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Non-Certainty-Equivalent Adaptive Control

of a Nonlinear Aeroelastic System
Keum W. Lee and Sahjendra N. Singh

Abstract—The development of a non-certainty-equivalent
adaptive control system for the control of a nonlinear aeroelastic
system is the subject of this paper. The prototypical aeroelastic
wing section considered here includes structural nonlinearity and
a single control surface for the purpose of control. Its dynamical
model has two-degree-of-freedom and describes the plunge and
pitch motion. It is assumed that the model parameters (except
the sign of one of the control input coefficients) are not known.
The uncontrolled aeroelastic model exhibits limit cycle oscillation
beyond a critical free-stream velocity. Based on the attractive
manifold, and the immersion and invariance methodologies, a
non-certainty-equivalent adaptive state variable feedback control
law for the trajectory tracking of the pitch angle is derived.
Using the Lyapunov analysis, asymptotic convergence of the
state variables to the origin is established. It is shown that the
trajectory of the system converges to a manifold. The special
feature of the designed control system is that the closed-loop
system asymptotically recovers the performance of a determinis-
tic controller. This cannot happen if certainty-equivalent adaptive
controllers are used. Simulation results are presented which show
that the control system suppresses the oscillatory responses of the
system in the presence of large parameter uncertainties.

Keywords—Aeroelastic wing, adaptive flutter control, nonlinear
system, immersion and invariance method, uncertain system.

I. INTRODUCTION

A
EROELASTIC systems have rich dynamics and can

exhibit a variety of phenomena including instability,

limit cycle, and even chaotic vibration [1], [2]. In the past,

researchers have made many important contributions related

to aeroelastic behavior, stability and control of linear and

nonlinear aeroelastic systems. Readers may refer to [3] which

provides a historical perspective on analysis and control of

aeroelastic systems. For aeroelastic models with parametric

uncertainties, stability analysis using µ method has been

attempted [4]. For a benchmark active control technology

(BACT) wind-tunnel model constructed at the NASA Langley

Research Center, control algorithms for flutter suppression

have been developed [5], [6]. Based on classical, minmax,

and passification methods, robust control systems for flutter

control have been proposed [7], [8]. Control systems using

gain scheduling method have been also attempted [9]. Neural

and adaptive controllers for a transonic wind-tunnel model

have been proposed [10], [11].

A two-degree-of-freedom aeroelastic model has been de-

veloped and tests have been performed in a wind tunnel
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to examine the effect of nonlinear structural stiffness. For

this model, control systems have been designed using linear

control theory and feedback linearization technique [12]–[14].

Furthermore for the model with parametric uncertainties, a

variety of robust, and direct and indirect adaptive control

systems have been developed [15]–[19]. The design of these

adaptive laws are based on the certainty-equivalence principle.

In certainty-equivalent adaptive (CEA) systems, the estimated

parameters generated in the adaptive loop are directly used for

synthesis without any modification [20], [21].

A new class of adaptive control systems based on the

immersion and invariance (I&I) theory has been designed

for nonlinear systems [22]–[24]. This method provides non-

certainty-equivalent adaptive (NCEA) control systems. Unlike

the CEA systems, the estimated parameters of the NCEA

system includes not only the estimates generated by the adap-

tive dynamic subsystem but also include nonlinear functions.

The additional nonlinear terms in the estimated parameter

vector provide improved performance of the controller. For the

application of the method of [22]–[24], one needs to satisfy

certain integrability conditions, which are not easy. In order to

avoid restriction posed by the integrability conditions of the

I&I method, a design technique (termed attractive manifold

method) for the derivation of NCEA law using filtered signals

has been developed [25], [26]. The approach essentially sets

up the design problem based on the filtered signals and uses

parameter estimates combined with nonlinear functions similar

to the I&I method. As such the attractive manifold method

shares some features inherent to the I&I methodology. Using

this approach, authors have developed NCEA laws for the

attitude control of a rigid body and robotic systems [25], [26].

Based on the immersion and invariance approach of [22]–[24],

NCEA control systems for the control of an aeroelastic system

and a satellite using solar radiation pressure have been also

developed [27], [28].

The NCEA law designed for the aeroelastic system of [27]

based on the I&I method, uses plunge acceleration and state

variables for feedback. Furthermore, the analytical computa-

tion in [27] is involved. As such it is of interest to develop

new NCEA control laws for aeroelastic systems which are

relatively simple from the viewpoint of analytical computation

and use only state vector for feedback.

In this paper, the design of a non-certainty-equivalent adap-

tive control system for the control of an aeroelastic system is

considered. This aeroelastic model has two-degree-of freedom

and governs the nonlinear plunge and pitch motion [12], [13]

of the wing section. This type of model has been traditionally

used for the theoretical as well as experimental analysis of
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two-dimensional (plunge and pitch) aeroelastic behavior. The

model has pitch polynomial type structural nonlinearities and

uses a single control surface for the purpose of control. It is

assumed that all the system parameters, except the sign of a

single control input coefficient, are not known. The aeroelastic

model has quasi-steady linear aerodynamic aerodynamics;

however, it is noted that one can extend this approach to the

case of nonlinear aerodynamics as well. This aeroelastic model

exhibits limit cycle oscillations when the free-stream velocity

exceeds a critical value. Based on the attractive manifold,

and the immersion and invariance methodologies of [24]–

[26], a non-certainty-equivalent adaptive control system for

the pitch angle trajectory control is derived. Unlike the NCEA

law designed in [27] for this model, here measurement of

plunge acceleration is not needed, and for synthesis only the

state variables are used. The NCEA control system has a

modular structure and consists of a parameter estimator and a

control module. It is shown that in the closed-loop system, the

pitch angle trajectory converges to the reference trajectory, and

oscillations in the state variables are suppressed. Furthermore,

it is seen that in the closed-loop system, trajectories asymptoti-

cally converge to a manifold. Interestingly, once the trajectory

converges to this manifold, the control system recovers the

performance of a deterministic system. This special feature

cannot be seen in CEA control systems. Simulation results for

the control of oscillatory responses of the aeroelastic system

for various flow velocities and elastic axis locations using

the NCEA law are presented. It is seen that the controller

accomplishes regulation of the state vector to the origin despite

large parameter uncertainties.

The organization of the paper is as follows. Section 2

presents the aeroelastic model. A control module is designed

in Section 3. This is followed by the design of a parameter

identifier in Section 4. Finally, Section 5 presents the simula-

tion results.

II. AEROELASTIC MODEL AND CONTROL PROBLEM

Fig. 1 shows the aeroelastic model. A laboratory model

of this has been developed at the Texas A&M University

for performing experiments. This model has two-degree-of-

freedom, and its plunge and pitch motion is described by a

system of dimension four.

The governing equations of motion are provided in [13]

which are given by

[

mt mwxαb
mwxαb Iα

] [

ḧ
α̈

]

+

[

ch 0
0 cα

] [

ḣ
α̇

]

(1)

+

[

kh0 0
0 kα(α)

] [

h
α

]

=

[

−L
M

]

where h is the plunge displacement and α is the pitch angle.

In equation (1), mw is the mass of the wing; mt is the total

mass; b is the semichord of the wing; Iα is the moment of

inertia; xα is the nondimensionalized distance of the center

of mass from the elastic axis; cα and ch are the pitch and

plunge damping coefficients, respectively; and M and L are

elastic axis
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Fig. 1. Aeroelastic model.

the aerodynamic moment and lift. It is assumed that the quasi-

steady aerodynamic force and moment are of the form

L = ρU2bclαsp

[

α+
ḣ

U
+

(

1

2
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)
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2
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)

b
α̇

U

]
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+ρU2b2cmβf
spβf

where a is the nondimensionalized distance from the mid-

chord to the elastic axis, sp is the span, clα and cmα
are the lift

and moment coefficients per angle of attack, and clβf
and cmβf

are lift and moment coefficients per control surface deflection

βf . The nonlinear function kα(α) has a polynomial form of

degree four and is given by

kα(α) = kα0
+ kα1

α+ kα2
α2 + kα3

α3 + kα4
α4

Of course the design method is applicable to any linearly

parameterized nonlinear function kα(α).
Define the state vector as

x = (x1, ..., x4)
T = (α, h, α̇, ḣ)T ∈ R4. Then the state space

representation of equation (1) can be expressed as

ẋ =

[

02×2 I2×2

Ms Md

]

x+

[

02×2

g0

]

knα
+

[

02×1

b0

]

βf

.
= f(x) +B0βf (3)

where f(x) and B0 are defined in equation (3),

αkα = αkα0
+knα

, knα
= α(kα1

α+kα2
α2+kα3

α3+kα4
α4),

kij are constants, g0 = (g0i) is 2× 1 constant vector,

b0 = (b01, b02)
T (T denotes transposition), 0 and I denote null

and identity matrices of indicated dimensions, and the matrices

Ma = (Ms,Md) ∈ R2×4, g0 and b0 are easily obtained from

equation (1). For the derivation of the control law, following

assumption is made.

Assumption 1: It is assumed that elements of Ma, g0, b0,

and kαj
associated with the structural nonlinearity are not

known, but the sign of b01 is known.

The open-loop aeroelastic model has stable as well as

unstable behavior depending on the free-stream velocity. For
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the model parameters given in the appendix and a = −0.6547,

the loci of the eigenvalues of the matrix A, as a function of

U , are shown in Fig. 2(a). We observe that for U less than the

critical value U∗ = 16.6750, the eigenvalues of A are stable,

and as U exceeds the critical value, two branches of the loci

cross into unstable region in the complex plane. Indeed U is a

bifurcation parameter, and as the loci cross the imaginary axis,

the supercritical Andronov-Hopf bifurcation takes place and

periodic orbits are born. The size of the orbit increases with U .

Figures 2(b)-(c) show the the closed orbits in the (α, α̇, U ) and

(h, ḣ, U) space for a set of values of U exceeding the critical

value U∗. The oscillatory waveforms of α and h as functions

of time for U = 20 (m/s) are shown in Figs. 2(e)-(f) for initial

state x(0)=( α(0) = 0.1 (deg), h(0) = 0.0001(m), 0, 0)T . We

observe that after a short transient period, the model exhibits

limit cycle oscillation (LCO). Of course it is important to

suppress the undesirable oscillatory responses by application

of control signal.

Let α be the controlled output variable. Suppose that αr is a

specified bounded and smooth reference pitch angle trajectory

which asymptotically converges to zero. We are interested in

the design of a non-certainty-equivalent adaptive system for

the pitch angle trajectory tracking and regulation of the state

vector to the origin in the state space. The choice of convergent

reference trajectory is essential because here the interest is

in suppression of the oscillatory responses of the aeroelastic

model.

In the next sections, the control system is designed. It has

a modular structure consisting of a control module and a

parameter estimator. The design is based on the the attractive

manifold and the I&I methodologies of [24]–[26].

III. NON-CERTAINTY-EQUIVALENT ADAPTIVE CONTROL

MODULE

First the design of the control module for the trajectory

control of α is considered. Using equation (3), the pitch

acceleration can be expressed as

α̈ = f3(x) + b01u = φ(x)T θ + b01u (4)

where u = βf , f3(x) = φT (x)θ is the third component of

f(x), θ ∈ R8 is the vector of unknown parameters, and

φ(x) = (α, h, α̇, ḣ, α2, α3, α4, α5)T ∈ R8

.

For controller design, consider a function s which is a linear

combination of the tracking error α̃ = α−αr and its derivative

given by

s = ˙̃α+ λα̃ (5)

where λ > 0. In view of equation (5), we observe that if s
is zero, then the tracking error tends to zero. As such it is

sufficient to design a controller which forces s to zero.

The derivative of s along the solution of equation (4) is

given by

ṡ = φT (x)θ + b01u− α̈r + λ ˙̃α (6)

Adding and subtracting k1s, equation (6) can be written as

ṡ = b01[φ
T (x)θb−1

01
+ b−1

01
(−α̈r + λ ˙̃α+ k1s) + u]− k1s (7)

where k1 > 0. Define a vector function ψ(x, t) ∈ R9 of the

form

ψT (x, t) = [φT (x),−α̈r + λ ˙̃α+ k1s] (8)

and a parameter vector p ∈ R9 as

p =

[

θb−1

01

b−1

01

]

Here p is the vector of unknown parameters and the argument

t of ψ denotes its dependence on αr and its derivatives. Then

equation (7) can be written in a compact form as

ṡ = b01[ψ
T (x, t)p+ u]− k1s (9)

The adaptive control system of [27], designed using the

immersion and invariance approach, requires state and plunge

acceleration (ḧ) feedback. Here in order to avoid acceleration

measurement for synthesis, filtered signals are introduced

following the attractive manifold design method of [25], [26].

The signals s, ψ and u are passed through first order filters

to generate signals sf , ψf and uf , respectively. These filtered

signals satisfy

ṡf = −µsf + s

ψ̇f = −µψf + ψ (10)

u̇f = −µuf + u

where µ > 0.

Now instead of equation (9), a new equation involving

signals sf , ψf and uf are obtained for the derivation of the

control law. Note that equation (10) implies that

s = (D + µ)sf , ψ = (D + µ)ψf and u = (D + µ)uf , where

D = (d/dt) denotes the derivative operator. Substituting for

s, ψ and u in equation (9) and factoring (D + µ) gives

(D + µ)[ṡf − b01(ψ
T
f p+ uf ) + k1sf ] = 0 (11)

Solving the differential equation (11), one obtains

ṡf − b01(ψ
T
f p+ uf ) + k1sf = e−µtsu(0) (12)

where

su(0) = ṡf (0)− b01(ψ
T
f (0)p+ uf (0)) + k1sf (0) (13)

Thus equation (12) implies that

ṡf = b01(ψ
T
f p+ uf)− k1sf + ǫ(t) (14)

where ǫ(t) = e−µtsu(0). The dynamics of sf includes an

exponentially decaying signal ǫ(t). Since this signal vanishes

asymptotically, it is ignored in the sequel for simplicity. (Later

a simple modification in the analysis will be indicated for

establishing stability if su(0) is not zero).

Of course, it is possible to set the initial conditions prop-

erly so that ǫ(t) = 0. For verifying this, first note that

ṡf (0) = −µsf(0) + s(0). Then it follows from equation

(13) that su(0) = 0 if ψf (0) = 0, uf (0) = 0, and

sf (0) = s(0)/(µ− k1). Of course, one can choose ψf (0) and

sf (0) as indicated here, and it will be seen later that indeed

uf (0) becomes zero if ψf (0) = 0.

Ignoring ǫ(t) in equation (14) gives

ṡf = b01(ψ
T
f p+ uf)− k1sf (15)
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For the derivation of the control law, equation (14) is impor-

tant. The parameter vector p is not known. Let p̂+ β(sf , ψf )
be an estimate of p, and let the parameter error be

z = p̂+ β(sf , ψf )− p (16)

where β is nonlinear function of the indicated arguments.

Later the dependence of β on the variables sf and ψf will be

justified. It is pointed out that the inclusion of the nonlinear

function β in the parameter vector estimate is the main

advantage of the I&I approach. In certainty-equivalent adaptive

laws, β is set to zero.

In view of equation (15), we select a control law of the

form

uf = −ψT
f (p̂+ β) (17)

(Note that uf(0) = 0 if ψf (0) = 0.) Substituting equation

(17) in (15), gives

ṡf = b01
(

ψT
f p− ψT

f (p̂+ β)
)

− k1sf

= −b01ψ
T
f z − k1sf (18)

For stability analysis, consider a Lyapunov function

V1 =
s2f
2

(19)

Its derivative along the solution of equation (18) is

V̇1 = sf [−b01ψ
T
f z − k1sf ]

≤ −k1s
2

f + |sf ||ψ
T
f z||b01| (20)

Using Young’s inequality [21], one has

|sf ||ψ
T
f z||b01| ≤

k1
2
s2f +

b2
01

2k1
(ψT

f z)
2

which can be substituted in equation (20) to yield

V̇1 ≤ −
k1
2
s2f +

b2
01

2k1
(ψT

f z)
2 (21)

From equation (21), it follows that V1 (and therefore z) will be

bounded provided that ψT
f z is bounded. In the next section, an

adaptation law is derived such that z and ψT
f z have desirable

behavior.

IV. PARAMETER ESTIMATOR DESIGN

For the derivation of the adaptation law, let us obtain the

dynamics of the parameter error z. Differentiating z gives

ż = ˙̂p+
∂β

∂sf
ṡf +

∂β

∂ψf

ψ̇f (22)

Substituting the derivatives of sf and ψf from equations (18)

and (10) yields

ż = ˙̂p+
∂β

∂sf
(−b01ψ

T
f z − k1sf ) +

∂β

∂ψf

(−µψf + ψ) (23)

In view of equation (23), we select the update law of the form

˙̂p =
∂β

∂sf
k1sf −

∂β

∂ψf

(−µψf + ψ) (24)

Substituting equation (24) in (23), gives

ż = −
∂β

∂sf
b01ψ

T
f z (25)

For the stability analysis, consider a Lyapunov function

given by

V2 =
1

2
zT z (26)

Using equation (25), its derivative can be written as

V̇2 = −zT
∂β

∂sf
b01ψ

T
f z (27)

For making V̇2 negative semidefinite, one chooses

∂β

∂sf
= (sgn(b01))γ1ψf (28)

where γ1 > 0 is the adaptation gain. This equation can be

integrated to give

β = (sgn(b01))γ1ψfsf (29)

Substituting equation (28) in (27) gives

V̇2 = −γ1|b01||ψ
T
f z|

2 ≤ 0 (30)

Since V2 is positive definite and V̇2 is negative semidefinite,

z = 0 is globally uniformly stable and z ∈ L∞[0,∞) (the set

of bounded functions). Furthermore integrating equation (30)

gives
∫

∞

0

|b01|(ψ
T
f z)

2dt ≤ V2(0)

which implies that ψT
f z ∈ L2[0,∞) (the set of square

integrable functions).

In the definition of function s in equation (5), the state

variables h and ḣ do not appear. Thus even if α happens to

be identically zero, the stability of the complete system will

depend on the behavior of h. Therefore, examination of the

zero dynamics of the system is essential. The zero dynamics

represent the residual motion of the system when α and α̇
vanish. The chosen reference trajectory αr converges to zero

since α is to be regulated to zero. Therefore, in the following

analysis, for simplicity, we assume that the reference trajectory

αr(t) is zero. By defining new variables η1 = b02α−b01h and

η2 = η̇1, one can show that

η̇ = Aηη + gη(α, α̇) (31)

where Aη is a 2 × 2 constant matrix, gη is a nonlinear

function of indicated arguments satisfying gη(0, 0) = 0 and

η = (η1, η2)
T ∈ R2. Thus the zero dynamics are described

by η̇ = Aη.

The following assumption is made.

Assumption 2: For the aeroelastic model, the flow velocity

and the elastic axis location are such that the matrix Aη is

Hurwitz (i.e. the origin of the zero dynamics is exponentially

stable).

Now the stability of the closed-loop system including the

estimator and the control module is analyzed. Consider a

composite Lyapunov function

V = V1 + r1V2|b01|, r1 > 0 (32)
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Using equation (21) and (30), the derivative of V takes the

form

V̇ ≤

{

−
k1
2
s2f +

b2
01

2k1
(ψT

f z)
2

}

−r1 ·γ1|b01||ψ
T
f z|

2 ·|b01| (33)

We choose the weighting parameter satisfying r1 ≥ 1

k1γ1

.

Then it follows from equation (33) that

V̇ ≤ −
k1
2
s2f −

b2
01

2k1
|ψT

f z|
2 ≤ 0 (34)

Noting that V is a positive definite function of sf and z, and

V̇2 ≤ 0, one finds that (sf , z) ∈ L∞[0,∞). Also integrating

equation (34), one concludes that sf and ψT
f z are square

integrable functions. According to the definition of the filtered

signals, boundedness of sf implies that s; and therefore, α and

α̇ are bounded. Thus under Assumption 2, it follows that the

state vector η is bounded, and therefore x is bounded. This

implies that all signals in the closed-loop system and ṡf are

bounded. Then using the fact that φTf z and sf are bounded and

square integrable, and that their derivatives are bounded, one

has that sf and φTf z tend to zero. In view of equation (18), ṡf
is square integrable and moreover s̈f is bounded. From this

one concludes that ṡf tends to zero, which in view of equation

(10) implies that s tends to zero. Of course α and α̇ tend to

zero if s converges to zero. Finally one concludes convergence

of x to the origin in view of Assumption 2.

Substituting β from equation (29) in (24) gives the update

law

˙̂p = γ1(sgn(b01))ψfsf (k1 + µ)− γ1(sgn(b01))sfψ (35)

For synthesis, the input u is obtained from the filtered signal

uf using

u = (D + µ)uf = −(D + µ)[φTf (p̂+ β)] (36)

Note that D = d/dt. Using equation (36) and β from (29),

and substituting for the derivatives of ψf , p̂ and β, it is seen

that the control input takes a simplified form given by

u = −ψT (p̂+β)− γ1(sgn(b01))ψ
T
f ψf [(k1 −µ)sf + s] (37)

Thus it is noted that the filtered signal uf has been introduced

here only for analysis and it is not needed for the implemen-

tation of the controller.

Now based on this derivation, the following theorem is

stated.

Theorem 1: Consider the closed-loop system equation (3)

including the control and update laws (equations (37) and

(35)). Suppose that Assumptions 1 and 2 are satisfied. Then

in the closed-loop system, all the signals are bounded and α̃,

x, and ψT z asymptotically converge to zero.

This derivation of control law has been done for the choice

of proper initial conditions such that ǫ(t) = e−µtsu(0) = 0.

Note that ǫ(t) satisfies ǫ̇(t) = −µǫ(t). For ǫ(t) 6= 0, ṡf in

equation (18) and ż in equation (25) will have ǫ(t)-dependent

terms. To compensate for these functions, a modified Lya-

punov function

V =
s2f
2

+
r1z

T z

2
+ r2ǫ

2

is chosen, where r2 > 0. Such a modification for stability

analysis for systems with additive decaying exponential signals

is commonly used in adaptive literature [21]. Its derivative can

be shown to be a negative definite function of sf , ψT
f z and

ǫ(t) for sufficiently large positive values of r1 and r2, and

therefore Theorem 1 remains valid.

The designed controller has an interesting feature. Let Ω be

a manifold defined as

Ω = {(ψf , z) ∈ R18 : ψT
f z = 0} (38)

According to Theorem 1, one has that ψT
f z converges to zero.

As such the trajectory of the closed-loop system is eventually

confined to the manifold Ω. Furthermore on this manifold, in

view of equation (18), one has ṡf = −k1s. Of course, such a

dynamics for sf can be obtained by choosing a deterministic

control law uf = −ψT
f p when the system parameters are

known. Thus it follows that the NCEA law asymptotically

recovers the performance of the deterministic controller. This

has been possible due to inclusion of additional nonlinear

function β(sf , ψf ) in the parameter estimate.

V. SIMULATION RESULTS

In this section, numerical results for the model given in

Refs. [13] and [14] are obtained. The system parameters are

given in the appendix. We assume that the initial conditions

are h(0) = 0.01 (m), α(0) = 5 (deg), α̇(0) = ḣ(0) = 0.

The initial conditions of the filters are ψf (0) = 09×1 and

sf (0) = 0. For smooth regulation of the pitch angle, a fourth-

order command generator of the form

(D2 + 2ρ1ω1D + ω2

1)(D
2 + 2ρ2ω2D + ω2

2)αr(t) = 0

is used for generating reference trajectories for tracking. Its

parameters are ρ1 = ρ2 = 1, and ω1 = ω2 = 2. The

initial conditions are αr(0) = α(0) (deg) and Dkαr(0) = 0,

k = 1, ..., 3. The controller gains are chosen to be λ = 15 and

k1 = 15. The adaptation parameter is γ1 = 0.2, and filter

parameter is µ = 20. The initial estimate of the unknown

parameter vector p is arbitrarily set as p̂(0) = 0. The actual

value of the parameter vector is given in the appendix. This

is rather a worse choice of parameter estimates but is made to

examine the robustness of the controller.

The poles of the linearized system for U = 20m/s and

a = −0.6547 are 1.1975 ± 13.0787i, −3.3905 ± 13.5807i,
and the zeros of the transfer function relating α and u are

−1.6279 ± 17.5836i. Thus the open-loop system is unstable

and the linearized system has a minimum phase transfer

function. The responses and the limit cycle for the open-loop

system are shown in Fig. 2. Now the closed-loop responses

for the model equation (1) with the control law equation (36)

and adaptation law equation (35) are obtained.

Case A. Adaptive control: U = 20m/s, a = −0.6547
First the closed-loop system for the choice of the free-stream

velocity U = 20m/s, a = −0.6547 is simulated. The selected

responses are shown Fig. 3 (a)-(h). We observe convergence

of the tracking error and the state vector to zero in less than

5 seconds. The maximum tracking error is little over 3 (deg).

The transients in the h-response is caused due to the complex
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zeros of the zero dynamics and coupling of the plunge-pitch

dynamics. The parameter estimate vector p̂+ β converges to

some constant vector which differs from the actual value. This

is not unusual, because convergence of parameters requires

satisfaction of certain persistent excitation conditions. The plot

of norm of p̂ is shown in Fig. 3(g). As proven in Theorem 1,

it is seen that ψT
f z indeed converges to zero. As such the

trajectories of the closed-loop system are eventually confined

to the manifold M , and the adaptive controller recovers the

performance of the deterministic system. The maximum value

of flap deflection is 27.9 (deg).

Case B. Adaptive control: U = 25m/s, a = −0.6547

Now simulation is done to examine the sensitivity of the

control system with respect to variation in the free-stream ve-

locity. The chosen higher free-stream velocity is U = 25m/s,
but parameters of the controller used for Case A are retained.

The responses are shown in Fig. 4 (a)-(h). We again observe

that the tracking error converges to zero, and the state vector

tends to the origin in the state space. The response time

remains less than 5 seconds. The maximum control surface

deflection is 22.0 (deg). It is seen that the flap deflection is

smaller compared to Case A. One would have expected this

because the control effectiveness of the flap increases at higher

free-stream velocity. The maximum tracking error is about 3.0

(deg).

Case C. Adaptive control: U = 20m/s, a = −0.4

In order to examine the robustness of the control system

with respect to variations in a, simulation is performed for

U = 20m/s and a different value a = −0.4. The control gains,

the filter parameter, and the adaptation gain of of case A are

retained. Furthermore initial conditions have the same values
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as of Case A. The selected responses are shown in Fig. 5 (a)-

(h). We observe that oscillations in responses are suppressed

within 5 seconds. The maximum control surface deflection is

2.7 (deg). It is seen that the control surface deflection for a =
−0.4 is smaller compared to Case A and B with a = −0.6547.

The maximum tracking error is 13.8 (deg), and ψT
f z tends to

zero.

Case D. Closed-loop control: U = 25m/s, a = −0.4,

α(0) = 10 (deg)

Simulation is performed for a = −0.4 at a higher free-

stream velocity of U = 25m/s. A larger perturbed initial

condition for the pitch angle (α(0)=10 (deg)) is assumed for

this case. The controller parameters of case A are retained.

The responses are shown in Fig. 6(a)-(h). We observe that

the pitch angle tracking error converges to zero, and the

plunge displacement and pitch angle trajectories are regulated

to the origin. It is seen that due to larger perturbation in the

initial state, larger control input magnitude (about 37.8 (deg))

compared to Case C is required in spite of the higher free-

stream velocity. The tracking error is also larger in this case

(little over 5 (deg)). But ψT
f z converges to zero similar to other

cases.

Case E. Closed-loop control for slow command:

U = 20m/s, a = −0.6547

Finally simulation results are presented for a slow command

trajectory. The parameters ωi of the command generator are

ω1 = ω2 = 1, but all the remaining control system parameters

of Case A are retained. The responses are shown in Fig. 7

(a)-(h). The plots show the convergence of the tracking error

to zero and the state vector to the origin. But the response

time is of the order of 9-10 seconds, which is almost double
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of the response time observed in Cases A to D. However

maximum control input (27.9, deg) and tracking error (3.3,

deg) magnitudes of Case A and Case E are of same order.

This is attributed to the nonlinear time varying nature of the

closed-loop adaptive system. We observe that the closed-loop

trajectory converges to the manifold M (ψT
f z tend to zero)

Extensive simulation has been performed for other values

of the free-stream velocity and the parameter a. In each case,

it has been observed that the NCEA law accomplishes control

of the oscillatory motion of the aeroelastic system in spite of

the uncertainties in the parameters.

To this end a comparison of the performance of the NCEA

control system of this paper with the NCEA and the certainty-

equivalent adaptive control systems derived in [27] will be

appropriate. It is found that analytical derivation of control

system in this paper is simpler compared to the derivation

in [27]. We observe that for the chosen controller gains, the

performance of this NCEA law with respect to convergence

of tracking error and state vector is somewhat similar to

the NCEA law of [27]. But here the control magnitude

and tracking error are larger compared to those of [27]. Of

course, unlike the controller synthesized here, the plunge

acceleration, in addition to the state vector x, is used for

controller implementation in [27]. The response time (about

5 seconds) of this closed-loop system is smaller compared

to the response time (of the order of 9-10 seconds) of [27],

because unlike [27] fast command trajectory is being tracked

in Case (A)- (D) in this paper. But as seen in Case E here,

for the same command trajectory, the response time of this

NCEA system and the NCEA system of [27] are identical (9-

10 seconds). It is also noted that similar to the NCEA law

of [27], the control magnitude of this NCEA law for similar

initial state perturbation (that is, Case (A)-(C) and (E)) is

smaller compared to the certainty-equivalent adaptive system

of [27]. Furthermore, the convergence of the trajectories to the

manifold M defined in equation (38) is yet another advantage

of the NCEA law over the CEA law. The CEA law in [27]

does not have such kind of property because it does not have

additional nonlinear function β(x) in the parameter estimate.

VI. CONCLUSIONS

In this paper a new adaptive control system based on

the attractive manifold, and the immersion and invariance

methodologies was designed for the control of a nonlinear

aeroelastic system. For the purpose of design, filtered signals

were used. This design methodology gave a non-certainty-

equivalent adaptive control law. The control system has a mod-

ular structure and includes a control module and a parameter

identifier. Unlike the NCEA law published in literature, this

controller was synthesized without acceleration feedback, and

moreover the analytical computation has some simplicity. The

stability analysis for the control module and the identifier was

performed separately using two distinct Lyapunov functions.

This allowed flexibility in adjusting the rate of convergence of

parameter estimation error independently. Then using a com-

posite Lyapunov function, it was shown that in the closed-loop

system, all signals were bounded and the pitch angle trajectory

tracking error and the plunge displacement asymptotically con-

verged to zero. It was seen that asymptotically the trajectory

converged to a manifold. Interestingly on this manifold, the

system recovered the performance of a deterministic controller.

Simulation results showed regulation of the pitch angle and

plunge displacement to the origin in spite of large parameter

uncertainties.

APPENDIX A

SYSTEM PARAMETERS AND ESTIMATION PARAMETERS

1. System Parameters

b = 0.135m, mw = 2.049kg, ch = 27.43Ns/m,

cα = 0.036Ns, ρ = 1.225kg/m3, clα = 6.28, clβf
= 3.358,

cmα
= (0.5 + a)clα , cmβf

= −0.635, mt = 12.387kg,

Iα = 0.0517 +mwx
2

αb
2kg ·m2, xα = [0.0873− (b+ ab)]/b,

kα = 2.82∗(1−22.1α+1315.5α2−8580α3+17289.7α4)N ·
m/rad, kh0 = 2844.4N/m

2. Poles and zeros of linearized model, and p
Case A.

Zeros : −1.6279± 17.5836i
Poles : 1.1975 ±13.0787i, −3.3905 ±13.5807i,

p : 1.0e + 004∗ [-0.0008, 0.0003, -0.0000, 0.0000, -0.0025,

.1481, -0.9657, 1.9460, -0.0000]’, where p(9) = −0.0218
Case B.

Zeros : −1.6589± 17.5807i
Poles : 2.2236 ±14.1154i, −4.6026 ±14.3078i
p : 1.0e + 004*[-0.0005, 0.0002, 0.0000, 0.0000, -0.0016,

0.0948, -0.6181, 1.2454, -0.0000]’, where p(9) = −0.0139
Case C.

Zeros : −1.9561± 15.3484i
Poles : −1.4539± 14.9148i, 3.0004,−3.5873
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p : 1.0e+004 *[-0.0001, -0.0000, -0.0000, 0.0000, -0.0019,

0.1137, .7414, 1.4940, -0.0000 ]’, where p(9) = −0.0159
Case D.

Zeros : −2.1566± 15.3215i
Poles : 6.6324,−7.3235,−1.4749± 14.8472i
p : 1.0e+003 *[-0.0006, -0.0006, -0.0001, 0.0000, -0.0122,

0.7275, .7449, 9.5616, -0.0000]’, where p(9) = −0.0102
Case E.

Zeros : −1.6279± 17.5836i
Poles : 1.1975± 13.0787i, −3.3905± 13.5807i
p : 1.0e+ 004*[-0.0008, 0.0003, -0.0000, 0.0000, -0.0025,

.1481, -0.9657, 1.9460, -0.0000]’, where p(9) = −0.0218
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