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Parallel Computation Approaches

to Optimize Learning Systems
Tomasz Czyż, Radosław Rudek, and Henry Selvaraj

Abstract—This paper is devoted to the total tardiness mini-
mization scheduling problem, where the efficiency of a processor
increases due to its learning. Such problems model real-life
settings that occur in the presence of a human learning (industry,
manufacturing, management) and in some computer systems.
However, the increasing growth of significant achievements in the
field of artificial intelligence and machine learning is a premise
that the human-like learning will be present in mechanized
industrial processes that are controlled or performed by machines
as well as in the greater number of multi-agent computer systems.
Therefore, the optimization algorithms dedicated in this paper
for scheduling problems with learning are not only the answer for
present day scheduling problems (where human plays important
role), but they are also a step forward to the improvement of
self-learning and adapting systems that undeniably will occur in
a new future. To solve the analysed problem, we propose parallel
computation approaches that are based on NEH, tabu search and
simulated annealing algorithms. The numerical analysis confirm
high accuracy of these methods and show that the presented
approaches significantly decrease running times of simulated
annealing and tabu search and also reduce the running times
of NEH.

Keywords—parallel computation, metaheuristic, scheduling,
learning.

I. INTRODUCTION

T
HE development of artificial intelligence (AI) methods

and techniques provides new possibilities and opens new

perspectives for industry, manufacturing, economy and busi-

nesses sectors as well as for computer and network systems

and especially for various web services. The application of

artificial intelligence makes systems more autonomous and

allows them to adapt to the changes of their working environ-

ments and to improve their efficiency by continuous learning

(see [1], [2]). Thereby AI unlocks an access to the attributes

such as learning or adaptation that have been perceived to be

reserved only for human or living beings.

Research considering human learning usually focuses on

different aspects of its acceleration. On the other hand, in many

cases learning that is the result of repeating similar operations

(learning-by-doing) is autonomous (see [3]). Therefore, in

economy, industry and manufacturing a model that describes

“learning effect” in a quantitative form is crucial, since it

enables for more efficient estimation of a variable production
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time and/or cost caused by learning, thus, allows to improve

lot-sizes, worker management, energy/resource consumption,

etc. (e.g., [3], [4]). Moreover, learning (even autonomous)

provides additional control abilities (i.e., the sequence of

processed tasks) that allow to improve the optimized system

objectives by the utilization of human learning (see [3]).

Similarly as in case of human learning, research devoted

to AI methods and their applications focuses mostly on the

acceleration of the learning process and its accuracy (e.g.,

[1], [5]), whereas the analysis considering learning models

and the estimation of the impact of AI learning on processing

times of tasks is marginal. Therefore, advantages related with

the utilization (exploitation) of learning (known from human

activity domains) are also marginal for AI (e.g. [6]). Although

human learning can be accelerated by additional training

courses, it is difficult for AI systems, especially if they work

on-line and improve themselves during interactions with their

environments (e.g. [1], [5]). The reductions in time objectives

of such systems result from autonomous learning, however,

they can be further improved by the sequence of processed

tasks as in case of human learning (see [3]). For example,

the decreasing of processing times can be taken into account

during sequencing tasks to minimize the total tardiness of tasks

or the number of late tasks. Thus, such approach does not

influence learning (that anyway in many cases is impossible)

nor interferes with the structure of the optimized system.

Thereby it can support already working systems and requires

only minor changes in (or the introduction of) their modules,

which determine the sequence of processed tasks taking into

consideration learning of such systems.

Nevertheless, the determination of the sequences of pro-

cessed tasks to optimize given learning system objectives

usually belongs to hard computation problems (see [7]), hence

in practice the first sequence with an acceptable objective

value is search or such with the best objective value that is

found in the given period of time. For this purpose heuristic or

metaheuristic methods are often applied that are characterized

by short running times and relatively high accuracy. Since in

practice calculation time is often crucial, thus, additional tech-

niques that can speed up heuristic and metaheristic algorithms

are essential. It is especially significant for metaheuristic al-

gorithms that can search greater number of potential solutions

in the restricted period of time.

Therefore, we propose the parallel computation approaches

to improve the computation time of the well known NEH

algorithm [8], tabu search [9] and simulated annealing [10]

that determine the sequence of tasks in a learning system to

optimize its time objectives.
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The contribution of this paper is the analysis of the total

tardiness minimization scheduling problem with learning that

models many real-life problems occurring in computer and

industrial systems. Next, we provide parallel algorithms that

efficiently solve this problem, furthermore, they can be easily

tuned for other combinatorial optimization problems.

The remainder of this paper is organized as follows. The

next section contains problem formulation. Further, the de-

scription of the proposed parallel computation approaches is

presented and followed by the analysis of their efficiency.

Finally, the last section concludes the paper.

II. PROBLEM FORMULATION

In this section, a formal description of an autonomous

learning system (ALS) will be provided. Next we will show

that the optimal control problem for the considered system

with the given objective can be expressed in the context

of the scheduling theory. It follows from the fact that this

theory offers efficient and convenient methods of mathematical

analysis and supports the design of control strategies.

The ALS consists of a single processor (e.g., an algorithm,

a web service, an intelligent agent, a group of cooperating

agents, services or even a human) and a set J = {1, . . . , n} of

n tasks that have to be performed by the processor in the given

period of time; there are no precedence constraints between

tasks. The processor is continuously available and can process

at most one task at a time. Once it begins processing a task it

will continue until this task is finished.

Each task j is characterized by its release time (when it

comes to the system or can be processed), a due date dj (when

it should be completed) and its normal processing time pj (i.e.,

the time required to processes a taks if no learning occurs).

Due to the learning effect the (actual) processing time of task j
is described by the learning curve p̃j(v) that defines decreasing

of the time required to perform this task depending on the

number of already processed tasks v. Following approaches

presented in [3] and [6], the processing time of task j if it is

performed as the vth in a sequence is given as:

p̃j(v) = pjv
α, (1)

where α < 0 is the learning index that describes the learning

curve (characteristic) of the considered system.

As it was mentioned in the previous section, the objectives

of ALS can be controlled by the sequence of processed tasks.

Therefore, let us define control variables formally.

Let π =
〈

π(1), ..., π(i), ..., π(n)
〉

denote the sequence of

tasks (permutation of the elements of the set J), where π(i) is

the task processed in position i in this sequence. By Π we will

denote the set of all such permutations. For the given sequence

(permutation) π, we can easily determine the completion time

Cπ(i) of a task placed in the ith position in π from the

following recursive formulae:

Cπ(i) = max{Cπ(i−1), rπ(i)}+ p̃π(i)(i), (2)

where Cπ(0) = 0. Usually it is required for ALS and also other

systems that the processing of a task should be completed

before its due-date otherwise such task is late. Therefore, in

this paper, the objective is to find such control decision, i.e.,

sequence π of tasks on the single processor, which minimizes

the total tardiness:

TT (π) =

n
∑

i=1

Tπ(i), (3)

where Tπ(i) = max{0, Cπ(i) − dπ(i)}. Formally the optimal

control (sequence) π∗ ∈ Π for the considered minimization

objective is defined as follows π∗ , argminπ∈Π{TT (π)}.

For convenience and to keep an elegant description, we denote

the minimization of the Total Tardiness Problem in a learning

system as TTP.

III. PARALLEL COMPUTATION APPROACHES

In this section, we propose parallel computation approaches

to solve TTP that are based on the well known algorithms NEH

[8], tabu search (TS) [9] and simulated annealing (SA) [10].

A. Parallel NEH

The standard NEH algorithm for TTP is based on the

method introduced in [8]. It starts with an initial sequence that

determines the order of tasks that are inserted subsequently

into the resulting solution. Namely, in each iteration the

algorithm gets the first task from the initial sequence and

adds it to the recent partial sequence of tasks such that it is

inserted into a position in this partial sequence that minimizes

the criterion value and next this task is removed from the initial

sequence. This new partial sequence is the starting sequence

in the next iteration of NEH. This process is continued until

the initial sequence is empty. The computational complexity

of this algorithm is O(n3).
The fundamentals of the parallel NEH (PNEH) are based

on NEH. The main process (MP) gets tasks from the initial

sequence and insert them into the new partial sequence to

minimize its criterion value. For each such task and the partial

sequence MP generates moves, i.e., all possible insertion of

this task into the sequence, where the parameters of each move

are the current task index and its position in a new sequence,

i.e., (ik, jk). Each move pair is put into the move queue, from

where the threads get them to calculate their corresponding

criterion values and after that to write the move pair and

its criterion value in solution queue, i.e., (ik, jk, valuek).
When the move queue is empty and the criterion value for

all moves of the current task are calculated, MP chooses the

best insertion (pair) and the corresponding sequence becomes

the new partial sequence for the next iteration. The general

idea of PNEH is given in Fig. 1.

B. Parallel Tabu Search (PTS)

Tabu search (TS) algorithm [9] uses local search with

a short term memory, called tabu list, that stores forbidden

moves, hence allows TS to escape from local minima. In

the implemented algorithm move is defined as the insertion

of a task being in position i in a sequence into position j.

The applied tabu list stores pairs (i, j) of forbidden moves.

If (i, j) is in the tabu list then for any sequence the insertion
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Fig. 1. Parallel NEH (PNEH).

of a task from position i into position j is forbidden. The

tabu list is organized as FIFO (First In First Out), thereby,

if the list is full then the new pair (i, j) is added at its

beginning overriding the previous pair occupying this position.

The size of the tabu list is fixed and denoted by |TabuList|.
If the criterion value for the current sequence (for which

the neighbourhood is searched) is not changed for the given

number of iterations, then the new current sequence is di-

versified by choosing a random solution. Note that the best

found sequence (solution) among all visited solutions is always

stored. The computational complexity of the applied TS is

O(Iterations · n3).
In the parallel tabu search (PTS), the main process (MP)

for each sequence determines all possible moves and puts

parameters of each move k, i.e., pair (ik, jk), into the move

queue. The threads get the pairs from the front of the move

queue such that each pair is processed by one thread only

and each thread calculates the criterion value for such move

(sequence), e.g., Thread 1 calculates the criterion value for

move (ik+1, jk+1), Thread 2 for (ik+2, jk+2), etc. After that

each thread puts triple (ik, jk, valuek) in the solution queue

and among them MP chooses the new best sequence according

to the same rules as TS. When the queue with pairs is empty,

then MP waits for all threads to finish their calculations and

to send them to the solution queue to verify if they can

become the best solution in this neighbourhood. Next the

whole process is repeated according to the same rules as for

TS. The general idea of PTS is given in Fig. 2.

C. Parallel Simulated Annealing (PSA)

The primary simulated annealing algorithm [10] in each

iteration generates a new permutation π′ based on the current

sequence (solution) π by interchanging of random two tasks

in π. The new solution π′ replaces π with the probability

P (T, π′, π) = min
{

1, exp
(

− TT (π′)−TT (π)
T

)}

, where T
is the temperature that decreases in a logarithmical manner

T = T
1+λT

. The values of the initial temperature T0 and of

the parameter λ are chosen empirically. The algorithm results

the solution π∗ that is the best found criterion value in all

iterations. Since the algorithm stops after Iterations steps,

then its overall computational complexity is O(Iterations·n).

Since in each iteration of SA a new solution π′ is generated

randomly, then we distribute calculations to each thread that is

called the parallel simulated annealing (PSA). Therefore, each

thread works according to SA independently and searches for

a solution with the smallest criterion value. When all threads

finish calculations the main process chooses the best found

solution among the results provided by the threads. From the

perspective of searching of the solution space, PSA is similar

to running SA, however, the parallel calculations (PSA) made

by threads speeds up such process. The general idea of PSA

is given in Fig. 3.
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Fig. 2. Parallel tabu search (PTS).

Fig. 3. Parallel simulated annealing (PSA).

IV. COMPUTATIONAL EXPERIMENT

The numerical analysis of the algorithms covers two aspects,

namely their efficiency in finding solution with the minimal

criterion value and in decreasing computation times depending

on the number of applied threads.1

Let us introduce the useful notation, where PNEHi, PTSi
and PSAi denote the algorithms with the given number i of

the applied threads.

First we focus on finding solution with the minimal criterion

value and we compare only standard versions of the algorithms

with one thread only, i.e., PNEH1, PTS1 and PSA1. It follows

from the fact, that the standard and the parallel versions of

NEH and TS (for the fixed number of Iterations) search

the same solution space, but the parallel algorithms do it

faster. It is only slightly different for SA since each thread

starts with the initial value of the temperature. The consid-

ered algorithms were evaluated for different problem sizes

n ∈ {10, 50, 100, 150, 200}. For each value of n, 100 ran-

dom instances are generated from the uniform distribution

in the following ranges of parameters: pj ∈ [1, 100], rj ∈

1The algorithms were coded in C++ and simulations were run on PC, Dual-
Core AMD OpteronTM Processor 2218 and 8GB RAM.
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[1,
∑n

i=1 pj ], dj = rj + pj (it models settings, where tasks

have to be processed just after they are ready to release)

and α = −0.322 (that corresponds to the slope of the most

popular 80% learning curve, see [3]). However, to avoid

infinity relative errors (i.e., to guarantee that at least one task

is late), we set for one task d1 = r1. Values of the parameters

of the algorithms were chosen empirically as follows:

• PTS: |TabuList| = 10 and diversification is after 7

iterations,

• PSA: T0=1000000 and λ=0.01,

where the stop condition for PTS1 and PSA1 is the fixed

running time (i.e., the number of iterations is immaterial).

Therefore, their efficiency in finding the best solution for

different problem sizes can be compared for the same running

times of the algorithms.

The considered algorithms are evaluated, for

each instance I , according to the relative error

δA(I) that is calculated in the following way:

δA(I) =
(

TT (πA

I
)

TT (π∗

I
) − 1

)

· 100%, where TT (πA
I ) denotes the

criterion value provided by algorithm A ∈ {PNEH1, PTS1,

PSA1} for instance I and TT (π∗
I ) is the optimal solution of

instance I (if n= 10) or the best found solution of instance

I (if n ≥ 10) provided by the considered approximation

algorithms. The optimal solution is provided by extensive

search algorithm.

The results concerning the mean total tardiness T̄ T , the

percentage values of mean relative errors δ̄ provided by the

analysed algorithms as well as the number of instances best for

which each algorithm found the best criterion value (per 100

instances) and their running times t̄ are presented in Table I.

TABLE I
THE MEAN TOTAL TARDINESS T̄ T , PERCENTAGE VALUES OF MEAN

RELATIVE ERRORS OF ALGORITHMS δ̄, THE NUMBER OF INSTANCES

Best FOR WHICH EACH ALGORITHM FOUND THE BEST CRITERION

VALUE (PER 100 INSTANCES) AND THEIR RUNNING TIMES t̄

Algorithm \n 10 50 100 150 200

PNEH1

t̄[s] 0.00 0.03 0.39 1.15 1.89

T̄ T 70 518 1309 2214 3516

δ̄[%] 29.98 380.52 1 157.33 2 145.24 3 262.25

best 31 2 0 0 0

PSA1

t̄[s] 6.00 30.00 60.00 60.00 60.00

T̄ T 13 7 2 1 2

δ̄[%] 0.02 0.03 0.02 0.00 0.00

best 91 93 96 100 100

PTS1

t̄[s] 6.00 30.00 60.00 60.00 60.00

T̄ T 13 7 2 1 4

δ̄[%] 0.00 0.00 0.00 0.00 1.73

best 100 100 100 100 94

It can be seen in Table I that the proposed PSA1 and PTS1

are characterized with very low mean relative errors. Among

them the best results are provided by PTS1 for n < 200,

where the mean total tardiness did not exceed 13, i.e., average

tardiness of a job is less than 0.2. The results provided by

PSA1 are similar, however, PSA1 is better than PTS1 for

n ≥ 200. Moreover, PNEH1 revealed to be fast algorithm that

finds solutions, which mean relative errors are high, however,

the average tardiness of a job does not exceed 18 even for

n = 200. Therefore, it can be use to provide a good initial

solution for other algorithms or it can be applied individually

in learning systems if the running (computation) time is

crucial.

The second part of the numerical analysis focus on decreas-

ing running times of the algorithms if parallel computation

approaches are applied. The parameters of the algorithms are

the same as in the previous experiment, only the iterations are

different. PTSi (where i ∈ {1, 2, 4}) have the same number of

iterations for each i, IterationsPTS = 30, whereas for PSAi
the number of iterations depends on the number of threads,

i.e., IterationsPSA/i for PSAi, where IterationsPSA =
1800000. Therefore, PTSi search the same solution space. It is

similar for PSA with a small difference concerning the value of

initial temperature for each thread. The running times of PSA,

PNEH and PTS depending on the number of working threads

are presented in Fig. 4–9 for the problem with n = {150, 200}
tasks.
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Fig. 4. Running times of PNEH (n = 150).
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Fig. 5. Running times of PNEH (n = 200).

It can be seen in the figures that the applied parallel com-

putation approach has the smallest impact of on the running

times of PNEH and in case of PSA the decreasing of the

running times is almost proportional to the number of applied

threads that it is also similar for PTS.

At first let us analyse PSA. In this case, the most of

the calculations are done by threads, therefore, the relation

between the running time and the number of applied threads

is almost proportional (Fig. 8). The number of tasks n does

not affect the efficiency of the parallel computation approach

on the running times of PSA (see Fig. 8 and Fig.9).
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Fig. 6. Running times of PTS (n = 150).
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Fig. 7. Running times of PTS (n = 200).
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Fig. 8. Running times of PSA (n = 150).

For PTS the number of calculations in the main process

is negligible in reference to the calculations done by threads,

since for each iteration of the main process, the threads have

to calculate O(n2) moves. Therefore, the efficiency of the

parallel computation approach for PTS increases with the

number n of tasks (see Fig. 6 and Fig.7) and the relation

between the running time and the number of threads is also

almost proportional for n = 200.

However, for PNEH, the number of calculations done by

threads is not so significantly greater than calculations done

by the main process, since for each iteration of the main

process the threads calculate O(n) moves (insertions) and cor-

responding criterion values. Thus, the impact of the analysed
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Fig. 9. Running times of PSA (n = 200).

parallel computation approaches in the running times of PNEH

is smaller than in case of PTS (see Fig. 4 and Fig.5).

V. CONCLUSIONS

In this paper, we pointed out that learning that is present in

many systems can be additionally utilized by the sequence of

processed tasks such that the system objectives are improved.

Namely, we analysed the minimization of the total tardiness

problem in the learning system, where tasks have different

release times. To solve it we proposed parallel computation

approaches that are based on NEH, tabu search and simulated

annealing. The numerical analysis confirmed high accuracy

of these methods, furthermore, we showed that the parallel

computation approaches significantly decrease running times

of simulated annealing and tabu search and also reduces the

running times of NEH. Furthermore, the presented algorithms

can be easily tuned to solve other combinatorial optimization

problems.
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