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Reasoning by SVD and Morphotronic Network
Zenon Chaczko and Germano Resconi

Abstract—The immune system of the vertebrates possess the
capabilities of “intelligent” information processing, which include
memory, the ability to learn, to recognize, and to make decisions
with respect to unknown situations. The mathematical formaliza-
tion of these capabilities forms the basis of immune-computing
(IC) as a new computing approach that replicates the principles
of information processing by proteins and immune networks. This
IC approach looks rather constructive as a basis for a new kind
of computing. With the Morphotronic System or the analogous
SVD we can create effective learning process and create immune
memory by the projection operators. Given the immune memory
is possible to recognize and compare antigen in a way to take
defense action to eliminate the dangerous cell.

I. INTRODUCTION TO SVD

WE assume reader’s familiarity with the basic termi-

nology of linear algebra, however, for more details

related to the problem space refer to [1]–[6]. Our focus relates

to application of matrices of real numbers as discussed by

Tarakanov et al. [7]. The method can be used for management

and optimization of resource utilization in the Wireless Sensor

Network (Morphotronic network) [8], [9] that is composed of

Intelligent Agents [1] adhering to minimum energy binding

rules. If the superscript T denotes the transpose of a vector or

matrix, then two vectors X and Y are said to be orthogonal

if the following condition is held true:

XTY = 0 (1)

In 2D or 3D space, this simply means that the vectors are

perpendicular. Now, let A be a square matrix such that its

columns are mutually orthogonal vectors of length 1:

XTY = 1 (2)

Then A is an orthogonal matrix and

ATA = I (3)

I is the identity matrix. To simplify the notation assume that

a matrix A has at least as many rows M as columns N where

M ≥ N . An SVD of an M ×N matrix A is any factorization

of the following form:

A = UΣV T (4)

where U is an M × M orthogonal matrix V is an N × N

orthogonal matrix and Σ is an M ×N diagonal matrix with

si,j = 0 for i 6= j and si,i = si ≥ 0
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Furthermore, it can be shown that there exist non unique

matrices U and V such that

s1 ≥ s2 ≥ . . . ≥ sN ≥ 0 (5)

Henceforth, we will assume the SVD has such a property.

The quantities si are called the singular values of A and the

columns of U and V are called the left and right singular

vectors respectively. For example, for the matrix:

A =

[

0.96 1.72
2.28 0.96

]

the SVD can then be calculated as:

A = UΣV T =

[

0.6 −0.8
0.8 0.6

] [

3 0
0 1

] [

0.8 0.6
0.6 −0.8

]

It can be demonstrated that the columns of U and V are unit

length since

(0.6)2 + (0.8)2 = 1

and a simple calculation of dot products will show them to be

mutually orthogonal. From the components of the SVD many

properties of the original matrix can be determined. The null

space of a matrix A is the set of x for which Ax = 0 and the

range of A is the set of b for which Ax = b has a solution

for x.

Now, let uj and vj be the columns of U and V respectively,

then the decomposition of:

A = UΣV T can be written as

Avj = sjuj j = 1, 2, . . . , N (6)

if sj = 0 then Avj = 0 (7)

and vj is in the null space of A, whereas sj 6= 0.

A. Properties of the SVD

1) SVD and Matrix Rank

Fundamental to linear algebra is the notion of rank.

Numerous theorems begin with this condition. If matrix A is

of full rank then the following property holds. However, if the

matrix is rank deficient (or nearly so) then small perturbations

of the matrix values from round off errors or fuzzy data will

yield a matrix which is of full rank Hence, determining the

rank of a matrix is non trivial. The SVD lends us a practical

definition of rank as well as allows us to quantify the notion

of near rank deficiency.

2) SVD and Linear Independence

Another use of the SVD technique provides a measure

called a condition number which is related to the measure of
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linear independence between the column vectors of the matrix

The condition number with respect to the Euclidean norm of

a matrix A is:

cond(A) =
smax

smin

(8)

where smin and smax are the largest and smallest singular

values of A. Using the condition number we can quantify the

independence of the columns of A.

B. Applications of SVD

1) Solutions to Linear Equations

Numerous practical problems can be expressed in the lan-

guage of linear algebra. A linear system involves a set of

equations in N variables [2]. For example, let’s consider the

following linear system defined as:






x1 + 2x2 + x3 = 8
10x1 + 18x2 + 12x3 = 78
20x1 + 22x2 + 40x3 = 144

This problem can be expressed in terms of a coefficient matrix

A, where a vector x of variables and a vector b such that

a solution to the linear system Ax = b is an assignment to the

values of the vector x. For the above example Ax and bare:

Ax =





1 2 1
10 18 12
20 22 40









x1

x2

x3



 =





8
78
144



 = b

Using the SVD of A we can determine if a solution exists as

well as the general form of the possible solutions x

If UΣV T is the SV D of M x N matrix A(M ≥ N) (9)

then, the system Ax = b becomes:

UΣV Tx = b (10)

Substituting z = V Tx and d = UT b we have:

Σz = d (11)

Let Rank (A) = k, where k represents the number of non

zero singular values si. Studying the linear equations of the

diagonal system (1) we can determine whether or not there

is a solution, which exists if and only if dj = 0 whenever

sj = 0 or j > N . In cases where k < N , the zj associated

with a zero s, j can be set to any value and still yield

a solution. A general form of the possible solutions can then

be expressed in terms of these arbitrary components of z when

transformed back to the original coordinates by x = V z. The

condition number of a matrix can also describe the sensitivity

of solutions of linear systems to inaccuracies in the data. An

extension for this approach of solving linear systems can be

a solution where Ax is approximately equal to b, by this we

mean the least squares solution x for optimization of results.

2) Noisy Signal Filtering

Problems in signal processing often use linear models for

signals. In ideal (noise free) conditions the measurement data

can be arranged in a matrix, where the matrix is known to

be rank deficient. By this we mean that the signal is assumed

to lie in a proper subspace of Euclidean space. However, the

presence of noise either from rounding error or instrument

error results in a measurement matrix that is often of full rank.

Usually, the models assume that the error can be separated

from the data in that the noise component is that which lies in

a subspace orthogonal to the signal subspace. For this reason,

the SVD is used to approximate the matrix decomposing the

data into an optimal estimate of the signal and the noise

components. Suppose A is the measurement matrix, where

each column consists of a signal component x and a noise

component n:

A = (C1|C2| . . . |CN ) (12)

where each Ci = xi + ni

The vector x representing the signal, which is known to

be located in a rank k subspace, though the precise subspace

is unknown. Therefore, let x = Hc for a coefficient vector

c and a matrix H whose columns are the basis vectors of

some rank k subspace. The least squared error between A

and Hc is minimized by choosing H to be the optimal k rank

approximation Ak to A. Then the k columns of U corresponds

to the k largest singular values, span the rank k subspace H .

The resulting error can be denoted as:

e2 =

N
∑

k+1

s2i (13)

Using the SVD as above, we see that the original data matrix

A that can be decomposed into the orthogonal components

UΣn−kV
T (14)

which corresponds to the orthogonal subspace defining the

noise components.

3) SVD and the Pseudoinverse

The SVD analysis of a matrix A gives an easy and uniform

way of computing its inverse A−1, whenever it exists, or its

pseudoinverse A+, otherwise. Therefore, if

A = UΣV T (15)

then we have

A+ = UΣ+V T (16)

The singular values σ1, . . . , σr are locate on the diagonal of

the matrix Σ, and the reciprocals of the singular values

1

σ1

, . . . ,
1

σr

(17)

that are on the diagonal of the n ×m matrix Σ+. We know

that for the pseudo inverse we have:

A+A+ = A (18)

For the square matrix and A non singular

A+ = A−1 (19)

AA+ = UUT (20)
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Z1

Z2

Z3 Z5

Z4

A B

Fig. 1. Morphotronic network system.

AA+x = y where y is the projection of x into the subspace

of the colons of A

A A+A = A, A+ A A+ = A+ (21)

II. MORPHOTRONIC NETWORK SYSTEM

We define the Morphotronic structure as a network of

input and output of q x p matrices where q ≥ p. Refer to

authors work in [2], [3].In Fig. 1 we demonstrate a single

Morphotronic network.

A =









a11 a12 . . . a1p
a21 a22 . . . a2p
. . . . . . . . . . . .

aq1 aq2 . . . aqp









, B =









b11 b12 . . . b1p
b21 b22 . . . b2p
. . . . . . . . . . . .

bq1 bq2 . . . bqp









(22)

The graph representation of one module of the Mor-

photronic system is shown in Fig. 2.

Formally the input output between matrices in figure (2) is

given by the expression

B = ZA (23)

where

Z = B(ATA)−1AT (24)

In fact we have

ZA = B(ATA)−1ATA = B (25)

A. Proposition 1:

When q > p for the same data A and B we have many

different values of Z for which

B = ZA (26)

B. Proof:

For Z = Z + LT we have

B = (Z + LT )A = ZA+ LA (27)

Now, when LTA = 0 with LT different from 0 we have that

B = (Z + LT )A = ZA+ LTA = ZA. (28)

thus, all the operators Z + LT transform A into B.

When we solve the homogeneous equation LTA = 0, or

(LTA)T = ATL = 0 given A we can compute the family

ZA B

Fig. 2. Simple module in the Morphotronic network system.

of the transformations Z + LT that transform A into B. For

example given:

A =





1 0
1 1
0 1



 and B =





0 1
1 1
1 0





thus the solution of ATL = 0 is obtained as follows:

ATL = 0

when
[

1 1 0
0 1 1

]





L1

L2

L3



 = 0 (29)

[

1 1
0 1

] [

L1

L2

]

+

[

0
L3

]

= 0

[

1 1
0 1

] [

L1

L2

]

=

[

0
−L3

]

thus the solutions are:

[

L1

L2

]

=

[

1 1
0 1

]

−1 [

0
−L3

]

=

=

[

1 −1
0 1

] [

0
−L3

]

=

[

L3

−L3

]

(30)

So




L1

L2

L3



 =





L3

−L3

L3





Now, it can be concluded that:

ATL = 0, LTA = 0 and (31)

B = (Z + LT )A = ZA (32)

So, we have many different Z that change A into B.

Z1

Z2

A B

Fig. 3. Loop in the Morphotronic network system.
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C. Loops and Projection Operators

Now, let us study the Loop for the Morphotronic network

(Fig. 3.).

For the equation (3) in the previous case we have

Z1 = B(ATA)−1AT (33)

Z2 = A(BTB)−1BT and (34)

Q1 = Z1Z2 = B(ATA)−1ATA(BTB)−1BT =

= B(BTB)−1BT (35)

We have Q1B = B, and Q1 is a projection operator with the

following property:

Q12 = B(BTB)−1BTB(BTB)−1BT =

= B(BTB)−1BT = Q1 (36)

In the same loop we have another projection operator Q2

defined in this way:

Q2 = Z2Z1 = A(BTB)−1BTB(ATA)−1AT =

= A(ATA)−1AT

with Q2A = A, and

Q22 = A(ATA)−1ATA(ATA)−1AT =

A(ATA)−1AT = Q2 (36)

D. Geometric Image of the Projection Operator

Now we show, in a simple case, the geometric image of the

projection operator Q2 for the matrix.

A =





a1,1 a1,2
a2,1 a2,2
a3,1 a3,2



 = A1 ⊕A2 =





a1,1
a2,1
a3,1



⊕





a1,2
a2,2
a3,2





and the vector

X =





X1

X2

X3



 (37)

we have

Q2X = A(ATA)ATX = AS =

= S1





A1,1

A2,1

A3,1



+ S2





A1,2

A2,2

A3,2



 = S1A1 + S2A2 (38)

and the geometric image of the projection operator is defined

as depicted below (Fig. 4)

1

3

P1

P2

P3

A

A2

X = (X1 , X2 , X )

Q2X
S1

S2

Fig. 4. Projection operator as loop in the Morphotronic system.

E. Another Projection Operator for the Same Loop

For B = ZA we have

Z = B(BTA)−1BT (39)

In fact it can be denoted that:

ZA = B(BTA)−1BTA = B (40)

And in the loop in Fig. 3 for

Z1 = B(BTA)−1BT and Z2 = A(ATB)−1AT

We have the projection operator:

Q = Z2Z1 = A(ATB)−1ATB(BTA)−1BT =

= A(BTA)−1BT (41)

where

QA = A, Q2 = A(BTA)−1BTA(BTA)−1BT =

= A(BTA)−1BT = Q

And we have another projection operator:

Q = Z1Z2 = B(BTA)−1BTA(ATB)−1AT =

= B(ATB)−1AT (42)

where

QB = B, Q2 = B(ATB)−1ATB(ATB)−1AT =

B(ATB)−1AT = Q

In conclusion for the same diagram in figure 3 we have four

different type of projection operators.
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III. SVD AS A SPECIAL CASE OF THE MORPHOTRONIC

SYSTEM

Given the matrix A, we can built the projection operator

Q = AA+ = A(ATA)−1AT (43)

Where A+ is the pseudo inverse of A. Now given the non

singular quadratic matrix M , we have:

Q = (AM)(AM)+ = (AM)((AM)T (AM))−1(AM)T =

= AMM−1(ATA)−1(M)AT = (44)

= A(ATA)−1AT = AA+

For M = V Σ−1, where V is the matrix of the eigenvectors

of ATA and Σ−1 is the a diagonal matrix of the inverse of

the square of the eigenvalues of ATA, and with well known

properties of the eigenvectors and eigenvalues we have:

(AM)T (AM) = (MT )(ATA)(M) =

= (V Σ−1)T (ATA)(V Σ−1) = Identity

For example given

A =

[

0.96 1.72
2.28 0.96

]

V =

[

0.8 0.6
0.6 −0.8

]

Σ−1 =

[

1

3
0

0 1

]

we have

M = V Σ−1 =

[

0.8 0.6
0.6 −0.8

]

Σ−1 =

[

1

3
0

0 1

]

and

(AM)T (AM) =

[

1 0
0 1

]

Now, we put AM = U , so for M = V Σ−1 we have

Q = (AV Σ−1)(AV Σ−1)+ = AV Σ−1(AV Σ−1)T

for

A = UΣV T (45)

we have

Q = (UΣV TV Σ−1)(UΣV TV Σ−1)T = UUT =

= AA+ = A(ATA)−1AT

Now we have also that:

Q = UUT = (AM)(AM)T

for

M = VΣ−1 (46)

we obtain

Q = UUT = (AV Σ−1)(AV Σ1)T

and

U = AV Σ−1

A = UΣV T

It can be concluded that with the use of projection operator,

the transformation M can be found by the eigenvalues and

eigenvectors of ATA, and the SVD for A. A more general

projection operator can be defined as:

QA = A, Q = A(BTA)−1BT (47)

where A = RB we have:

Q = RB(BTRB)−1BT

and for the transformation U = BM we have

R(BM)((BM)T (RBM))−1(BM)T =

= R(BM)((MT (BTRB)M))−1(BM)T = (48)

= RBMM−1(BTRB)−1(MT )−1(MT )BT =

= RB(BTRB)−1BT = Q

with the change of b into BM the projection operator Q is

invariant. Now, we have to select M in such a way that

(BM)TRBM = MT (BTRB)M = Identity (49)

Given the eigenvectors matrix V of the matrix BTRB and

the diagonal matrix of the square of the eigenvalues Σ we

set M = V Σ−1 so for the properties of the eigenvalues and

eigenvectors the following condition is true:

MT (BTRB)M = I (50)

Now, the properties of M can be revealed. In fact, with

a mathematical computation we have:

BTRB = (MT )−1(MT )(BTRB)(M)(M−1) =

= (MT )−1[MTBTRB)M ](M−1) = (MT )−1(M−1)

so

(MMT )−1 = BTRB (51)

and

MMT = (BTRB)−1

Hence, we have the important property:

M(BM)T = MMTBT = (BTRB)−1BT = B+ (52)

When BM = U , we obtain the traditional decomposition or

SVD of the pseudo inverse of B as follows:

VΣ−1UT = M(BM)T = MMTBT =

= (BTRB)−1BT = B+ (53)

Concluding, we are able to obtain these results also due to the

fact that:

B+B = V Σ−1UT = Identity (54)

Hence we obtain:

B = UΣV T (55)

That id the SVD of B obtained by the morphotronic system

definition of the projection operator and we also have:

Q = R(BM)((BM)T (RBM))−1(BM)T =
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= R(BM)((MT (BTRB)M))−1(BMT ) = (56)

= R(BM)(BMT ) = RUUT

Sumarising, by V , Σ, U we can define the pseudoinverse of

B in the projection operator and the projection operator itself.

At the reverse by the eigenvalue and eigenvectors of BT R B,

we can obtain the V , Σ, U in the SVD. It can be demonstrated

that it is possible to define the SVD as a special case of the

Morphotronic transformation loop or a projection operator.

IV. IMMUNO-COMPUTING MORPHOTRONICS AND SVD

A. Definition 1 (Principal).

Cell is a pair V = (f, P ), where f is a real value f ∈ R,

whereas

P = (p1, p2, . . . , pq)

and where P is a point of q-dimensional space: P ∈ Rq, and

P lies within unit cube:

max{|p1|, |p2|, . . . , |pq|} ≤ 1 (57)

max{|p1|, . . . , |pq|}

B. Definition 2

The affinity is the distance di,j(Vi, Vj) between cells

Vi, Vj

C. Definition 3

The cell Vi recognizes cell Vj if the following conditions

are satisfied

|fi − fj | < θ1

di,j(Vi, Vj) < θ2 (58)

where

θ1 ≥ 0, θ2 ≥ 0 are the recognition threshold and the affinity

threshold.

D. Definition 4

The formal immune network (FIN) is a set of cells

W ⊂ W0 where W0 is a set of cells that form the “innate

immunity” controlled by the cytokine.

Rule 1 (apoptosis, elimination of redundancy)

If cell Vi recognizes cell Vj then remove Vi for the set W

Rule 2 (autoimmunization or memory)

If cell Vk is nearest to the cell Vi among all cells in W

di,k < di,j (59)

Whereas |fi − fk| ≥ θ we have that Vi is the most affine to

Vi but is beyond the recognition threshold. In this case in the

Immuno-Computing (IC) we add Vi to W .

X2

X3

p2

Z

X1

V2

p1

V1

p3

Fig. 5. Example of pattern recognition of Z in IC by Morphotronic loop or
projection operator Q.

E. Definition 5

The “epitope” is defined as any point P of the of the q

dimensional space of the cells. In this space we have the

immune cells W but we have also all the possible cells

included the “antigen”.

V. PATTERN RECOGNITION BY IC-SVD AND

MORPHOTRONIC NETWORK SYSTEM

Given the matrix of the immune cells (FIN or formal

immune network) in W is expressed as:

A = [V1 V2 . . . Vn] =









v11 v12 . . . v1n
v21 v22 . . . v2n
. . . . . . . . . . . .

vq1 vq2 . . . vqn









(60)

and that the matrix of the Training Vectors (antigenic training)

is denoted as:

X = [X1 X2 . . . Xm] =









x11 x12 . . . x1m

x21 x22 . . . x2m

. . . . . . . . . . . .

xq1 xq2 . . . xqm









(61)

The training vectors can be projected into the space of the

immune cells (FIN) by the projection operator expressed as:

Y = QX = A(ATA)−1ATX

by SV DA = UΣV T we were

Y = QX = UUTX (62)

Given the training matrix X of samples, projected in the space

of the immune cells (or FIN) in order to obtain the learning

process for the immune system, in three dimension of the q-

space, the points of the projections, can be depicted as a Z

pattern recognition by IC using the projection operator Q (Fig.

5).

When the learning cycle is completed a mature immune

system is obtained. Given a new cell Z we can project this

cell into the immune system and verify where is the training

projection or the immune cell that is affined to Z . The immune

cell that is affined with the projection of Z activate all the

immune system to destroy the antigen Z .
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IC/SVD-based Minimum Energy Binding Clustering

Algorithm for Sensor Network Clustering

• Obtain test set to determine goal of which to form

cluster (X,Y,Z) dimensions of sink – i.e. 3 dimensions

by default)

• Obtain training set to determine cluster formation

(X,Y,Z dimensions – i.e. 3 dimensions by default)

• Perform SVD transformation on training set and return

3 largest singular values

• For each value ’v’ in the right singular value matrix

◦ Perform a dot vector operation on the inverted

test set, right singular value of ’v’ divided by the

Eigen-values in the matrix of dimension ’v, v’

and return the results as binding energies vector

• Perform a Euclidean distance weight funcion of the

inverted binding energies and the left singular value

matrix and return as a single-dimension Euclidean

distance weighting

• Sort the Euclidean distance weighting in ascending

order, such that the node ID with the lowest binding

energy is ranked highestas closest bound to the test set

Fig. 6. The main application of the Minimum Energy Binding Clustering
algorithm is to initiate and organise the process of IC-SVD reasoning in
autonomic clustering of the sensor network (Morphotronic system).

VI. OPTIMIZATION OF WSN CLUSTERING USING IC/SVD

METHOD IN MORPHOTRONIC NETWORK

One of many potential applications of the presented IC-

SVD and Morphotronic network technique is resource (energy)

management in Wirelesses Sensor Networks (WSN).

Special case of the Morphotronic transformation and given

sets A of premises and set B in the conclusion of the fuzzy

rules, we can make Validation tests of several variants of

IC/SVD based algorithms (Fig.6) for sensor clustering in

sensor networks indicate resource (energy) efficiencies when

evaluated as an expression of the number of transactions per

of SVD-based clustering. These efficiencies are significantly

greater when compared to traditional non-cluster head opti-

mization methods [4]. Similarly, according to the results drawn

for simulated throughput, the IC/SVD based routing protocols

can also demonstrate significant improvements in sensornet

energy management if benefits of the minimum binding energy

approach are extended to data routing algorithms.

The study of resource (energy) efficiencies can be assisted

by visual representations of energy (resource) distribution

and usage in the wireless sensor network field (Fig. 7 and

Fig. 8) that are generated by SVD-based Minimum Energy

Binding (MEB) algorithms [4]. The main application of the

Minimum Energy Binding Clustering algorithm is to initiate

and organise the process of IC-SVD reasoning in autonomic

sensor clustering and routing in the Morphotronic sensornet.

VII. CONCLUSION

In this paper we deliver a comprehensive background for

the SVD decomposition of a matrix A and we demonstrate

some of its important application. Furthermore, it is argued

that the concept of IC defined by A. Tarakanov et al [7] is

Fig. 7. Minimal Energy Binding patterns for efficient clustering of sensors
in WSNs [4].

Fig. 8. Minimal Energy Binding patterns for energy efficient data routing
in WSNs [4].

a special application of a more general concept denoted as the

Morphotronic system theory that includes all the properties

of the SVD. SVD based tools can be used to simplify the

computation in the Morphotronic network such as WSN.

Experiments conducted with IC/SVD based algorithms for

collaborative clustering and routing in sensornets indicate

potential benefits of the technique for autonomic optimization

of resource (energy) utilization and improved network man-

agement [4].
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