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Nonuniform Spatial Sampling in a Ground-Based
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Abstract—The paper presents an idea of nonuniform spatial
sampling applied to a noise synthetic aperture radar. In certain
cases it is desirable to limit the number of spatial (along-
track) domain samples acquired in a SAR radar because of
external constraints on sampling frequency or on the overall
number of samples – e.g. in order to economy on time or power
consumed. Lowering number of samples taken may, however,
lead to spatial aliasing and incorrect reconstruction of the image.
Nonuniform sampling allows to reduce the aliasing effect and
reconstruct the image better. This technique can be applied with
standard reconstruction methods, but it works best together with
Compressive Sensing reconstruction algorithms. The idea will be
verified with an experimental noise SAR built at ISE PW.
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I. INTRODUCTION

N
OISE radar technology is gaining popularity nowadays

[1], [2]. Allowing to use very long integration time, it

permits to use low transmitted power. However, in the SAR

application it makes the overall measurement time very long,

as a sufficient number of spatial samples has to be taken to

cover the required baseline without compromising the spatial

unambiguity.

With traditional approach, the spatial unambiguity is

reached by setting the radar antenna positions spaced accord-

ing to the Nyquist criterion for the Doppler frequency induced

by antenna movement. For the worst case (an object located in

the track direction), this criterion reduces to 1/4 wavelength

spacing of the spatial samples (or antenna positions with the

stop-and-go image acquisition).

In the experimental noise radar system designed and built

at Institute of Electronic Systems, Warsaw University of

Technology (ISE PW) [3], [4], the above requirement, together

with the stepped-frequency method of wideband waveform

synthesis [5] results in barely acceptable total acquisition

times. Similar problem may exist in a stratospheric UAV

or a pico-satellite environment, where the limiting factor for

the number of acquired samples may be imposed by severe

limitation on the available power and energy (the power is

usually gained from solar panels during weeks-long flight).

In these cases, if the main processing is done in the ground

segment, also the on-board storage capacity or speed of the

down-link for transmission of raw data from the vehicle to the

Earth may impose such a limit.
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The traditional (Nyquist) limitation may be, however, lifted

if some additional information on the signal model is known.

Such an approach forms the base of compressive sampling

theory [6], where nonuniform sampling is used to gather

enough information on a signal to be able to reconstruct it.

Good results are obtained if the signal model is sparse, which

translates into the model of the radar scene composed of

limited number of bright points.

Similar approach – with assumption of a simple signal

model – was also used for exceeding the Nyquist limit in

Doppler frequency estimation in MTI radar [7]–[9]. Nowadays

the sparse signal approach is being investigated with respect

to SAR radars [10]–[13].

In a SAR radar, the sampled Doppler signal is only an inter-

mediate step in construction of radar image. Thus, after sub-

Nyquist sampling the original signal need not be reconstructed,

if other way of proceeding towards an image is available. Such

a way is provided by the compressive sampling theory, where

the representation of a signal in a chosen parameter space is

sought with ℓ1-norm minimization technique.

The compressive sampling theory also indicates the effective

distribution of samples – one of the most intuitive results is

that random selection of sampling points is usually a good

choice.

With an assumption of signal model composed of several

point-like scatterer echoes at each range resolution bin, the

calculations show that a number of sampling points along the

baseline may be reduced several times with respect to the

Nyquist sampling.

In the following, the reconstruction problems will be studied

with respect to the (already mentioned) ground based experi-

mental SAR system working with noise radar technology. The

system, built at Warsaw University of Technology (ISE PW),

consists of rail-mounted antenna carriage (shown in Fig. 1)

and a set of RF and signal processing equipment. The rail

length, or the synthetic aperture size, is limited by the available

terrace length. With poor antenna directivity, the imaged scene

may be much wider than the aperture size. This adds to the

geometrical complexity, especially with the range migration

correction.

II. SAR IMAGE RECONSTRUCTION

SAR imaging is performed with a radar platform moving

perpendicularly to the imaging direction. Thus, objects in the

field of view modulate the reflected wave due to Doppler

effect, as their distance to the radar first diminishes, then

starts to increase. This modulation is present in the received

baseband signal as a complex chirp.
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Fig. 1. SAR antennas at ISE PW “terrace SAR” lab.

In a SAR image reconstruction, it is assumed that a

baseband signal received from one range cell is composed

from chirps generated by each of the reflecting points in the

investigated range throughout the antenna beamwidth. During

signal processing, the received signal is analyzed to find the

location (and echo amplitude) of reflectors comprising the

scene.

The signal from one range cell is naturally sampled in the

cross-range dimension because of range processing which is

performed in the block mode. In stop-and-go systems, such as

the one built at ISE PW, the spatial (cross-range) sampling is

additionally forced by the principle of operation.

Maximum frequency present in the baseband received signal

determines the minimum sampling rate that is acceptable

(based on traditional approach). It is straightforward to see

that the maximum spatial frequency can be described as

kmax = 2v sinα/λ (1)

where v is the radar platform velocity, and α is the half-width

of the antenna beam.

The problem that will be investigated in the following,

can be stated as a question if the image can be properly

reconstructed with lower spatial sampling rate than 2 · kmax

as imposed by the sampling theorem.

III. COMPRESSIVE SAMPLING APPLICATION TO SAR

Compressive sampling theory (also known as compressed

sensing or CS) has been developed in recent years [6], [14]–

[16]. The main assertion of this theory is that one can recover

many kinds of signals from fewer samples than the traditional

approach requires. This relies on the sparsity property of the

signal, i.e. the possibility to express the signal as a linear

combination of a small subset of vectors belonging to a chosen

basis.

In the mathematical formulation of CS theory [6], it is

assumed that a signal s(t) can be represented in a basis

Ψ = [ψ1ψ2 . . . ψM ]

s(t) =

M∑

m=1

xmψm (2)

where x is a coefficient sequence that (in a case of orthonormal

basis) may be computed as xm = 〈f, ψm〉.
The traditional sampling theory requires M measurements

(samples) of the signal s(t) in order to reconstruct it (without

imposing any additional constrains). The CS theory states that

an exact reconstruction of a signal is possible with much

smaller number of samples, if the signal is known to have

all but S out of M coefficients xm equal to zero, where

S << M (S defines sparsity of the signal). The choice of

samples defines a sensing basis Φ, and the coherence µ(Φ, Ψ)
between bases affects the number of necessary samples. If the

signal belongs to Rn space, the coherence is calculated as

µ(Φ, Ψ) =
√
n · max

1≤k,j≤n
|〈φk, ψj〉| (3)

A theorem cited in [6] states that the reconstruction of the

coefficient sequence as the minimal ℓ1 norm one that is con-

sistent with the measured data is exact with high probability,

if the number of measurements m satisfies the condition

m ≥ C · µ2(Φ, Ψ) · S · logn (4)

for some positive constant C and the measurements are chosen

from the basis Φ uniformly at random. The value of C depends

on the signal class and on the desired probability level. As seen

in [6], for typical problems the value is not very high.

In a SAR application the signal basis Φ would be comprised

of shifted chirp signals, so the sequence of coefficients x
corresponds to the amplitudes of elementary reflector echoes.

The sparsity condition is therefore equal to the model of the

SAR scene as composed of a limited number of bright points.

Minimum- ℓ1 norm solution corresponds in this case to a

solution with minimum sum of RCS’s of the reflectors.

The sensing basis Φ in the case of SAR radar may be

composed of a series of δ(l− li) unit sample functions located

at the uniform spatial sampling locations li satisfying Nyquist

criterion. Then,m of these locations are selected for measuring

the signal.

With a simple SAR analysis, a narrow antenna pattern is

assumed. In consequence, the range to the reflecting object

r(t) is approximated to be changing in the quadratic manner,

resulting in a linear frequency modulation (chirp) pattern

of a reflected signal. This approach will be used below to

demonstrate the applicability of CS to the SAR detection.

In the wide antenna pattern case, as with the ISE PW

“terrace SAR” experiment, two additional complications have

to be taken into account. First, higher order terms in the r(t)
dependency cannot be neglected. Thus, the chirp pattern is

not linear any more. Second, the r(t) distance changes signif-

icantly – the change may well exceed the range resolution cell

size. In consequence, the detection process must include range

cell migration compensation, which is an operation performed

in the slant-range dimension. This approach will be used below

with the second series of simulations.
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Fig. 2. Multi-chirp signal coefficients xi recovered by CS methods.

IV. SIMULATION RESULTS

A simulation has been performed in order to demonstrate

the applicability of CS idea to the detection of chirps in a

signal.

A basis Ψ has been formed as a Matlab matrix consisting

of 1000 shifted chirp signals. A signal s(t) was composed of

S = 2 randomly chosen base vectors. Small number m = 50
samples of s were calculated at randomly chosen locations

and the problem of reconstruction (i.e. finding coefficients xi
representing the signal s in basis Ψ) was solved using two

methods from sparse toolboxes presented in [17] and [18].

Example results are shown at Fig. 2, where the recov-

ered coefficients are shown against the original ones. Results

labelled “BPsolver” refer to the ℓ1 method from [17] and

“StOLS” refers to the Stagewise Orthogonal Least Squares

from [18]. The latter performed satisfactorily in other experi-

ments, though with this application the former outperforms it

– the ℓ1 method reconstructs much cleaner image.

Another simulation experiment has been conducted to show

the possibility of sub-Nyquist sampling of SAR signal. The

received signal with a single reflector in field of view has been

generated and processed with traditional (matched filtering)

methods. A simulator framework developed for the “terrace

SAR” has been employed. The target has been placed at 40

m from the aperture. Other simulation parameters were as

follows:

• Imaged scene: 80x80 m

• Carrier frequency: 2 GHz

• Sounding signal bandwidth: 36 MHz

• Antenna 3dB mainlobe width: 170o

The signal processing for the SAR image reconstruction

consists of the following steps [3].

• The received signal at each antenna position is correlated

with a copy of the transmitted signal to obtain a range

profile. This stage is called range compression and is

mathematically equivalent to matched filtering.

• For each pixel of reconstructed image, samples from

relevant range cells, corresponding to r(t) changing with

antenna position, are collected in a vector (range cell

migration correction).

Fig. 3. Whole SAR picture recovered with Nyquist sampling.

Fig. 4. Whole SAR picture with 4x undersampling (uniform).

• For each pixel a matched filter in the cross-range direction

is designed.

• The amplitude of signal at the pixel is calculated as the

result of correlating the range-corrected received signal

with the matched filter template.

In the first experiment within the series, a reference picture

has been reconstructed with Nyquist sampling (Fig. 3).

Next, the same picture has been reconstructed from the

samples decimated uniformly by a factor of 4. Sub-Nyquist

sampling artefacts are clearly visible (Fig. 4) in the form of

spurious detections on a circle defined by the position of a

real target.

Finally, the picture has been again reconstructed from the

same number of samples (equal to 1/4 of number of Nyquist

samples), but this time samples were taken in a nonuniform

(staggered) manner. The staggering was done by randomly

choosing the inter-sample periods from a set of predefined

periods not being a multiple of the Nyquist period (Fig. 5).

Sub-Nyquist sampling artefacts are still visible, however they

are not so sharp and not so prominent as in the previous

example.
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Fig. 5. Whole SAR picture with 4x undersampling (staggered).

Fig. 6. Simulation results for 4x undersampling.

Fig. 7. Simulation results for 2x undersampling.

Finally, at Fig. 6 cross-sections of the above pictures along

the half-circle line comprising the maxima of the reconstructed

image are shown. The comparison shows that the staggered

choice of sampling instants allow to make the artifacts less

visible, although the reduction in the number of sampling

points is not without penalty on the image contrast.

Similar diagram for the case of undersampling by a factor

of 2 is shown at Fig. 7.

Fig. 8. Simulation results for CS method.

It must be underlined that in the above experiments a CS

method was not used. Instead, a traditional matched filter

method was used, employing well-known efficient algorithms.

The results from the previous experiment indicated that CS

methods can be expected to improve much on the image

quality.

In order to confirm this opinion, a CS experiment has

been performed. The same simulation setup with staggered

undersampling was used. It must be however noted that the

processing in this case differs significantly from the standard

(matched filtering) approach.

In the matched filter approach with range migration in ef-

fect, each pixel of the image has to be reconstructed separately

– the correction of range migration is different for each pixel.

With this separation, the final correlation step is performed on

one-dimensional vectors which simplifies the processing.

The CS approach requires construction of a signal basis

Ψ which – taking into respect range migration – consists of

two-dimensional signals, spanning cross-range due to antenna

movement and slant-range due to the migration. In the result,

the basis Ψ has the number of elements equal to the number

of analyzed pixels, where each element consists of signal

template samples from the whole cross- and slant- range

domain.

In the described experiment, the image was computed with

1 m resolution, so the basis was composed of 81*81=6561

elements. Each element was a 75*39=2925 samples range

profile template matrix.

The image reconstruction process consisted of the following

steps.

• Calculating undersampled set of range profiles (same as

with standard processing).

• Preparing the basis with (undersampled) range profile

templates for all the pixels.

• Using the iterative ℓ1 solver from the toolbox [17] to find

a best CS solution.

In the result, an image shown in Fig. 8 has been obtained.

First, exceptional dynamic range of the Fig. 8 image with

respect to traditional reconstruction has to be noted. Second,
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the CS method resulted in reconstructing an image with just

one bright pixel. This is an effect of the signal sparsity

assumption inherent in the CS approach – the CS method

will always prefer a solution minimizing number of prominent

xm coefficients (in this application – bright pixels in the

reconstructed image).

V. PRACTICAL APPLICATION REMARKS

In a practical application a limiting factor may be nowadays

the data processing. Known ℓ1 minimization algorithms, as

opposed to least squares minimization, require iterative ap-

proach which induces high numerical complexity and non-

deterministic run times. The available processing power is,

however, still increasing with use of parallel computations

and specialized processors. Also, new fast algorithms are

being developed by the CS community. A good example of

algorithms that may be employed for speedup of processing

may be found in [19].

VI. CONCLUSION

The results presented here came from a need to optimize

sampling for a noise SAR radar. They are, however, applicable

also to other SAR radars as well.

The compressive sensing methods solve the image recon-

struction problem in SAR radar exceptionally well. It must

be hovewer noted that CS solution is based on the sparse

signal model. In the result, the application of CS method must

be preceded by a study of the scene sparsity. Some cases of

inherently sparse scene have been investigated in the literature

– e.g. GMTI scene in [12] or a special case of ground-and-

building bounce in [13].

An experiment confirming the effectiveness of the described

idea is under development. It will be performed using the SAR

noise radar system designed and built at Warsaw University

of Technology.
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