreds of filters have been designed assuming M = 2,

4 or 6 in case of lowpass filters, and M = 4 or 8 in case of

bandpass filters, for even N ranged from 8 to 50. Passband

width ωpw and transition band width ωt = |ωs − ωp| were

also changed during experiments. We started from τ = τmin

[14] and successively increased until τ = τ1 for which the

magnitude overshoot would be less than assumed value of

1 dB. Next, we determined the minimum stopband attenuation

As of the filter based on frequency magnitude response. As

a result two relationships were obtained: τ1 = f1(N,ωt, ωpw)
and As = f2(N,ωt, ωpw) for each of the designed filter. The

conclusions from experiment are as follows: in case of lowpass

filters with M = 2 and bandpass filters with M = 4 the

relationship τ1 = f1(N,ωt, ωpw) is linear in N and the slope

of this line depends on transition band width ωt (see Fig. 1).

Filter attenuation As is a nonlinear function of N and depends

on ωt as well (Fig. 2). For lowpass filters with M = 4 or

6 and bandpass filters with M = 8, an additional effect of

the passband width ωpw can be observed in both f1 and f2
relationships (see Fig. 3 and Fig. 4), which must be taken into

Fig. 1. The average values of τ1 versus N for lowpass filters with M = 2
obtained for: ωt = 0.04π (△), ωt = 0.07π (o), ωt = 0.16π (x), and its
approximation (solid lines) by (5), τmin plotted for comparison (dashed line).

account if ωpw is less than 0.2 for lowpass filters or less than

0.3 for bandpass filters. In Fig. 1 and Fig. 2 average values of

τ and As have been plotted in order to emphasize real changes

of the relationships because functions f1, f2 in case of lowpass

filter with M = 2 are independent of the filter passband width

ωpw.

The following linear function has been proposed for f1
approximation:

τ1 = α(ωt, ωpw)N + β(ωt, ωpw) . (5)

Two stage procedure was applied for determining the co-

efficients α(ωt, ωpw) and β(ωt, ωpw). At first, least squares

approximation of τ1 = f1(N,ωt, ωpw) was used for cal-

culation of α and β for filters with various ωt and ωpw.

In the second stage, the relationships α and β as functions

of ωt and ωpw were modelled by means of second order

polynomials α(ωt, ωpw), β(ωt, ωpw) (5). Matlab functions

polyfit and lsqnonlin have been applied for calculation.

Fig. 2. Approximation of the average values of the stopband attenuation
versus N for the lowpass filters with M = 2 and with ωt as parameter:
ωt = 0.04π (△), ωt = 0.07π (o), ωt = 0.1π (*), ωt = 0.13π (♦),
ωt = 0.16π (x).
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Fig. 3. The values of τ1 versus N for lowpass filters with M = 4 and
ωt = 0.04π obtained for: ωpw = 0.05π (△), ωpw = 0.1π (o), ωpw = 0.2π
(x), and its approximation (solid lines) by (5).

Nonlinear relationship f2 can be approximated by several

functions; for instance the second order polynomial has been

proposed in [14] for N ranging from 8 to 50. In this paper

we propose another function:

As = λ(ωt, ωpw)N + δ(ωt, ωpw) +
γ(ωt, ωpw)

N
. (6)

With this function satisfactory estimates of As can be ob-

tained even for N greater than 50. Coefficients λ(ωt, ωpw),
δ(ωt, ωpw) and γ(ωt, ωpw) have been calculated by the same

method as α(ωt, ωpw) and β(ωt, ωpw). Table I - IV present

coefficients of the approximation functions (5) and (6) derived

from experiment: Table I and Table II for lowpass filters,

whereas Table III and Table IV for bandpass filters.

The limits imposed on ωt, ωpw and N result from various

criteria. One of the major problems is the number of adders

and multipliers needed for filter realization. It can be shown

[17] that for quasi-equiripple IIR filters with small M com-

putational saving can be achieved when compared with FIR

Fig. 4. Approximation of the stopband attenuation versus N for the lowpass
filters with M = 6 and with: ωpw = 0.7π, ωt = 0.13π (△), ωpw = 0.2π,
ωt = 0.13π (o), ωpw = 0.2π, ωt = 0.04π (x), ωpw = 0.7π, ωt = 0.04π
(♦).

TABLE I
THE FORMULAS FOR α AND β CALCULATION FOR LOWPASS FILTERS

M α β

M = 2 0.35ω2

t − 0.409ωt + 0.685 0.41

M = 4 0.480ω2

t − 0.737ωt + 0.94 −3.87ω2

t + 6.79ωt

ωpw > 0.2π −1.28

M = 4 0.439ω2

t − 0.546ωt + 0.41 7.17ω2

t − 23.4ωt+

ωpw ≤ 0.2π +1.51ωpw − 0.089ωpw ωt 29.8 + 64.5ω2

pw−

−1.25ω2

pw 85.0ωpw + 33.3ωpw ωt

M = 6 (−1.32ωpw + 1.91)ω2

t (−3.73ω2

pw + 14.65ωpw

ωpw > 0.2π +0.78ωpwωt − 1.34ωt −14.38)ωt + 4.41ωpw

+0.022ωpw + 0.821 −18.59ωpw + 18.97

M = 6 0.562ω2

t − 2.08ωt 14.49ω2

t − 6.13ωt

ωpw ≤ 0.2π +0.862− 0.772ω2

pw+ +39.33 + 67.8ω2

pw−

0.384ωpw + 2.5ωpwωt 88.98ωpw − 16.7ωpwωt

ω in radians per sample

filters (designed by Parks McClellan method) if ωt < 0.2π,

therefore all experiments were performed for ωt < 0.2π. The

lower limit of N was chosen according to required minimum

filter attenuation. In case of N < 8 for lowpass filters, or

N < 10 for bandpass filters, the stopband attenuation is 20 dB

or less, which usually cannot be accepted. The upper limit of

N = 50 was assumed due to limited simulation time, however

formula (6) yields good estimate of As even up to N = 80, for

M = 2. The limits for ωt, ωpw result directly from experiment:

• in case of lowpass filters with M = 2:

0.01π < ωt < 0.2π, ωpw > 0.02π, ωt + ωpw < 0.98π,

• in case of lowpass filters with M = 4 and ωpw > 0.2π:

0.04π ≤ ωt ≤ 0.13π, ωt + ωpw ≤ 0.87π,

TABLE II
THE FORMULAS FOR λ, δ AND γ CALCULATION FOR LOWPASS FILTERS

M λ δ γ

M = 2 2.50ωt + 0.17 −88.0ω2

t + 11 486ω2

t − 18.2

+79.6ωt −407ωt

M = 4 −5.99ω2

t + 0.03 176ω2

t + 20.5 −1848ω2

t − 107

ωpw > 0.2π +5.53ωt −37.5ωt +677ωt

−1.94ω2

t − 0.05 3.78ω2

t + 32.6 389ω2

t − 34.4

M = 4 −1.49ω2

pw +88.7ω2

pw −256ω2

pw

ωpw ≤ 0.2π +1.13ωpw −79.0ωpw +143ωpw

+3.01ωpwωt −103ωpwωt +27ωpwωt

+2.39ωt +80.6ωt +36.3ωt

−1.85ω2

t − 0.05 −2.51ω2

t + 32.8 −447ω2

t − 21.0

+3.03ωt +62.7ωt +125ωt

M = 6 −0.19ω2

pw +10.2ω2

pw −3.58ω2

pw

+0.41ωpw −28.1ωpw −27.2ωpw

+0.96ωpwωt −27.0ωpwωt +104ωpwωt

ω in radians per sample
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TABLE III
THE FORMULAS FOR α AND β CALCULATION FOR BANDPASS FILTERS

M α β

M = 4 0.512ω2

t − 0.468ωt −0.45

+0.684

M = 8 0.420ω2

t − 0.615ωt −3.23ω2

t + 7.43ωt

ωpw > 0.3π +0.883 −2.38

M = 8 1.71ω2

t − 0.873ωt −36.5ω2

t − 1.47ωt + 23

ωpw ≤ 0.3π +0.462 − 0.116ωpwωt −37.2ωpw + 15.4ωpwωt

+0.608ωpw − 0.219ω2

pw +13.9ω2

pw

ω in radians per sample

• in case of lowpass filters with M = 4 and 0.05π ≤
ωpw ≤ 0.2π :

0.04π ≤ ωt ≤ 0.13π,

• in case of lowpass filters with M = 6 and ωpw > 0.2π:

0.04π ≤ ωt ≤ 0.16π, ωt + ωpw ≤ 0.87π,

• in case of lowpass filters with M = 6 and 0.1π ≤ ωpw ≤
0.2π:

0.04π ≤ ωt ≤ 0.16π,

• in case of bandpass filters with M = 4:

0.04π < ωt < 0.2π, ωpw > 0.05π, 2ωt + ωpw < 0.92π,

• in case of bandpass filters with M = 8 and ωpw > 0.3π:

0.04π ≤ ωt ≤ 0.13π 2ωt + ωpw ≤ 0.84π,

• in case of bandpass filters with M = 8 and 0.15π ≤
ωpw ≤ 0.3π:

0.04p ≤ ωt ≤ 0.1π.

The proposed method was introduced for lowpass and

bandpass filters. However, formulas (5), (6) can be also applied

for the highpass and bandstop filters, with the same passband

width ωpw. In order to evaluate the accuracy of the proposed

approximation, the group delay error ετ and the minimum

stopband attenuation error εA were calculated. Both errors

were defined as the difference between the values obtained

TABLE IV
THE FORMULAS FOR λ, δ AND γ CALCULATION FOR BANDPASS FILTERS

M λ δ γ

M = 4 3.89ω2

t + 0.4 −255ω2

t + 0.62 1831ω2

t + 31.9

+0.37ωt +163ωt −1113ωt

M = 8 −3.1ω2

t + 0.06 37.5ω2

t + 14.4 −490ω2

t − 42.0

ωpw > 0.3π +4.23ωt +25.0ωt −67.0ωt

−3.07ω2

t + 0.7 112ω2

t − 2.98 −1143ω2

t + 278

M = 8 +2.42ωt +41.0ωt +175ωt

ωpw ≤ 0.3π +0.92ω2

pw −43.6ω2

pw +561ω2

pw

−1.44ωpw +59.9ωpw −832ωpw

+1.9ωpwωt −58.6ωpwωt +117ωpwωt

ω in radians per sample

TABLE V
APPROXIMATION ERRORS IN STATISTICAL COMPARISON

Filter type Number Percentage of filters for which [%]

of filters |ετ | ≤ 1∗ |εA| ≤ 1dB |εA| > 2dB

LP M = 2 330 98.2 65.5 12.0

LP M = 4 176 98.9 52.3 14.8

ωpw > 0.2π

LP M = 4 440 91.8 62.9 6.1

ωpw ≤ 0.2π

LP M = 6 163 92.6 43.6 26.4

ωpw > 0.2π

LP M = 6 175 92.1 43.0 22.4

ωpw ≤ 0.2π

BP M = 4 252 95.2 44.8 17.5

BP M = 8 168 98.8 33.9 26.8

ωpw > 0.3π

BP M = 8 252 93.3 65.9 5.6

ωpw ≤ 0.3π

∗ in samples

by approximation formulas (5) or (6) and the real values.

In particular, the acceptance limit for group delay error was

|ετ | ≤ 1 sample, whereas for stopband attenuation error εA
two levels were considered: |εA| < 1 dB and |εA| > 2 dB.

Table V contains the percentage of filters resulting from

design procedure for which the given conditions were satisfied

(LP and BP denote lowpass bandpass filters respectively).

The results show that the proposed formula (5) successfully

approximates the group delay for all types of filters. Quality of

approximation of the minimum stopband attenuation depends

on filter type; however, in the worst case about 77% of lowpass

filters and 73% of bandpass filters satisfy |εA| ≤ 2 dB. In

some cases, when filters designed by use of (5) and (6) do

not meet given specifications, one can try to increase group

delay if the magnitude overshoot is too large, or increase N
if the stopband attenuation is too small. However, as these

parameters are not independent, modification of any of them

may lead to the modification of another one.

IV. DESIGN EXAMPLES

To illustrate the practical usage of the proposed formulas

let us consider two examples.

A. Example 1

We want to design the IIR lowpass filter with M = 6 and

linear phase in passband satisfying the following specifica-

tions: passband edge ωp = 0.5π, stopband edge ωs = 0.6π,

stopband attenuation As = 34 dB. The same filter was

designed in [8] by means of semidefinite programming. We

want to check whether the values N and τ1 obtained by (5),

(6) coincide with those applied in [8]. First, the coefficients

λ, δ, γ have to be evaluated by substituting 0.5π for ωpw and

0.1π for ωt in appropriate formulas from Table II. Next, based

on (6) we obtain the following equation

34 = 1.38N + 19.89−
26.2

N
(7)
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Fig. 5. Magnitude frequency response of lowpass filters designed by
algorithm from [11] (solid line) and from [8] (dashed line).

Fig. 6. Group delay response in passband for lowpass filters designed by
algorithm from [11] (solid line) and from [8] (dashed line).

which has two solutions. We choose the positive one 11.83,

which after rounding gives N = 12. Then from (5) we

calculate group delay τ1 = 10. Now we have all data to start

the optimization algorithm [11]. Figure 5 and Fig. 6 show

magnitude frequency response and group delay response of

the designed filter. The magnitude overshoot is 0.91 dB and

attenuation As in stopband is 36.2 dB. The filter’s performance

was similar to the filter in [8] (dashed line in Fig. 5) obtained

for N = 12 and τ = 9. Thus the values N and τ1 obtained

by means of formulas (5), (6) are good estimates.

B. Example 2

Design the IIR bandstop filter with M = 4, linear phase in

passband and passband edges ωp1 = 0.4π, ωp2 = 0.6π, stop-

band edges ωs1 = 0.45π, ωs2 = 0.55π, stopband attenuation

40 dB. Applying formulas (5), (6) we obtain N = 40.36 and

τ1 = 24.48. Thus after rounding N = 40, τ1 = 24. Figure 7

shows the magnitude frequency response of the designed

bandstop filter. The resulting attenuation in the stopband is

39.87 dB and the magnitude overshoot is 0.8 dB.

V. COMMENTS ON WEIGHTING FUNCTION

Let us come finally to the question of the weighting function

W0(ω) 6= 1 in the passband or in the stopband. We use

constant value of this function thus we denote W0(ω) = Wp

Fig. 7. Magnitude frequency response of the bandstop filter.

in the passband and W0(ω) = Ws in the stopband. If

Wp/Ws = K < 1 and the algorithm [11] is applied, then the

stopband ripple is K times less than the passband ripple, but

the exact value of these ripples are unknown. Our experience

allow to affirm that the formula (5) is still satisfied in case of

K 6= 1 and the value of N calculated by formula (6) must be

shifted up or down depending on K (see Fig. 8). It is clear

from Fig. 8 that we can increase stopband attenuation of the

filter assuming Ws > 1 whereas Wp = 1. Unfortunately, at

the same time group delay ripple increases as well. We prefer

to decrease group delay ripple because our goal is to design

linear phase IIR filter. If we assume Wp > 1 and Ws = 1, it

causes the decrease of the stopband attenuation. Hence, in our

opinion the assumption Ws = Wp = 1 is a good compromise

for the filters to be considered.

VI. CONCLUSION

The useful formulas to calculate the group delay and the

order N of the IIR filter were presented in the paper. Good

results of estimation are achieved for the lowpass and highpass

filters with two, four or six poles (outside the origin of the z-

plane) and for the bandpass and bandstop filters with four or

Fig. 8. Relationship As = f2(N) for lowpass filters with M = 2, ωt =
0.1π, ωp = 0.4π and Wp = 1, Ws = 10 (o), Wp = 5, Ws = 1 (*). Solid
line denotes approximation by (6) for Wp = Ws = 1, dotted line=solid
line+9 dB, dashed line=solid line-6 dB.
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eight poles. We use even number of poles because it is good

practice to assign one pole for each transition band [18] (if ω
ranges from 0 to 2π). The number of zeros is arbitrary for all

types of filters. The region of validity of the derived formulas

depending on passband width, transition band width and filter

order is also determined. Outside the validity region formulas

(5), (6) can be used for obtaining starting values of τ1 and

N , followed by search for the optimal ones. Moreover, both

derived formulas are not restricted to the algorithm from [11]

but are suitable for all quasi-equiripple design.
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