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Remarks on Statistical Design Centering
Leszek J. Opalski

Abstract—The paper overviews optimization based statistical
design centering techniques for analog circuits. Emphasis is
placed on dependence between formulation of quality indices,
problem formulation, and computational complexity of design
centering algorithms, executed in single- or multiple-processor
environments. For characterization of solution techniques a stan-
dard CMOS op-amp design case and a simplified computational
complexity analysis are used.

Keywords—statistical design centering, design yield, realistic
worst-case design, stochastic approximation, propagation of vari-
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I. INTRODUCTION

T
HIS paper overviews most successful/promising design

centering techniques for analog circuits, emphasizing

relationships that exist between formulation of a design prob-

lem, computational complexity and user-perceived quality of

its solution. The overview concentrates on three groups of

design centering problems: nominal design, yield optimization,

realistic worst-case design. Two groups of optimization-based

centering methods (design centering solvers) are considered

– purely deterministic, and stochastic. Fundamental properties

of presented problem formulations and solvers are exemplified

and uniformly compared with advent of calculations, made for

one standard CMOS op-amp example case. Brief theoretical

support is given for making rational prediction of solver’s

behavior for other circuits, that differ in the number of

designable parameters and/or number of variability sources.

II. CIRCUIT MODEL FOR STATISTICAL DESIGN

CENTERING

Automatic synthesis techniques require, that circuit re-

sponses of interest, yi, i = 1, . . . ,m, can be evaluated numer-

ically with sufficient accuracy by a circuit simulator. Typically

a circuit under design is represented with a parametrized net-

list of connected primitives, as RLC elements, voltage/current

sources, diodes, transistors. As such, the circuit simulation

implements the mapping of net-list parameters e ∈ Rne into

responses: y = ϕe(e). Usually the circuit parameters e are not

directly designable, depending on a set of designer controllable

(designable) parameters x ∈ Rn, and a set of (uncontrollable)

disturbances θ ∈ Rθ – representing manufacturing inaccuracy

and variability of environment (temperature, power supply,

variability of input signal or load): e = φ(x, θ). Dependence

of response on designable parameters and variability sources

will be denoted as y = ϕ(x, θ).
We will not limit consideration, to the frequently assumed

model: ei = xi + θi – which is insufficient for integrated
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circuit modeling, and will assume, that the transformation φ
can be non-linear and perhaps implicit, as implemented with

a statistical macro-model of parameter variability [1], [2], [3],

[4] or a statistical fabrication process simulator [5], [6].

The disturbances θ can have the following nature.

• Manufacturing variations make each circuit element

slightly different from another one, nominally identical.

Two consequences of these variations are important.

– Two nominally identical circuits demonstrate (more

or less) different responses/behavior – which might

be undesirable for cooperating circuits in a hierar-

chical design, or for circuit quality perception of the

final user.

– Since analog designers tend to use symmetry (to rely

on more accurate ratios of parameter values and not

on absolute values) – mismatch of the nominally

identical elements can significantly degrade design

performance of each circuit instance.

• Variability of environmental parameters: ambient tem-

perature, power supply, input signal, load. Statistical

description is very difficult to construct (e.g. weather

conditions), so typically design is expected to be resistant

to any environmental variability within a finite interval

(e.g. ambient temperature: 0-30žC).

In this overview we will concentrate on variability sources θ,

that can be characterized statistically with joint probability

density function (p.d.f.), denoted as fθ(θ). We will also

assume, that elements of the θ vector are Gaussian random

variables with mean θ̄ and covariance matrix Cθ . Thus the θ
vector can be obtained from a vector η of standard independent

Gaussian variables via a linear transformation:

θ = θ̄ + Lθη, where LθL
t
θ = Cθ (1)

Example 1. The internally compensated CMOS op-amp

shown in Fig. 1 will be used for illustration of properties of

different design centering problem formulations and solution

methods. Four circuit responses are considered: gain band-

width product (GBW), low frequency gain (A0), phase margin

(PM), and the slew-rate (SR).
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Fig. 1. Internally compensated CMOS op-amp. RL=1TΩ, CL=10pF.
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The vector of decision variables x consists of gate widths

and lengths of all 7 transistors, the bias voltage VB, and the

compensation capacitance CC. Nominal values of designable

parameters and response specifications are shown in Table

I. The vector θ consists of 9 independent global Gaussian

random variability sources, with mean values and standard

deviations as shown in Table II. A non-linear (quadratic) sta-

tistical model, described in [1] is used, to transform samples of

the vector θ into transistor parameter values. Symbolic macro-

model is used then, to evaluate respective response values fast.

III. NOMINAL DESIGN CENTERING

Even though we are interested in statistical design centering

– yet considering nominal design is justified (if not necessary),

as it gives some estimate of minimum computational effort

needed by design centering. Besides it can give a useful

starting point for subsequent statistical centering.

Nominal design assumes, that variability sources attain fixed

nominal values θ̄. To avoid unimplementable designs and

limit search space (for efficiency reasons) – the designable

parameters are subject of feasibility constraints x ∈ X ⊂ Rn.

Typically box constraints are imposed xLi ≤ xi ≤ xUi ,

i = 1, . . . , n , but a more general setting might also be desired:
X = {x ∈ Rn | hi(x) = 0, i = 1, . . . , nh;

gi(x) ≤ 0, i = 1, . . . , ng} (2)

Equality conditions can, e.g., impose tracking of some parame-

ters (to provide circuit symmetry). Inequalities can prevent use

of unimplementable parameter values and/or use of improper

regimes of transistor operation (saturation, breakdown, etc.).

Generally, linear constraint functions hi, gi do not increase

computational complexity of modern optimization processes,

but non-linear do, since feasibility is usually enforced by opti-

mizers iteratively. If x components are additionally restricted

to attain only a finite (discrete) set of values (e.g. [7]) –

a substantial combinatorial factor appears in complexity, but

this case will not be discussed here.

TABLE I
NOMINAL VALUES OF CMOS OP-AMP DESIGNABLE PARAMETERS AND

PERFORMANCE SPECIFICATIONS

Variable x(0) #1 #2 #3

W1A, W1B 26 µm V,V T1 T1

W2A, W2B 10 µm V,V T2 T2

W3 115 µm V V V

W4 55 µm V V V

W5 13 µm V V V

L1A, L1B 16 µm V,V T3

L2A, L2B 10 µm V,V T4

L3, L4 5 µm V,V V,V

L5 10 µm V V

VB 1.07 V V V V

CCNOM 1 pF V V V

Response yLi yTi yUi nom.value

GBW [MHz] 2 2.5 5 2.056

A0 [V/mV] 5 10 35 9.468

PM [deg] 55 60 65 55.741

SR [V/µs] 2 5 10 2.9826

Columns ’#1’, ’#2’ and ’#3’ display variables used for the
three optimization runs, V – independent variable, T# – tracking
variable group of given #.
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Fig. 2. Illustration of linear scaling of responses with (3) and weights:
a) (4), b) (5).

A generic nominal design problem formulation can be based

on a concept of “designer’s satisfaction” [8]. It is assumed,

that a designer can measure progress towards his/her (perhaps

unreachable) goals by specifying for each response some

finite upper yUi or lower yLi satisfactory levels, respectively.

Reaching by the j-th response its respective satisfactory level

should give the same “designer’s satisfaction” as reaching by

the i-th response its respective satisfactory level. Based on

these premises partial quality indices can be defined:

ψL
i (yi) = wL

i

(
yLi − yi

)
ψU
i (yi) = wU

i

(
yi − yUi

)
(3)

and then minimized – in the course of design centering.

Weighting coefficients wL
i ,w

U
i are selected such, that specified

increments of response values (yLi − yi or yi − yUi ) are scaled

into the same change of “designer’s satisfaction”. In [8] the

weighting coefficients are calculated as:

wL
i = wU

i = 1/(yU
i − yL

i ) (4)

This scaling is mostly useful, when the goal of design is to

make response close to yUi or yLi - transforming the range

[yLi , y
U
i ] into [−1, 0] (see Fig. 2a). If the goal is to place

response value inside [yLi , y
U
i ], as far as possible from the

interval endpoints the following weighting coefficients are

advantageous [9]:

wL
i = 1/

(
yTi − yLi

)
, wL

i = 1/
(
yUi − yTi

)
(5)

with additional target values yT
i ∈ (yL

i , y
U
i ) (see Fig. 2b

for illustration). One can notice, that when yTi ց yLi the

coefficient wL
i dominateswU

i , and when yTi ր yUi the opposite

holds.

Overall, the goal of design might be stated as a uniform

increase of “designer’s satisfaction”, over all responses of

interest – as measured by partial satisfaction indices (3).

In mathematical terms we have the min-max problem, i.e.

minimization of the largest satisfaction index:

TABLE II
MEANS AND STANDARD DEVIATIONS OF INDEPENDENT NORMAL

VARIABILITY SOURCES

Name Description Mean Std. dev.

TOX Oxide thickness [nm] 31.8 1.83

LDN NMOS lateral diff. [nm] 348 6.04

WDN NMOS width modulation [nm] 400 40

NSUBN NMOS substrate doping [1014 · cm−3] 144 8.69

LDP PMOS lateral diff. [nm] 285 10

WDP PMOS width modulation [nm] 400 40

XJP Metallurgical junction depth [nm] 678 24.7

NSUBP PMOS substrate doping [1014 · cm−3] 602 41.9

RCC CC variability [fF] 0 50
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min
x∈X

ψ̄(x), where ψ̄(x) ≡ ψ(ϕ(x, θ̄)) (6)

ψ(y) =max
i

(
max

(
ψL
i (y) , ψ

U
i (y)

))
(7)

Looking at Figure 2 we can see, that negative value of ψ̄(x)
assures, that all responses of a design with parameters x are

satisfying respective bounds: yi ∈ (SL
i , S

U
i ).

Example 2. In this example the nominal design problem

(6) was solved with the mini-max solver of MATLAB (with

estimation of derivatives) for the op-amp from Example 1.

The objective function ψ̄(x) was decreased from initial -0.115

to the final value around the global minimum of -1, with the

cost of some 90 circuit simulations. Progress of intermediate

solutions ψ̄(x(k)) is depicted in Fig. 3 with the distance to

global objective function value: ∆(k) ≡ ψ̄(x(k)) + 1. Design

centering improved not only nominal circuit behavior (as

measured with ψ̄(x) value), but also statistical properties

of the design. Fig. 4 depicts histograms of ψ(x, θ) obtained

from Monte Carlo simulation with 2000 samples for the

initial and centered design. It is seen, that nominal centering

shifted distribution of quality index ψ such, that on average

89.4% of samples satisfied specification (ψ(x, θ) ≤ 0), while

initially – only 36.25%. That kind of improvement of yield

(average percentage of circuits satisfying specs) is frequent

with nominal design. One should remember though, that the

statistical improvement is only a “side-effect” of nominal

design – and so cannot be guaranteed to occur; special

design problem formulations, that specifically target yield or

variability improvement (which are overviewed next), can be

expected to find better solution.
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Fig. 3. Progress of several mini-max optimization runs for the example
CMOS circuit: run #1 – optimization w.r.t. all 16 parameters, run #2 – w.r.t.
12 parameters, run #3 – w.r.t. 7 parameters. ∆(k)

≡ ψ̄(x(k)) + 1.

Setting up the optimization problems raises an interesting

question - which elements of the x vector should be optimized.

For the example op-amp the minimum value of ψ̄(x) is equal

-1, so at the optimum all 8 bounds (created by 4 two-sided

specs) are active. Since we assumed 16 parameters to be opti-

mized - there seem to be some degrees of freedom left, making

the solution not unique. One might suspect that spare variables

can cause bad numerical conditioning of the optimization

process, and increase its computational cost. To get a feeling

of the problem two other optimizations were run. In run #2

three pairs of tracking parameters were identified, reducing

the number of optimized variables to 12. In run #3 (with 7
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Fig. 4. Histograms of ζ ≡ ψ(x, θ) samples, for initial and three optimum
design points x of the example CMOS op-amp.

parameters) all transistor lengths were additionally fixed (see

Table I for details of parameter selection). As can be seen

in Fig. 3 all runs found close neighborhood of the absolute

minimum of ψ̄(x) equal to -1. It can be seen, that indeed

optimization w.r.t. all designable parameters was the slowest

– mostly since for each design point candidate the optimizer

had to make more circuit simulations to estimate objective

function gradient (dim(x) + 1 by single-side perturbations).

For large accuracy (10−8) run #3 seems to be the best (due

to numerical conditioning), but for medium accuracy (10−4)

run #2 was marginally fastest. �

Prediction of computation complexity (as measured with

the number of circuit simulations Nsim) of nominal design

centering is not trivial – as it depends on many factors: the

number of design parameters n, number of independent design

parameters nx, number of active constraints (related both to

the number my of partial quality indices determining value

of the objective function, and active constraints determining

the X domain), non-linearity of x → y relationship), se-

lection of the initial design point and requested inaccuracy.

In a single-CPU (serial processing) computing environment

the centering run-time is determined by the total number of

circuit simulations Nsim, necessary for finding optimum and

making the optimizer stop. If x → y dependence is linear and

my ≥ n the minimum Nsim = 2n+ 2. If x → y dependence

can be approximated with a quadratic function – at least two

approximations are needed to find and confirm optimum, so

Nsim ≥ (n + 1)(n + 2). If the mini-max algorithm builds

the quadratic approximation incrementally, then Nsim can be

dependent on nx < n. So, roughly Nsim is of the order of

Kn2
x, with nx , where K is a small integer, increasing with

non-linearity of response functions and requested accuracy.

When it is possible to perform gradient estimation, using

Npar ≤ nx + 1 parallel circuit simulation units (processors,

cores) – ideally a speed-up of Npar can be achieved, so (at

best) the nominal centering run-time scales linearly with nx.

IV. VARIABILITY AWARE DESIGN CENTERING

Comparison of any two nominal designs x(1) and x(2) can

be performed by just comparing respective values of ψ̄(x(1))
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Fig. 5. Approximation of c.d.f. Fx

ζ
(α) of ζ ≡ ψ(x, θ) for four design

points (x): initial and 3 optimized (see Example 1).

and ψ̄(x(2)) (with ψ̄(x) defined with (6)). The situation

changes qualitatively, if we consider variability sources θ.

First, let us notice that if ψ(x(1), θ(j))<ψ(x(2), θ(j)) for some

realization θ(j) of the random θ vector – it might not be

so for other realization of that random vector. So, for the

two design points x(1) and x(2) whole distributions of two

functions (ζ(1) ≡ ψ(x(1), θ) and ζ(2) ≡ ψ(x(2), θ)) of random

vector θ have to be compared.

Example 3. For the initial design point x(0), and for the three

optimum points x̂(k), k = 1, 2, 3 of the example circuit opti-

mized in Example 2, Monte Carlo simulation was performed

with NMC =2000 samples, and estimates of the cumula-

tive density function (c.d.f.) Fx
ζ (α) of random ζ ≡ ψ(x, θ)

were determined. Fx
ζ (α) denotes probability, that values of

ζ ≡ ψ(x, θ) will not be larger than α. The value Fx
ζ (0),

called yield, expresses mean ratio of the number of circuits

satisfying specifications (yi ∈ [SL
i , S

U
i ], i = 1, . . . ,m, i.e.

ζ ≤ 0) to the whole populations of circuits (having the same

design parameter values x).

We can see in Fig. 5, that all 3 runs of nominal design

centering improved not only nominal performance – but also

statistical distribution of circuit performance. For all 3 opti-

mized designs the nominal performance index is practically

the same: ψ̄(x̂(i)) ≈ −1, yet we can see from Fig. 5, that the

third optimized design is statistically the best – as the c.d.f. of

ζ is the largest – for each “satisfaction level” α. �

Note, that the intuitive ranking of statistical quality of design

points in the above example was made via comparison of c.d.f.

According to this approach a design 1 (x = a) is superior to

a design 2 (x = b) if

F a
ζ (α) ≥ Fb

ζ (α) for all α (8)

This is so called “usual stochastic order”. Such an ordering

is partial, as comparison of some random variables is not

possible. E.g. for normal distribution comparable random

variables have to have the same variance [10]. So for statistical

design centering it is necessary to use less restrictive ways

of imposing a partial order. In what follows two families of

quality measures will be overviewed, together with selected

optimization based techniques to solve resulting statistical

design centering problems. For sake space the emphasis will

be placed on the most efficient/promising approaches known

at the moment.

A. Optimization of Yield and Its Extensions

1) Design yield and its Monte Carlo estimation: One

of the most important families of quality measures stems

from the concept of yield, introduced already in examples

2 and 3. To simplify notation, let us assume, that a circuit

characterized with a vector of designable parameters x and

a particular realization of the disturbances θ is acceptable –

if its responses y = ϕ(x, θ) satisfy all lower-upper bounds

(yi ∈ [SL
i , S

U
i ], i = 1, . . . ,m), and unacceptable – otherwise.

The set of all vectors θ that result in acceptable circuit is

called acceptability region (in the space of disturbances) and

will be denoted Aθ(x). Statistical percentage of acceptable

designs in the whole population of circuits, having the same

designable vector x is called (design) yield. The yield can be

mathematically expressed in many equivalent forms, e.g.:

Y (x) =

∫

Aθ

fθ(θ)dθ = Eθ {χ(−ψ(ϕ(x, θ)))} (9)

where χ(z) = 1, if z ≥ 0, and 0 – otherwise; fθ(θ) denotes

p.d.f. of the statistical variability sources θ, and Eθ {·} –

expected value w.r.t. random variable θ. The measure is very

popular, because of its clear meaning, and importance for

economics of manufacturing process – even if its evaluation

is computationally intensive and inaccurate. The most uni-

versal method of yield evaluation is Monte Carlo based. If

NP of NMC independent samples of the disturbances θ{m),

m = 1, . . . , NMC make the circuit responses acceptable – the

Monte Carlo yield estimate Ŷ and an estimate of its standard

deviation σ̂
Ŷ

are, respectively:

Ŷ ≡ NP

NMC

, σ̂
Ŷ
≈

√

Ŷ (1 − Ŷ )

NMC − 1
(10)

Let us note here, that such a yield estimation can be easily

made parallel, providing speed-up of up-to Npar ≤ NMC with

Npar independent simulation units (each one evaluating circuit

response for a different disturbance instance θ{m)).

Example 4. For the example CMOS op-amp Monte Carlo

simulation was performed with NMC = 2000 samples for the

initial design vector x(0), and for the 3 vectors obtained by

nominal design centering in Example 2 (x̂(1), x̂(2), x̂(3)). Yield

estimates with 3σ confidence interval were found as shown in

Table III.

It is seen, that differences between yield estimates for

optimized solutions are within 3σ confidence intervals of yield

estimates Ŷ . So, despite large number of circuit simulation

used one cannot be certain if the run #3 gave the best solution.

Much more samples (or more subtle statistical analysis) are

TABLE III
ESTIMATES OF YIELD AND 3σ CONFIDENCE INTERVAL FOR INITIAL

DESIGN AND 3 OPTIMIZED DESIGNS OF CMOS OP-AMP

Ŷ [%] 3σ
Ŷ

[%]

initial design: x(0) 36.25 3.2

run #1 design: x̂(1) 89.4 2.1

run #2 design:x̂(2) 89.0 2.1

run #3 design:x̂(3) 90.95 1.9



REMARKS ON STATISTICAL DESIGN CENTERING 163

required to provide such a (statistical) certainty. Note, that

Monte Carlo improves accuracy as 1/
√
NMC , so 10-fold

decrease of σ
Ŷ

requires 100 increase of samples NMC . �

Since accuracy of a single yield estimation depends on the

number of samples used – it is not obvious how to allocate

a typically fixed number of available circuit simulations (for

a design problem at hand) to a number of steps, which

a yield optimization solver is to take. There are to opposite

approaches. The first, called indirect (or large sample) opti-

mization, uses a combination of a medium or large size sample

Monte Carlo estimator of yield (and perhaps its gradient) and

an optimizer (usually deterministic), which is tolerant of non-

smoothness of objective function. The second, called direct

(or small sample) optimization, uses a very small-size sample

Monte Carlo estimator of yield gradient and a stochastic

approximation type optimizer. The first approach uses pretty

accurate estimates and deterministic search, while the other –

inaccurate estimates and a stochastic optimization algorithm,

which is filtering out the noise from estimates while searching

for solution.

2) Large random sample based yield optimization: Funda-

mental properties of the large-sample (LS) approach to yield

optimization are given in the next example.

Example 5. For the example CMOS op-amp Nelder-Mead

non-gradient optimizer of MATLAB was used, to maximize

Monte Carlo yield estimates (10). Initially three optimization

runs were performed using NMC = 50 , 100 and 200
samples per single objective function estimation. Progress of

optimization is shown in Fig. 6 (curves marked LS).
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It might be surprising/disappointing, that the three “large

sample” (LS) optimization runs haven’t found design points

as good as that found with the nominal design centering in

Example 2(89.4% yield found in ca. 70 circuit simulations

only).

Let us note, that despite use of a deterministic optimizer

results of (LS) optimization are random – as they depend on

the actual sequence of random numbers θ{m) used for yield

estimation (10)1. To see if better solutions might be found for

1Because deterministic optimizer was used – the same random sequence
was used for each Monte Carlo yield estimation of a particular optimization
run.

different random sequences of the disturbance parameters θ,

optimization was repeated 100 times with different random

sequences, Fig. 7 contains overlaid plots of the objective

function value w.r.t. number of circuit simulation used, while

Fig. 8 presents histograms and mean value/standard deviation

of yield estimates evaluated (separately) at the design points

found by the optimizer, after using N =2000, 4000, 8000,

16000 circuit simulations.
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It is seen, that dispersion of final yield is significant, so there

could be found both better as well as much worse results, than

these for nominal design. Furthermore, NMC = 100 seems to

be a reasonable compromise between speed of convergence

(the smaller the better) and accuracy (for NMC ր ∞ Monte

Carlo based results become accurate). �

In the last Example it was shown, that the number of the

op-amp circuit simulation needed by LS yield optimization is 2

orders of magnitude greater than for the nominal design, and

so can be prohibitive. To decrease computational cost some

researchers advocate partial replacement of expensive circuit

simulations with evaluation of some lower accuracy/local

models (see e.g. [11], [12], [4], [13] for overviews) or ap-

plication of specialized yield estimators [14] or deterministic

quadratures [15] (see Section IV-A4 for some encouragement).

Unfortunately, all these improvements introduce dependence

of cost on the number of variability sources θ - dependence,

which is non-existent in the simple Monte Carlo experiment.

Probably the only way to keep this independence is to par-

allelize yield estimation – as LS optimizer makes decision
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after getting Monte Carlo yield estimate at a tentative design

point. As was discussed in Section IV-A1 with Npar ≤ NMC

circuit simulation units – the time for a single evaluation of

the objective function is reduced roughly Npar times, and can

be about the time of a single circuit simulation. Even with

the parallelization one shouldn’t expect, that run time of yield

optimization will be closed to that of nominal design. One

should be aware, that efficiency of a deterministic optimizer

used in LS approach has to be lower than best optimizers

capable of nominal design – since LS solver has to cope with

non-smoothness of the objective function2

3) Small random sample based yield optimization: A small

sample stochastic approximation based yield optimization,

introduced in [16], does not use (relatively) accurate estimates

of yield, but inaccurate estimates of yield gradient, averaging

uncertain information concurrently with moving design point

towards its optimum.

Perhaps the most favorable situation for gradient estimation

occurs, when circuit parameters, that exhibits random variabil-

ity, can be modeled as follows:

e = x+ θ (11)

where the random vector θ is Gaussian with mean θ̄ and

covariance matrix Cθ . Taking into account (1) the yield

function can be shown [16], [17], to take the form:

∇Y (x) = Eη

{
χ(−ψ(ϕ(x, θ(η))))L−

θ η
}

(12)

Note, that yield estimator can be derived not from infor-

mation on probability of success in satisfying specs, but from

(complementary) probability of failures. It was shown in [18],

[19], that a combined yield estimator can be built:

Ŷ (x) = wŶ (x) + (1 − w)(1 − ŶF (x)) (13)

with w ∈ [0, 1] selected such, as to reduce estimator variance.

In effect the following combined yield gradient estimator can

be formulated:

∇̂Y (x) = diag

(
1

NGσ2
i

) NG∑

j=1

̟(j)L−1
θ η(j) (14)

̟(j) = w − 1 + χ(−ψ(ϕ(x, θ(η(j)))))

Unfortunately, the formulae presented above cannot be

directly used for centering of the example circuit, because

random variability sources do not add to designable parameters
3. For such design situations yield gradient can be estimated by

a perturbation method [20], [6]. The method assumes applica-

tion of extra random perturbations u to designable parameters

eg. Gaussian with 0 mean and diagonal covariance matrix

diag(σ2
i ). Formally, addition of the perturbations modifies the

yield function, which becomes:

Ỹ (x) = Eu {Y (x+ u)} (15)

2The Monte Carlo yield estimate (10) is a piece-wise constant function of
design parameter vector x.

3They could be used though, if transistor parameter dimensions (W,L)
were assumed to be manufactured inaccurately, with Gaussian distributed
inaccuracies of each parameter.
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Fig. 9. Statistics of yield for 100 runs of large sample and small sample M.
Carlo optimizations with different limits of available circuit simulations N .
Values of mean/standard deviation for each yield histogram are displayed for
each case.

Now it is possible, to use formula (14) to estimate gradient of

the modified yield function (15) in the following format:

∇̂Ỹ (x) = diag

(
1

NGσ2
i

) NG∑

j=1

̟(j)u(j) (16)

̟(j) = w − 1 + χ(−ψ(ϕ(x+ u(j), θ(j)))

where u(j) are NG independent random samples of Gaussian

u, and θ(j) – samples of original disturbances θ.

Example 6. Capability of the perturbation estimator (16)

with the stochastic approximation algorithm based on [21]

was tested against the optimization problem of the previous

example. NG = 2, w = 0.95, σi = 0.02 were assumed.

Results, shown in Fig. 9, demonstrate clearly faster initial

convergence of the small samples algorithm. However, if large

number of samples is available – the large samples approach

provides (on average) better solutions, with smaller spread

and better distribution of the final yield. �

Let us note, that the small sample algorithm cannot take

much advantage of parallel simulation capability, if available

– because of small number of Monte Carlo used for a single

yield gradient estimation. So, at presented version, it can be

seen as inferior (to the LS algorithm) in parallel computation

framework.

4) Optimization of deterministic yield approximation : For

designs with high yield (and so small variability of circuit

responses) it is hard to get improvement with Monte Carlo

based methods, because direction of improvement is found

from a very small percentage of samples, which failed specs.

For so called 6σ design quality only two failures per 1 billion

samples are expected, and so using Monte Carlo for yield

estimation becomes non-practical.

For such high-yield cases deterministic yield formulae are

of use. To see it let us assume, that distribution of each

circuit response yi is Gaussian, with mean value ȳi(x) and

standard deviation σi(x). Than probability of satisfying 2-

side specs yLi ≤ yi ≤ yUi (partial yield) can be calculated
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by a deterministic formula:

Y LU
i (x) ≡ Pr

{
yLi ≤ yi(x, θ) ≤ yUi

}
= (17)

=
1

2

(

erf

(
yUi − ȳi√

2σi

)

+ erf

(
ȳi − yLi√

2σi

))

where erf(z) = 2/
√
π
∫ z

0 exp(−u2)du is the standard error

function. Since inequality

Y (x)
︸ ︷︷ ︸

1−
∑

i(1−Y LU
i

(x))

≤ Y (x) ≤ Ȳ (x)
︸ ︷︷ ︸

mini Y
LU
i

(x)

(18)

holds – thus, for designs with high yield and Gaussian dis-

tributed response values, the lower bound function Y (x) can

be a good candidate for maximization instead of exact yield

value y(x), which belongs to the interval [Y (x), Y (x)].
The same type of reasoning can be performed for other

marginal p.d.f. o response functions: y = ϕ(x, θ) - if only

such a p.d.f. can be found for given non-linear circuit response

function ϕ. To make the method implementable in practice

some assumptions are made. First, the variability sources θ
are assumed to be Gaussian random variables with covariance

matrix Cθ and 0 means. Besides, dependence of each response

value yi on θ has to be linear, i.e. y(x, θ) = ȳ(x) + S
y
θ θ,

for some sensitivity matrix S
y
θ . Under these conditions the

well known Propagation Of Variance (POV) can be used to

calculate mean and covariance matrix of the response vector:

ȳ = y(x,0), Cy = S
y
θCθ(S

y
θ )

T (19)

Example 7. The above presented combination of deterministic

yield estimation (17-18) and POV approximation (19) of ȳ and

Cy, was used for design centering of the example CMOS op-

amp. The objective function was not really the lower bound

Y (x), but a heuristic function:

F (x) = (1− c) · Ȳ (x) + c ·max(Y (x), 0), c = Ȳ (x) (20)

which for low yield is close to the upper bound Ȳ , and for

high yield – close to the lower bound Y . Results of optimiza-

tion (with the same Nelder-Mead non-gradient optimizer of

MATLAB which was used for LS optimization in Example

5) are shown in Fig. 6 as POV curve. Rapid progress and

high final yield are easily seen. Even though LS optimization

can reach similar progress (see Fig. 7) for some sequences

of random numbers, but the POV based optimization does

not exhibit such performance variation, making the approach

highly competitive.

It is important to stress limitations of this approach, though.

One-sided difference approximation of the sensitivity matrix

was used, so a single objective function evaluation involved

nθ+1 circuit simulations (10 for the example case). For more

realistic statistical modeling of the op-amp (including all local

variability sources) the computational cost, which increases

linearly with the number of variability sources nθ , might be

much higher. Fortunately, calculation of sensitivity matrix for

POV can be parallelized - making run-time almost independent

on nθ, given sufficiently large number of concurrent circuit

simulation units.

More important limitation is, that linearity assumption might

not be valid, and even POV including quadratic terms might

not be sufficient to prevent large response distribution in-

accuracy, that could mislead the optimization process. It is

known [22], that for circuits with strong frequency dependent

feedback loop (e.g. filters) non-linearity of circuit response

functions can be so strong, that acceptability region is not

only non-convex, but might contain holes and disjoint sub-

areas. Such a behavior invalidates accuracy of both nominal

design centering, as well as POV based yield optimization.

Thus, further research is needed, to formulate cost-effective

validity test for POV – to make its use safe4. To see, that the

problem is non-trivial – Fig. 10 presents joint and marginal

distribution of two responses of the example CMOS op-amp.

Marginal distributions are not Gaussian, besides there exists

a non-linear correlation among the response values. Yet, the

optimization was successful. �
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Fig. 10. Joint and marginal distributions of two responses of the circuit
optimized in Example 1. 2000 samples were used in the M. Carlo simulation
(at the design point from run1).

Another approach to design centering at high yields was

proposed by the author in [19]. Contrary to standard yield –

the objective function, called the income index, is an expected

value of a smooth function of the scaled worst response ψ, and

not a step function χ(ψ(·)) which is used in the yield formu-

lation (9). In consequence for Gaussian variability sources we

have a smooth Monte Carlo estimate of the objective function,

and not piecewise-constant – as is the case for the yield (10).

Interesting implementations of the income index might be

found, e.g. in [24], [9], [25].

B. Worst-Case Optimization and Its Extensions

Originally the worst-case (WC) optimization aimed at find-

ing the designable parameters vector x such, that all spec-

ifications were satisfied, i.e. ψ(x, θ) ≤ 0 for all allowable

disturbances, i.e. ∀θ ∈ Θ for some compact domain of

disturbances Θ ⊂ Rnθ . Typically such a formulation might

not have a solution or have infinite many. To resolve the

problem the domain of disturbances was parametrized (scaled)

with a set of parameters, called tolerances (εi). To avoid trivial

4In [23] a local non-linear approximation of θ → y mapping is dynamically
constructed, followed by an inexpensive Monte Carlo estimation of response
moments. This addresses the problem of non-Gaussian distribution of re-
sponses partially, since estimation of yield is stochastic and not deterministic.



166 L. J. OPALSKI

solution with εi = 0 – a cost function F (x, ε) was used, which

was decreasing with increase of tolerances, but which could

also depend on vector x. Altogether a difficult optimization

problem with infinite number of constraints resulted:

min
x∈X

F (x, ε), s.t. : ψ(ϕ(x, θ)) ≤ 0 ∀θ ∈ Θ(ε) (21)

Generally, checking of the constraints for a single value of

x vector is equivalent to solution of an auxiliary global

optimization problem:

ψ̄(x) ≡ max
θ∈Θ(ε)

ψ(ϕ(x, θ)) (22)

and might be very difficult for non-convex acceptability re-

gions. In [26] the worst-case problem was re-thought, giving

rise to so called Realistic Worst-Case (RWC) formulation [27],

[28], [29], [30]. The RWC formulation is in fact a WC for-

mulation, with several assumptions added, so that its solution

becomes computationally attractive and statistically meaning-

ful.

The traditional WC was oriented towards circuits built with

pre-tested discrete components having individually controlled

tolerances, and so it does not fit integrated circuit design.

RWC approach acknowledges, that dispersions of disturbances

are not controllable – typically assuming Gaussian distribution

with fixed mean and covariance. For such unbounded domains

Θ(α) was re-defined, to denote a set of all points, for which

p.d.f. of disturbance distribution is not smaller than some

probability value pmin(α) dependent on α.

Then it was possible to follow the main mission of WC

formulation - to inscribe the largest Θ(α) into the acceptability

region Aθ . Formally:

max
α,x∈X

α, s.t.:ψ(ϕ(x, θ)) ≤ 0 ∀θ ∈ Θ(α) (23)

Let us note, that in the WC formulation (21) there is inherent

a guarantee, that for each realization of variability sources θ
– resulting circuit responses are acceptable. 100% certainty is

vital for safety critical applications, but not for mass products.

In this respect RWC (23) is indeed more realistic, as it wants

to assure, that for at least pmin(α) ·100% realizations of vari-

ability sources θ – resulting circuit responses are acceptable. In

a sense RWC increases some bound on design yield, admitting

that it is lower than 100%. Thus RWC provides a link between

yield optimization and traditional worst-case design.

For Gaussian disturbances, defined as in (1), the parametrized

Θ(α) set can be defined as:

Θ(α) =
{
θ ∈ Rnθ | θ − θ̄ = Lθη, ||η|| ≤ α

}
(24)

while the related minimum probability can be calculated from:

pmin(α) =
1

√

(2π)nθ

exp

(

−α
2

2

)

(25)

For other distributions parametrization can be done similarly

(see e.g. [27], [28] for examples).

Solution methods of the RWC problem take into account

each of design specification separately, finding worst-case

conditions (called limit parameters in [26]) as follows:

θWCz,i(x, α) = arg max
θ∈Θ(α)

ψz
i (ϕi(x, θ)) (26)

where z ≡ L for lower specification (yi ≥ yL
i ), and z ≡ U

for upper specification (yi ≤ yUi ). To reduce computational
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Fig. 11. Comparison of two RWC type centering: using partial yields (POV)
and using design margins (RWC).

complexity RWC proponents assume linearity of responses y

w.r.t variability sources:

y = ȳ + S
y
θ (θ − θ̄) for all θ ∈ Θ(α) (27)

Substituting (27) and (3) in (26) the worst-case conditions can

be expressed as:

θWCz,i(x, α)− θ̄ = ιz
a

||a||α, a = (Syi

θ Lθ)
T (28)

where ιL = −1 (lower specification) and ιU = 1 (upper

specification). Thus it is possible, to find values of α scaling

factor, which make responses meet respective bounds[27].

|α| > 0 can be seen a measure of a distance of worst-case

response from respective specification bound, for α > 0 the

worst-case response value is acceptable.

For lower bounds the distance αWCL,i can be found from the

condition: yLi = yi(x, θ̄)− αSyi

θ Lθ/||Syi

θ Lθ||, while for upper

constraints: yUi = yi(x, θ̄)+αS
yi

θ Lθ/||Syi

θ Lθ||. Thus the worst

case distances are:

αWCL,i =
yi(x, θ̄)− yLi

||Syi

θ Lθ||
, αWCU,i =

yUi − yi(x, θ̄)

||Syi

θ Lθ||
(29)

The above procedure produces a set of 2m “distances to

non-acceptability”, which should be maximized in the course

of RWC design centering. In [27] the objective function

for design centering is formed directly from the worst case

distances:

F =
∑

i∈{I}L

[exp(−αWCL,i)]
2
+

∑

i∈{I}U

[exp(−αWCU,i)]
2

(30)

Other ways of scalarization can be used as well, e.g. worst

(smallest) value of the α distance can be maximized.

Example 8. For the example CMOS op-amp realistic-worst

case optimization was performed. In Fig. 11 optimization of

RWC distances (29) is compared to optimization of determin-

istic estimates of partial yields using POV (20). It is seen, that

the techniques have quite similar performance. �

Let us note, that the values αWCL,i, αWCU,i are directly

related to partial yields (17), which can be found for each

specification separately from p.d.f. of η:

Y z
i =

1√
2π

∫ αWCz,i

−∞

exp

(

−ξ
2

2

)

dξ, where z ≡ L or U

(31)
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In effect we end up with a vector of quality indices Y L
i , i ∈

{I}L, Y U
i , i ∈ {I}U to be optimized. Let us notice, that the

RWC formulation coincides with the previously reviewed POV

based yield optimization (Example 7) – exactly, when using

Y (x) (defined in (19) as the objective function. No wonder,

that computational complexity is similar to that of POV based

yield optimization. The main computational cost is generated

by the estimation of sensitivity matrix S
y
θ , and so it grows

linearly with the number of disturbances nθ , but the calculation

can be easily made parallel.

V. SUMMARY

The paper overviewed three most important groups of

design centering formulations: nominal design, yield optimiza-

tion, RWC design. For each group most prominent solution

techniques were presented, and characterized comparatively

– with the aid of the same standard CMOS op-amp design

example and a simplified computational complexity analysis

(to enable generalization). The author hasn’t intended to

suggest reader the best formulation of design centering or the

best solution method. Rather, trade-offs were revealed, and

exemplified – so presented comments might be of help, when

a reader is to approach centering of a specific circuit.

For statistical design the most important problems are

related to efficient characterization of variability of circuit

responses y. A simplistic view contrasts generic, but costly

Monte Carlo based calculations with approximate but inex-

pensive POV calculations. It was demonstrated in this paper,

that such a view is justified for design with small number of

variability sources. If the statistical model of example circuit

included not only global variability sources (correlations of

parameters of a CMOS transistor model, separately for N and

P types) but all local differences between these models, and

variability of transistor W and L – the cost of POV could

become comparable. For larger circuits the computational cost

of single POV based objective function evaluation might easily

exceed that of corresponding calculation with the Monte Carlo

method.

Another popular view is, that statistical design is so much

more time consuming, than nominal design, that it should

be tried only after all else failed. The paper demonstrated,

that essentially all presented solution techniques have large

(although different) potential for easy parallelization. Thus

large computation time doesn’t have to translate into large

turn-around time of design centering jobs anymore. Yield or

RWC optimization with sufficiently rich parallel computing

environment can take comparable amount of time to that of

nominal design centering executed on a single CPU.
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