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The Solution of SAT Problems

Using Ternary Vectors and Parallel Processing
Christian Posthoff and Bernd Steinbach

Abstract—This paper will show a new approach to the solution
of SAT-problems. It has been based on the isomorphism between
the Boolean algebras of finite sets and the Boolean algebras of
logic functions depending on a finite number of binary variables.
Ternary vectors are the main data structure representing sets
of Boolean vectors. The respective set operations (mainly the
complement and the intersection) can be executed in a bit-parallel
way (64 bits at present), but additionally also on different
processors working in parallel. Even a hierarchy of processors,
a small set of processor cores of a single CPU, and the huge
number of cores of the GPU has been taken into consideration.
There is no need for any search algorithms. The approach
always finds all solutions of the problem without consideration
of special cases (such us no solution, one solution, all solutions).
It also allows to include problem-relevant knowledge into the
problem-solving process at an early point of time. Very often it
is possible to use ternary vectors directly for the modeling of
a problem. Some examples are used to illustrate the efficiency
of this approach (Sudoku, Queen’s problems on the chessboard,
node bases in graphs, graph-coloring problems, Hamiltonian and
Eulerian paths etc.).

Keywords—SAT-solver, ternary vector, parallel processing,
XBOOLE.

I. INTRODUCTION

FOR many years our research is centered on the solution

of logic equations in a very general sense. Two logic

functions f(x1, . . . , xn) and g(x1, . . . , xn) can be used to

build a general logic equation:

f(x1, . . . , xn) = g(x1, . . . , xn).

Each vector x = (x1, . . . , xn) resulting in f(x) = g(x) = 0
or in f(x) = g(x) = 1 is considered to be a solution of this

equation. In this sense the solution of the SAT-problem is a

special case of our general intentions: the function f(x) is

now given as a conjunction of disjunctions of non-negated or

negated variables, and the right side is the constant function

1(x). This research resulted, in addition to several publications,

in the software package XBOOLE [1] that can be found at

http://www.informatik.tu-freiberg.de/XBOOLE.

The books [2], [3], and [4] can be used to get a full

understanding of the results that have been achieved. Our

main target has been the development of “numerical methods”

for the use of logics in circuit design, but over the past
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years we also solved many problems of Discrete Mathematics,

constraint problems and similar applications.

II. BASIC CONCEPTS

In this section we summarize the basic concepts. Naturally

they are well known to everybody who is working in this area.

We include these concepts only in order to have a consistent

representation for our explanations.

Let B = {0, 1} be the set of two values 0 and 1. The

propositional logic identifies the value 0 very often with false

or f, the value true or t is used instead of 1. We will use

constantly the values 0 and 1. With this set B, we get

Bn = B × . . .×B
︸ ︷︷ ︸

n times

= {x | x = (x1, . . . , xn), xi ∈ B, i = 1, . . . , n}

as the set of all binary vectors of length n (vectors with n
components). It can easily be seen (by induction) that this set

has 2n elements. In Computer Science these vectors are well

known as, for instance, dual numbers representing the natural

numbers from 0 to 2n − 1. Any unique mapping

f : Bn ⇒ B

is a (logic) function of n variables. The most important

function for n = 1 is the negation indicated, for a given

function f , by f . It is defined by Table I and converts the

value 0 into 1 and 1 into 0. Two applications of the negation

result in the original value.

TABLE I
THE NEGATION OF A VARIABLE x1

x1 x1 x1

0 1 0

1 0 1

All the other important elementary functions will be defined

for n = 2. Their definition and the operators to be used are

given in Table II. For n ≥ 3 they can be defined by induction:

x1 ∨ x2 ∨ x3 = (x1 ∨ x2) ∨ x3 etc.

Based on these definitions, logic functions can be described

or defined by means of expressions (formulas). We start with

variables x1, x2, . . .. In a first step these variables can be

negated, and we get x1, x2 etc. Variables and negated variables

together are very often called literals. Each literal can take the

values 0 or 1, resp. Now these literals can be combined by

the given operations conjunction, disjunction, antivalence and
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TABLE II
THE BASIC FUNCTIONS OF TWO VARIABLES

x1 x2 x1 ∧ x2 x1 ∨ x2 x1 ⊕ x2 x1 ∼ x2

conjunction disjunction antivalence equivalence

0 0 0 0 0 1
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 1 0 1

equivalence, resp., according to Table II. In this table we can

see the following remarkable properties:

• The conjunction of two values is equal to 1 if and only

if both values are equal to 1.

• The disjunction of two values is equal to 0 if and only if

both values are equal to 0.

• The antivalence is equal to 0 if and only if both values

are equal to each other.

• The equivalence is equal to 1 if and only if both values

are equal to each other.

• The antivalence is equal to the negated equivalence (and

vice versa).

Other important rules are

• Negation rules:

x1 ∨ x1 = 1, x1 ∧ x1 = 0,

x1 = x1 ⊕ 1 = x1 ∼ 0.
• De Morgan’s Laws:

x1 ∧ x2 = x1 ∨ x2, x1 ∨ x2 = x1 ∧ x2.

• Commutativity:

x1 ∨ x2 = x2 ∨ x1, x1 ∧ x2 = x2 ∧ x1,

x1 ⊕ x2 = x2 ⊕ x1, x1 ∼ x2 = x2 ∼ x1.
• Associativity:

(x1 ∨ x2) ∨ x3 = x1 ∨ (x2 ∨ x3),
(x1 ∧ x2) ∧ x3 = x1 ∧ (x2 ∧ x3),
(x1 ⊕ x2)⊕ x3 = x1 ⊕ (x2 ⊕ x3),
(x1 ∼ x2) ∼ x3 = x1 ∼ (x2 ∼ x3).

• Distributivity:

x1 ∧ (x2 ∨ x3) = (x1 ∧ x2) ∨ (x1 ∧ x3),
x1 ∨ (x2 ∧ x3) = (x1 ∨ x2) ∧ (x1 ∨ x3),
x1 ∧ (x2 ⊕ x3) = (x1 ∧ x2)⊕ (x1 ∧ x3),
x1 ∨ (x2 ∼ x3) = (x1 ∨ x2) ∼ (x1 ∨ x3).

• The use of 0 and 1:

x1 ∧ 1 = x1, x1 ∨ 1 = 1,

x1 ∧ 0 = 0, x1 ∨ 0 = x1,

x1 ⊕ 1 = x1, x1 ∼ 1 = x1,

x1 ⊕ 0 = x1 x1 ∼ 0 = x1.
• The elimination of ⊕ and ∼:

x1 ⊕ x2 = x1x2 ∨ x1x2,

x1 ∼ x2 = x1x2 ∨ x1x2.

Mostly the ∧ between the brackets will be omitted (like the

multiplication sign in arithmetic expressions). For two given

functions f(x) and g(x) we consider the expression f(x) =
g(x) as a Boolean equation, and each vector x with f(x) =
g(x) = 0 or with f(x) = g(x) = 1 is a solution of the given

equation. We can assume that f and g always depend on the

same set of variables. If, for instance, xn is missing in the

definition of a function f , then we duplicate the definition of

f for xn = 0 and xn = 1 :

f(x1, . . . , xn) = f(x1, . . . , xn−1)(xn ∨ xn)

= xnf(x1, . . . , xn−1) ∨ xnf(x1, . . . , xn−1) .

In this way missing variables can be added on both sides of the

equation until both sides depend on the same set of variables.

Finally, if the function on the left side has been given

as a conjunction of disjunctions of literals (clauses) and the

function on the right side is constantly equal to 1, then we

consider this special equation as an example of a SAT-problem.

Example.

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) = 1,

or shorter

(x1 ∨ x2 ∨ x4)(x2 ∨ x3 ∨ x5) = 1.

This problem is considered to be difficult because (in

principle) each binary vector of Bn has to be checked whether

each bracket has the value 1 for the values of this vector –

the conjunction of the brackets is equal to 1 if and only if

each bracket itself is equal to 1. This means that the number

of vectors that have to be checked is given by an exponential

function: if n is the number of variables to be considered then

2n binary vectors have to be checked. The solution algorithm

will have exponential complexity.

In this example it would be sufficient to set x1 = 1 and

x2 = 1, and this would be already a solution of the problem,

independent on the values of x3, x4 and x5. Many other

possibilities will exist.

Hint: We always include all the variables appearing in at

least one of the clauses into our considerations. The given

example considers the first bracket as well as the second

bracket as a function of x1, x2, x3, x4, x5.

The dual problem can be defined in the following way: in

a given SAT-problem

• we exchange each literal by the negated literal;

• we exchange each ∧ by ∨ and vice versa;

• we exchange the role of 0 and 1.

Example.

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) = 1

will be transformed into

x1x2x4 ∨ x2x3x5 = 0.

The two equations have the same solution set and the same

solution algorithms. It is now common practice to use the

conjunctive format.

III. TERNARY VECTORS AS THE MAIN DATA STRUCTURE

As a first step we introduce the data structure of a ternary

vector. Let

x = (x1, · · · , xn), xi ∈ {0, 1,−}, i = 1, . . . , n.

Then x is called a ternary vector. The components of this

vector can take one of three values. Such a vector has the big
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advantage that it can be used or understood as an abbreviation

or description of a set of binary vectors. When we replace

one value − by 0 or 1, then we get two new ternary vectors

generated by this ternary vector. These two vectors have

the same values in the other components, in the considered

component they have the value 0 and 1, resp. In this way the

vector (0−1−) represents four binary vectors (0010), (0011),
(0110) and (0111). A list (matrix) of ternary vectors can be

understood as the union of the corresponding sets of binary

vectors. A single ternary vector that includes d dash elements

(−) represents 2d binary vectors. Hence, ternary vectors allow

to reduce the required memory exponentially.

There is a direct relation of ternary vectors with conjunc-

tions of Boolean variables. When there is given a conjunction

C with variables x1, . . . , xk , then we can build a ternary vector

t with the components t1, . . . , tk according to the following

coding:

xi : ti = 1, xi : ti = 0, xi missing : ti = −.

This coding expresses directly on one side the respective

conjunction, on the other side the set of all binary vectors

satisfying C = 1. The value − indicates that the value of the

respective variable has not yet been defined or determined.

Example: Let be given x1x2x3x5 = 1, then we have t =
(t1, t2, t3, t4, t5) = (101− 0) which expresses the two binary

vectors (10100) and (10110).
Hint: It has been assumed that the relevant Boolean space

includes the variables x1, x2, x3, x4, x5. The problem space

to be considered always comprises the union of the variables

that appear in the overall problem. If, for instance, x6 is also

a variable to be considered, then we would write

t =
(
1 0 1 − 0 −

)
.

IV. SET-THEORETIC CONSIDERATIONS

Let be given two ternary vectors x and y. The intersection

of these two vectors (i.e. the intersection of the respective two

sets of binary vectors) will be computed according to Table III

which has to be applied in each component of the two vectors.

The symbol ∅ indicates that the intersection of the two sets is

empty.

TABLE III
INTERSECTION OF TERNARY VALUES

xi 0 0 0 1 1 1 − − −

yi 0 1 − 0 1 − 0 1 −

xi ∩ yi 0 ∅ 0 ∅ 1 1 0 1 −

A sophisticated coding of the three values 0, 1 and −
allows the introduction of binary vector operations that can be

executed on the level of registers (32, 64 or even 128 bits in

parallel). We use the coding of Table IV. The first bit indicates

that for a component i there is a value 0 or 1 in this component

of the ternary vector, the second bit indicates the value itself.

When the three-valued operations for the intersection are

transferred to these binary vectors, then the intersection is

TABLE IV
BINARY CODE OF TERNARY VALUES

ternary value bit1 bit2

0 1 0
1 1 1
− 0 0

empty if and only if

bit1(x) ∧ bit1(y) ∧ (bit2(x)⊕ bit2(y)) 6= 0.

If the intersection is not empty, then it can be determined

by the following bit vector operations:

bit1(x ∩ y) = bit1(x) ∨ bit1(y),

bit2(x ∩ y) = bit2(x) ∨ bit2(y).

Hint: ⊕ indicates the exclusive-or, 0 is the vector the

components of which are all equal to 0. Hence, by using

some very fast and very simple parallel bit vector operations

(available on the hardware level), we can find the intersection

of two ternary vectors. It is easy to see that two or more vector

operations have to be applied when the problem depends on

more than 64 variables.

We can see that the intersection is empty if the two ternary

values 0 and 1 meet each other in at least one component. Then

the two sets of binary vectors corresponding to the two ternary

vectors are disjoint sets. We call the two vectors orthogonal to

each other. This property is very useful, because orthogonal

vectors avoid it that some binary vectors will be elements

of both sets. This concept can be extended to more than two

vectors. If there is a set of ternary vectors {t1, t2, . . . , tk} then

this set is an orthogonal set of ternary vectors if all pairs (ti, tj)
with vectors of the given set consist of orthogonal vectors.

We have already seen that for a given conjunction C the

solution set of the equation C = 1 can be described by one

single ternary vector. Let us consider now the equation C = 0
for the same conjunction x1x2x3x5. The value of C is equal

to 0 if x1 = 0 or x2 = 0 (x2 = 1), or x3 = 0, or x5 = 0 (x5 =
1). These results (these four solution sets) can be represented

using the following ternary matrix:








x1 x2 x3 x4 x5

0 − − − −
− 1 − − −
− − 0 − −
− − − − 1









.

This matrix has to be understood as the union of the four

sets generated by the four ternary vectors in row 1, 2, 3

and 4, resp. Over the years we made the experience that

the intersection between such solution sets very often is not

empty, and it requires quite some time to figure out the real

number of solutions of a given problem. Therefore we are

using immediately the orthogonal coding of the solution sets.

The first row covers all solutions with x1 = 0. Therefore in the

second row it can be assumed that x1 = 1, the value x2 = 1
will be sufficient to ensure that C = 0 holds. By continuing

this way, we reach the following orthogonal representation:
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







x1 x2 x3 x4 x5

0 − − − −
1 1 − − −
1 0 0 − −
1 0 1 − 1









.

This matrix (these four vectors) show all the binary vectors

with C = 0, each such vector is the element of precisely one

of these sets. There are 30 vectors with C = 0. The equation

C = 1 has only the solution vector (101− 0).

The program system XBOOLE has included the possibility

for the orthogonalization of a given set of ternary vectors, it

also offers two algorithms for the orthogonal minimization of

such a representation.

In set theory there is the analogue rule: if two sets A and

B are subsets of a set E and the complement B is taken

with regard to E, then the set A can be split into two disjoint

subsets of E by

A = A ∩ (B ∪B) = (A ∩B) ∪ (A ∩B).

One vector with the value − in one position can be replaced

by two vectors with the values 0 and 1 in this position. All

the other values remain unchanged. We can also use the rules

of the propositional logic:

y ∨ y = 1, x = x ∧ 1 = x ∧ (y ∨ y) = xy ∨ xy.

One crucial point that will be met during the solution of

many problems is the intersection of sets that are given by

ternary matrices with some or even many rows. In set theory

we use the distributive law in the following way:

(M1 ∪M2 ∪ . . .)∩(N1 ∪N2 ∪ . . .) =

(M1 ∩N1) ∪ (M1 ∩N2) ∪ . . .∪

(M2 ∩N1) ∪ (M2 ∩N2) ∪ . . .

When these operations are transferred to ternary vectors,

then we have to intersect each ternary vector of the first

matrix with each vector of the second matrix, according to

the previous definition. If not many intersections are empty,

then the number of rows of the final matrix will be more

or less equal to the product of the number of rows of the

first and the second matrix, and this product can grow very

fast indicating the amount of memory required to store the

vectors, and also the time to process the resulting matrix again

by a next operation.

As a tiny example we go back to the problem

(x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x5) = 1

and combine the two solution matrices by intersection:







x1 x2 x3 x4 x5

1 − − − −
0 0 − − −
0 1 − 1 −






∩







x1 x2 x3 x4 x5

− 1 − − −
− 0 1 − −
− 0 0 − 0







=













x1 x2 x3 x4 x5

1 1 − − −
1 0 1 − −
1 0 0 − 0
0 0 1 − −
0 0 0 − 0
0 1 − 1 −













.

The vector

(− − . . .−−)

represents the whole Bn, the set of all binary vectors of n
components.

Another operation that will be used very often is the

complement of a given set with regard to Bn. In order to

do this, we take the set

Bn = (−− . . .−−)

and build the set that is orthogonal to the given set.

Example. Let be given

t =
(
1 0 − 0 −

)

(describing a set of four binary vectors) and

B5 =
(
− − − − −

)

We are using the same orthogonalization algorithm as above

and find successively the following three ternary vectors

(subsets of Bn) which are orthogonal to the given vector:

T = t =







x1 x2 x3 x4 x5

0 − − − −
1 1 − − −
1 0 − 1 −







.

The original vector t represented four binary vectors, the

orthogonal matrix T generates 28 vectors, and 25 is equal to

32. For the complement of a union of several sets we are using

the rule

A1 ∪A2 ∪ . . . ∪Ai = A1 ∩ A2 ∩ . . . ∩ Ai.

For each ternary vector of a given matrix we have to calculate

the complement and thereafter to intersect all these comple-

ments.

Example. As an example we go back to the solution matrix

of x1x2x3x5 = 0 (in orthogonal format) and calculate the

complement (i.e. the solution of x1x2x3x5 = 1). This will

be done by calculating the complement of the following four

vectors separately:
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t1 =
(
0 − − − −

)
⇒

t1 =
(
1 − − − −

)
,

t2 =
(
1 1 − − −

)
⇒

t2 =

(
0 − − − −
1 0 − − −

)

,

t3 =
(
1 0 0 − −

)
⇒

t3 =





0 − − − −
1 1 − − −
1 0 1 − −



 ,

t4 =
(
1 0 1 − 1

)
⇒

t4 =







0 − − − −
1 1 − − −
1 0 0 − −
1 0 1 − 0







,

followed by

t1 ∩ t2 ∩ t3 ∩ t4 = t =
(
1 0 1 − 0

)
,

and this result already has been seen as the solution of C = 1.

In many applications, particularly when they are based on

constraints, we will not consider the complements simulta-

neously, the vectors t1, t2, t3 and t3 will be computed or

generated sequentially and used in sequential order:

S = ((((Bn \ t1) \ t2) \ t3) \ t4).

This procedure can save a lot of memory and processing time.

V. IMMEDIATE SOLUTION OF THE SAT-PROBLEM

Using these ternary vectors as the basic data structure, we

are able to solve SAT-problems directly. We will use the

following small example:

(x1 ∨x2 ∨x3)(x2 ∨x4 ∨x5)(x1 ∨x4 ∨x5)(x2 ∨x3 ∨x5) = 1.

This equation is equivalent to the system of four single

equations:

x1 ∨ x2 ∨ x3 = 1,

x2 ∨ x4 ∨ x5 = 1,

x1 ∨ x4 ∨ x5 = 1,

x2 ∨ x3 ∨ x5 = 1.

The first equation now will be transformed into a ternary

matrix (a set or list of ternary vectors):






x1 x2 x3 x4 x5

1 − − − −
0 0 − − −
0 1 0 − −







.

This matrix shows all the vectors that satisfy the first

equation. If x1 = 1, then the values of the other variables

are not important. If x1 = 0, then x2 must be equal to 1, i.e.

x2 = 0. Finally, if x1 = 0 and x2 = 1, then x3 must be equal

to 0. Double solutions cannot exist. It is very characteristic

that each vector of the matrix includes more information than

the previous vectors. The number of vectors in the resulting

matrix is equal to the number of variables in the disjunction. In

the example each disjunction has three variables (an example

of a 3-SAT-problem).

If we repeat this procedure for the other three equations,

then we get the following four matrices:







x1 x2 x3 x4 x5

1 − − − −
0 0 − − −
0 1 0 − −













x1 x2 x3 x4 x5

− 1 − − −
− 0 − 0 −
− 0 − 1 0













x1 x2 x3 x4 x5

0 − − − −
1 − − 1 −
1 − − 0 1













x1 x2 x3 x4 x5

− 1 − − −
− 0 1 − −
− 0 0 − 0







In order to get the final solution, these four matrices have

to be combined by intersection (see above). Each line of one

matrix has to be combined with each line of the next matrix,

empty intersections can be omitted.

For the first and second matrix, we get,






x1 x2 x3 x4 x5

1 − − − −
0 0 − − −
0 1 0 − −







⋂







x1 x2 x3 x4 x5

− 1 − − −
− 0 − 0 −
− 0 − 1 0







=













x1 x2 x3 x4 x5

1 1 − − −
1 0 − 0 −
1 0 − 1 0
0 0 − 0 −
0 0 − 1 0
0 1 0 − −













,

and the final result is equal to











x1 x2 x3 x4 x5

0 0 − − 0
− 0 1 0 1
1 1 − − 1
0 1 0 − −
1 − − 1 0











.

This matrix of ternary vectors represents all solutions of the

original SAT-problem. Since the value − represents 0 as well

as 1, the equation has 18 solutions.

By using these methods, many SAT-problems already can be

solved. As a small example we use a combinatorial problem
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on the chessboard. It is naturally well known and only will

be used to demonstrate the modeling and the solution of such

a problem.

Example. How many configurations can be found with n
queens on a chessboard n× n not attacking each other?

We explain the procedure with a board 4×4. The generaliza-

tion then will be quite easy. The queen can move horizontally,

vertically and diagonally. Therefore in each column, each row

and each diagonal at most one queen can be placed. We

describe the possibilities by a matrix 4× 4 as follows:

4 . . . .
3 . . . .
2 . . . .
1 . . . .

1 2 3 4

Logic variables describe the position of the queens and are

defined as follows:

xij =

{
1 if there is a queen on the field (i, j),
0 otherwise,

for i, j = 1 . . . 4.

The requirement to place a queen in the first column can

be described by the following equation:

x11 ∨ x12 ∨ x13 ∨ x14 = 1.

The constraints can be defined by a list of implications

which have to be satisfied simultaneously. The implication is

expressed in our daily language by if x then y, very often the

representation x→ y is used. x is called the assumption, and

y is the conclusion. It can be transformed into the format of

a clause by

(x→ y) = x ∨ y.

A queen on the field (1, 1), for instance, produces the

following constraints:

x11 → x12, x11 → x13, x11 → x14,

x11 → x21, x11 → x31, x11 → x41,

x11 → x22, x11 → x33, x11 → x44.

The satisfaction of these constraints will not allow another

queen in the first column, in the first row and in the main

diagonal from (1, 1) to (4, 4).

When we eliminate the implications, then we get

x11 ∨ x12 = 1, x11 ∨ x13 = 1, x11 ∨ x14 = 1,

x11 ∨ x21 = 1, x11 ∨ x31 = 1, x11 ∨ x41 = 1,

x11 ∨ x22 = 1, x11 ∨ x33 = 1, x11 ∨ x44 = 1.

Now we will not use the intersection of all these clauses, it

is better to combine all these constraints into one equation and

use a ternary vector directly. In doing so, we get after some

simplifications the equation

x11 ∨ x12x13x14x21x31x41x22x33x44 = 1.

The conjunction with the requirement results in

(x11 ∨ x12 ∨ x13 ∨ x14)∧

(x11 ∨ x12x13x14x21x31x41x22x33x44) = 1.

The term (x11x12x13x14x21x31x41x22x33x44) = 1 is here

the interesting part. For its representation we use a ternary

vector with 16 components directly:

x11x12x13x14|x21x22x23x24|x31x32x33x34|x41x42x43x44

1 0 0 0 |0 0 - - |0 - 0 - |0 - - 0

We see directly the queen on the field (1, 1) indicated by the

value 1 and the attacked fields indicated by the value 0.

It is quite easy to use the structure of a ternary vector

directly, without writing down all the different clauses. If we

use the same approach for the other fields of the first column,

then we get immediately the following matrix:

x11x12x13x14|x21x22x23x24|x31x32x33x34|x41x42x43x44

1 0 0 0 |0 0 - - |0 - 0 - |0 - - 0

0 1 0 0 |0 0 0 - |- 0 - 0 |- 0 - -

0 0 1 0 |- 0 0 0 |0 - 0 - |- - 0 -

0 0 0 1 |- - 0 0 |- 0 - 0 |0 - - 0

It is easy to see the four possibilities for a queen in the first

column and the consequences for the other columns (fields

which are still free). With a little bit of training it is possible to

write down this matrix for each column directly, or to generate

it by means of a small program (for larger values of n).

The second, third and fourth column will be considered in

the same way, and the intersection of these four matrices shows

the final result:

x11x12x13x14|x21x22x23x24|x31x32x33x34|x41x42x43x44

0 0 1 0 |1 0 0 0 |0 0 0 1 |0 1 0 0

0 1 0 0 |0 0 0 1 |1 0 0 0 |0 0 1 0

We can see two solutions which are horizontally and verti-

cally symmetric:

4 . . Q .
3 Q . . .
2 . . . Q
1 . Q . .

1 2 3 4

4 . Q . .
3 . . . Q
2 Q . . .
1 . . Q .

1 2 3 4

We solved this problem for all values of n up to n = 18
and did not face any problems, except looking through all

these millions of solutions. The SAT-formula that describe

how 18 queens can be placed on a 18 × 18 chessboard not

attacking each other needs 324 Boolean variables. There are

666,090,624 solutions of this problem.

VI. ORDER OF CLAUSES

The order of clauses in the given expression does not change

the solution, but strongly influences the calculation effort. Thus

sorting of the clauses is a useful introductory step.

Let us assume a 3-SAT-problem. The partial solution set of

each clause consists of 23 − 1 = 7 solution vectors which
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can be expressed by 3 ternary vectors. If two clauses do not

overlap in any variable the intersection of these partial solution

sets covers 7 × 7 = 49 partial solutions of six variables in

3 × 3 = 9 ternary vectors. The number of solutions in an

intermediate partial set becomes smaller when the variables

of the clauses overlap. The reduction in terms of number of

ternary vectors depends on the position of the overlapping

variable. The reason for that is that the orthogonalization does

not create a symmetric representation. This observation leads

to the idea of a lexicographic order.

A. Lexicographic Order

We assume a natural order of the variables and study first

the effect of sorting the clauses according to a lexicographic

order. We start with x1 < x1 < −. This means that we write

down first all clauses with x1 in the first component, followed

by all components with x1 in the first component, thereafter

all clauses with − in the first component. If two clauses

have the same first component, then the second component

is considered in the same way etc. This ordering leads to

a significant reduction in terms of ternary vectors.

If we have two clauses of three literals with x1 in the first

component, then the corresponding ternary matrices of partial

solution sets will have the values 100 in the first column, and

we see the following situation for the intersection:





1 · · ·
0 · · ·
0 · · ·



 ∩





1 · · ·
0 · · ·
0 · · ·



⇒ · · ·

If we have two clauses of three literals, one has x1, the

second has x1 in the first component, then we can see the

following situation:





1 · · ·
0 · · ·
0 · · ·



 ∩





0 · · ·
1 · · ·
1 · · ·



⇒ · · ·

In the first situation the intersection will have at most five

ternary vectors, in the second case even only four. These are

reductions of 5/9 = 55.6% or even 4/9 = 44.4% in terms of

the number of ternary vectors.

B. Rearrange Order of Clauses by Influence of Variables

The lexicographic order is improved in Algorithm 1 slightly.

The larger the number of literals of one variable the stronger

is the enhancement based on its lexicographic order. For that

reason Algorithm 1 counts first the number of literals for each

variable of the Boolean expression and arranges the clauses

controlled by these numbers starting with the highest value.

C. Rearrange Order of Clauses by Number of Used Variables

It follows from the structure of clauses in 3-SAT-problems

that some calculations can be done in subspaces. As mentioned

above, the intersection of two sets of different variables leads

on the one hand to a solution set, where the calculated number

of ternary vectors is equal to the product of the numbers of

ternary vectors in the given sets. This is the worst case. On

Algorithm 1 Rearrange order of CNF by execution of

be : InfVarOrder(BooleanExpression be)

Require: Boolean expression be = f(x), given in CNF

Ensure: ben = f(x) arranged such that the first clause

includes the variable of the highest occurrence in the CNF

be and the last clause includes the variable of the lowest

occurrence in the CNF be
1: for all var in be do

2: NL[var]← NumberOfLiterals(be, var)
3: end for

4: ben← ∅
5: while be 6= ∅ do

6: varmax ← (var|NL[var] ≥ maxallvar(NL[var])
7: for all clause in be do

8: if varmax in clause then {move clause}
9: ben← CON(ben, clause)

10: be← DTV(be, clause)
11: end if

12: end for

13: NL[varmax]← 0
14: end while

15: return ben

the other hand the same intersection operation reduces the

number of remaining possible solutions if the variables of two

sets overlap completely. This is the best case.

Algorithm 2 is based on this fact. Like Algorithm 1 the

Algorithm 2 counts first the number of literals for each

variable of the Boolean expression. Secondly, for each clause

is a weight calculated. This weight is the sum of values

calculated in the first step associated to the variables of the

clause. Thirdly, the clauses will be rearranged such that the

clause with the highest weight is selected as the first. The

further clauses are selected due to a decreasing order of the

weights with the restriction that the number of variables in the

ordered expression is extended as late as possible.

VII. INTERSECTION VERSUS DIFFERENCE

Solving a SAT-problem means in general to find all solutions

of an equation where a conjunctive form of the left hand

side is equal to one. The clauses in this conjunctive form

are connected by conjunction operations. Knowing the partial

solution sets of all single clauses, the intersection of these sets

becomes the main operation to be executed.

In case of the 3-SAT-problem each partial solution set of

a single clause consists of three ternary vectors while their

complement can be expressed by a single ternary vector.

Hence, the question for an approach based on these com-

plement vectors arises. In such an approach the intersection

operation is replaced by the difference operation. The proper-

ties of these alternative approaches will be studied in detail in

the following two subsections.

A. ISC-Based Algorithm

The ISC-based algorithm realizes basically the method

described in section V and uses the restriction-based approach.
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Algorithm 2 Rearrange order of CNF by execution of

be : UsedVarOrder(BooleanExpression be)

Require: Boolean expression be = f(x), given in CNF

Ensure: ben = f(x) arranged such, that the set of variables

covered by the subset, from the first to the i-th clause,

growths depending on i as small as possible

1: for all var in be do

2: NL[var]← NumberOfLiterals(be, var)
3: end for

4: wmax ← 0
5: for all clause in be do

6: WC[clause]← 0
7: for all var in clause do

8: WC[clause]←WC[clause] +NL[var]
9: end for

10: if wmax < WC[clause] then {new best clause}
11: wmax ←WC[clause]
12: clausemax ← clause
13: end if

14: end for

15: ben← clausemax

16: be← DTV(be, clausemax)
17: while be 6= ∅ do

18: socbest ← 0
19: for all clause in be do

20: cover ← SV_ISC(be, clause)
21: soc← SV_SIZE(cover)
22: if soc = 3 then {clause completely covered}
23: ben← CON(ben, clause)
24: be← DTV(be, clause)
25: else if soc > socbest then

26: socbest ← soc
27: clausebest ← clause
28: end if

29: end for

30: ben← CON(ben, clausebest)
31: be← DTV(be, clausebest)
32: end while

33: return ben

That means that the given TVL in conjunctive form of the

function f(x) is first changed into the TVL of the associated

disjunctive form of the function f(x) using De Morgan’s law

in the XBOOLE operation NDM [3]. This very fast opera-

tion changes the clauses into restrictions. The characteristic

equation of each clause (e.g. (b ∨ c ∨ h) = 1) is transformed

into a restrictive equation b c h = 0. It is a benefit of this

approach that the ternary vector of such a conjunction of

literals describes directly a partial restriction set (prs). We

use all partial restriction sets given as ternary vectors of the

function f(x) to create in a loop partial solution sets (pss)

by means of a complement operation (CPL [3]) which then

can immediately be used to calculate the intersection (ISC [3])

with the previous intermediate solution Si−1:

Si = Si−1 ∩ pssi = Si−1 ∩ prsi. (1)

Thus, the core of the ISC-based algorithm is

S[i] = ISC(S[i− 1], CPL(prs[i])) (2)

where S0 = 1, represented by a single ternary vector with

dashes only.

An advantage of the orthogonal ternary representation of

a partial solution set is the possibility that seven partial binary

solution vectors are expressed by three disjoint ternary vectors.

A disadvantage of this representation is the asymmetry of the

columns. This asymmetry is observable by different numbers

of dashes, precisely 0, 1, and 2, in the columns of the variables

given in the clause. Due to the results of the analysis in Section

V a controlled complement operation is required which creates

zero dashes in that column of the partial solution set fitting

to the column of the intermediate solution matrix having the

smallest number of dashes.

A further disadvantage of a partial solution set is the a priori

segmentation of the set into three subsets. The disadvantageous

effects of this segmentation are:

1) The time for the comparison of these three subsets with

each vector of the intermediate solution is three times

higher than the processing of a single set.

2) There is an unnecessary segmentation of the intermedi-

ate solution matrix which requires more time and space

in the following calculation steps.

The second effect can be explained by the following ex-

ample. Let us assume that the intersection of the first k − 1
clauses has created the intermediate solution set Sk−1

Sk−1 =









a b c d e
1 0 − 1 −
1 1 − − 1
0 1 1 − −
0 0 0 − −









,

and the next clause k is (c ∨ d ∨ e).
Based on (1) and (2) we get

Sk = Sk−1∩







a b c d e
− − 1 − −
− − 0 1 −
− − 0 0 1







=

















a b c d e
1 0 1 1 −
1 0 0 1 −
1 1 1 − 1
1 1 0 1 1
1 1 0 0 1
0 1 1 − −
0 0 0 1 −
0 0 0 0 1

















.

It can be seen that the first row of Sk−1 builds solution

vectors with the first and second row of the partial solution set

of the clause k. The created two solution sets may be expressed

by a single ternary vector. The second vector of Sk−1 builds

even three solution vectors with all three rows of the partial

solution set. These three solution vectors may be expressed by
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a single ternary vector, too. A significant reduction from 8 to

5 solution vectors is possible.

It should be mentioned that in this example each one of the

six possible permutations of the representation of the partial

solution set leads to the same number of solution vectors.

B. DIF-Based Algorithm

Another even more fundamental change of the solution

philosophy arises when we merge the operations complement

and intersection of (1) and (2) into the difference operation

(DIF [3]). Instead of using the intersection with the partial

solution set of three vectors we exclude the partial restriction

set from the intermediate solution matrix.

Si = Si−1 \ prsi. (3)

Thus, the core of the DIF-based algorithm is

S[i] = DIF (S[i− 1], prs[i]) (4)

where S0 = 1 is represented again by a single ternary vector

that includes only dashes. The exclusion of the non-solution

vectors by means of the DIF-operation is quite easy, the

vectors of the first matrix will be orthogonalized with regard

to the vector to be eliminated and the common vectors are

thrown away.

The disadvantages of the ISC-based algorithm change into

advantages of the DIF-based algorithm. Instead of three vec-

tors in a partial solution set there is a single vector in a partial

restriction set (prs). This reduces the time for comparison for

the set by a factor of three. Of cause, there is no asymmetry in

the representation of prs so that no decision about the order of

the columns is necessary. Finally, it is especially important that

unnecessary segmentations of solution sets in the intermediate

solution matrix are omitted.

This very important effect can be illustrated by solving the

same task as in the ISC-based algorithm. The partial restriction

set for the clause (c ∨ d ∨ e) is prs = (− − 000), because if

each of the variables is equal to 0, then the clause is equal to

0 – no solution exists in this case. Based on (3) and (4), we

get

Sk =









a b c d e
1 0 − 1 −
1 1 − − 1
0 1 1 − −
0 0 0 − −









\

(
a b c d e
− − 0 0 0

)

=











a b c d e
1 0 − 1 −
1 1 − − 1
0 1 1 − −
0 0 0 1 −
0 0 0 0 1











.

The DIF-based algorithm creates directly the minimal so-

lution. In the example the partial restriction set is orthogonal

to the first three vectors of the intermediate solution matrix –

these vectors remain unchanged. Only the last vector must
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Fig. 1. Comparison of the number of ternary vectors in the intermediate
TVL using the ISC-based and the DIF-based algorithm for the solution of
the SAT-benchmark uf20-01 that depends on 20 variables and 91 clauses.

change, it will be replaced by the two vectors (0001−)
and (00001). The vector (00000) has been excluded. The

representation of the matrix for Sk = Sk−1 \ (−− 000) only

needs 5 lines instead of 8. The efficiency of this ’tiny’ step

becomes visible in Figure 1. Due to smaller number of rows

the DIF-based Algorithm finds the solution significantly faster.

VIII. SPLITTING OF INTERMEDIATE SOLUTIONS

We already have seen that the sorting of the clauses and the

application of intersection and difference, resp., can result in

considerable improvements of the efficiency of the solutions of

SAT-problems. However, it can be necessary to deal with the

large amount of intermediate ternary vectors that can reach

a size where the available memory is not sufficient at all

(even when at the end only a small number of solutions

will appear). In this section we will show a general approach

which overbears any memory restrictions while solving SAT-

problems.

In order to control the needed memory space, at the be-

ginning of the problem solution a so-called splitlimit will be

defined. When the number of ternary vectors reaches the value

of splitlimit, half of the set of ternary vectors existing at

this point of time will be stored, together with the clauses

that still have to be considered for these vectors. The solution

process continues with the second half of ternary vectors as

long as possible. This corresponds to the distributivity rule of

set theory: it holds for sets A, A1, A2 with A = A1 ∪A2 that

A ∩B = (A1 ∪ A2) ∩B = (A1 ∩B) ∪ (A2 ∩B).

One intersection A1 ∩ B will be taken into consideration

immediately, the other part A2 will be stored and handled

later.

Now the processing continues with the set A1 until all the

solutions for this half have been found. The solutions can be

stored, and the processing goes back to the part A2 which has



242 C. POSTHOFF, B. STEINBACH

been stored. In this way the final overall solution can be found

by consideration of the two parts. Because of the orthogonality

of the vectors in the intermediate solution again each solution

will be found precisely once.

If one of the sets A1 or A2 reaches again the value of

splitlimit, then the split can be applied again. In this way we

can get, for instance, two sets A11 and A12 (if A1 is split).

Since this split can appear at many occasions, a management

structure will be required that is able to care about all these

subsets and the respective sets of clauses.

Table V shows some results of this approach for examples

of 75 and 100 variables evaluated in [5]. The additional time

for storing the subsets and some communication overhead

are justified by a considerable extension of the solvability of

problems.

TABLE V
THE INFLUENCE OF THE SPLITTING SIZE

splitlimit uf75-01 uf100-01

time memory time memory

100 105.90 s 6 MB
1 000 25.49 s 6 MB 2876.40 s 7 MB

10 000 19.84 s 9 MB 2085.26 s 13 MB
100 000 20.03 s 34 MB 2750.87 s 59 MB

1 000 000 24.96 s 156 MB 2152.25 s 379 MB
10 000 000 23.89 s 273 MB

It is quite obvious that it is not easy to determine the optimal

value of splitlimit. However, the results indicate that for the

given examples of 3-SAT-problems it might be in the range

between 10 000 and 100 000.

IX. PARALLEL APPROACHES

Now we will indicate some possibilities to use parallel

processing for the solution of SAT-problems. This possibility

can be based on the fact that the two problems that exist

after the splitting can be solved completely independent on

each other. If one processor handles the set A1, another

processor the set A2, then it is only necessary to copy the set

of clauses still to be processed, and the two processors can

continue working on the two smaller sub-problems. If there is

a larger number of processors, then several splittings can be

used, with a rather small amount of communication overhead.

The communication mainly has to deal with the splitting of

the intermediate matrices and the sending of the remaining

clauses.

A. Controlled Distribution of Subtasks

In [6], [5] the following intelligent strategy has been used.

Basically it follows the split-approach introduced in Section

VIII but one master processor distributes the subtasks to

available client processors. In case of parallel computing the

additional question of the distribution of the split subfunctions

fi(x) arises. The answer to this question will be influenced

by two opposite effects:

• there can be a large overhead for communication when

many small subtasks are distributed to the processors,

• it can be very time-consuming when a few large subtasks

must be solved in parallel.

In order to control the distribution of the subtasks, two

parameters are used:

1) interimlimit: the number of conjunctions required to split

an intermediate solution function into subfunctions, and

2) distlimit: the number of conjunctions of the intermediate

solution allocated to a processor as source of a subtask

to solve.

The interimlimit affects to solution process of the SAT-

problem in two ways. On the one hand, if the number of

intermediate solutions is smaller than the value of interimlimit

then the problem is solved very fast on a single processor and

time-consuming distributions are completely avoided. On the

other hand, if the number of intermediate solutions is larger

than the value of interimlimit, there are enough intermediate

solutions used to create subtasks for the available processors.

An optimal range of the interimlimit is 102 . . . 104.

Table VI shows the effect of the distlimit for splitlimit =

10,000, interimlimit > 1,000, and 5 processors in order to

solve SAT-problems of 50, 75 and 100 variables.

TABLE VI
THE INFLUENCE OF DISTLIMIT

time in seconds
distlimit uf50-01 uf75-01 uf100-01

1 4.59 7.20 342.73
5 0.97 5.25 343.25

10 0.52 5.64 342.35
25 0.25 7.10 349.48
50 0.17 7.18 371.30

100 0.21 6.65 584.16
250 0.16 6.07 671.51
500 0.14 9.92 943.94

1000 0.17 18.89

The first column of Table VI shows that the time for

communication grows for smaller values of the control pa-

rameter distlimit and influences significantly the runtime of the

smallest evaluated SAT-problem of 50 variables. Vice versa,

it can be observed from the last two columns of Table VI

that the time to solve larger subtasks dominates the time for

communication in case of SAT-problems of larger numbers

of variables. Hence, a small value for the control parameter

distlimit should be chosen.

A more detailed analysis is given in Table VII. Here

we have used 8 processors which solve the SAT-problem

uf100-01 of 100 variables controlled by the parameter values

interimlimit > 1,000 that determines the number of basic

intermediate solutions, and splitlimit = 10,000 for the solution

of the subtasks. In this experiment the runtime of the equal

distribution is compared in contrast to the allocation of vectors

on demand controlled by the value of distlimit.

A distlimit of 1 means that one vector will be allocated to

a processor as soon as it is idle. This processor continues to

process this single vector and the clauses remaining for this

vector. This strategy should be the most appropriate strategy to

get a balanced distribution of the computational efforts. The

almost constant runtime of all 8 processors is reached due
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TABLE VII
EQUAL DISTRIBUTION VERSUS ALLOCATION OF VECTORS ON DEMAND –
IT MEANS FOR THE CPU LABELED IN THE FIRST COLUMN: T THE TIME IN

SECONDS, AND R THE NUMBER OF REQUESTS FOR A SUBTASK TO SOLVE

evalu- equal distlimit

ated distribution 50 5 1
CPU T R T R T R T R

CPU 1 49.11 1 79.41 3 166.56 46 175.38 173
CPU 2 62.37 1 333.19 2 201.62 12 175.17 230
CPU 3 193.25 1 169.05 4 167.34 30 176.71 108
CPU 4 24.33 1 232.87 3 218.29 8 175.05 132
CPU 5 109.21 1 181.80 5 179.84 30 177.70 80
CPU 6 633.19 1 148.88 1 180.01 22 175.45 90
CPU 7 176.08 1 115.84 3 166.38 55 175.07 148
CPU 8 106.01 1 116.86 3 166.42 28 175.10 193

max. 633.19 333.19 218.29 177.70

to the different numbers of solved subtasks indicated by the

values in the column labeled be R (requests for a subtask).

An equal distribution of the intermediate solutions, how-

ever, splits the set of vectors at the beginning into equal parts,

and each processor continues on its own. This is the worst

case because the longest runtime for a subtask determines the

overall runtime.

Table VII shows that distlimit = 1 is a good choice.

Extending the value of distlimit to 50 approximately doubles

the runtime.

B. Parallel Backtracking

The runtime required to solve SAT-problems depends for the

approach of controlled distribution (see Subsection IX-A) on

the values of the three control parameters interimlimit, distlimit

and splitlimit. The last is necessary to fix the basic memory

problem. The other two parameters are needed for control only.

In order to avoid the influence of these two parameters, an al-

ternative approach called Parallel Backtracking was suggested

in [6], [5].

The benefits of the Parallel Backtracking are:

• it organizes its parallel work itself,

• it utilizes a just suitable number of processors, and

• it needs a single parameter only: the splitlimit.

Figure 2 shows the actions of the algorithm running on the

processors ready to solve the SAT-problem. Initially, the client

is waiting for a task to solve in the action wait. After receiving

a task the client solves it in the action work. If the given task

has been solved (initially it is the complete task and later on it

will be a subtask), the client continues with the action solved.

In this action the client checks whether the queue includes

a further subtask. If there is a further subtask to solve, the

client takes the last stored subtask and solves it in the action

work; otherwise the client returns to the action wait.

In the case that the client has calculated more than splitlimit

intermediate solutions, the client moves to the action split

where the client splits the intermediate solutions into two

subtasks; the client stores the second subtask into the queue

and continues to solve its own first subtask. The queue is used

commonly by all clients.

Table VIII shows that the approach of Parallel Backtracking

scales very well. The splitlimit for the approach of Parallel

split
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Fig. 2. Actions of the client in the algorithm: Parallel Backtracking.

Backtracking was fixed to 10,000. Of cause, when the SAT-

problem can be solved in a couple of seconds, adding more

processors does not speed up the solution process because

only the created subtasks can be solved by the involved client

processors. This can be seen in the column of the 3-SAT-

problem uf75-01 of 75 variables. The high quality of the

approach of Parallel Backtracking becomes visible for the 3-

SAT-problem uf100-01 of 100 variables in the last column

of Table VIII. The achieved speedup is greater than 90% for

up to 24 processors. That means that up to this number of

processors the required solution time is almost the quotient of

time needed be a single processor divided by the number of

processors that have been used in parallel.

TABLE VIII
SOLVING 3-SAT-PROBLEMS OF 75 AND 100 VARIABLES USING THE

PARALLEL BACKTRACKING ON DIFFERENT NUMBERS OF PARALLEL

PROCESSORS

processing time in s

number of processors uf75-01 uf100-01

1 19.94 1391.16
2 11.13 696.87
4 6.53 362.39
8 3.96 175.71
12 3.07 120.09
16 2.92 89.81
24 2.90 63.18
32 2.47 50.94
40 2.38 40.19
48 2.33 36.98
56 2.27 30.66
64 2.24 29.94

Both approaches Controlled Distribution of Subtasks and

Parallel Backtracking were implemented using the same li-

brary MPI (message passing interface). The benefits of the

Parallel Backtracking are visible in Figure 3.

C. Computation on the GPU

NVIDIAs Compute Unified Device Architecture CUDA al-

lows to use the huge number of processor cores of the Graphics

Processing Units GPU to speed up time-consuming tasks. In

[7] we studied the utilization of the GPU for a special SAT-

problem, called Unate Covering Problem UCP. Such problems

must be solved in circuit design.
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Fig. 3. Comparison of the approaches Controlled Distribution of Subtasks

(dotted line) and Parallel Backtracking (solid line) for the 3-SAT-problem
uf100-1 of 100 Boolean variables.

There are two peculiarities of the UCP in comparison to the

general SAT-problem:

1) all variable in the clauses of the SAT-formula appear in

positive polarity, and

2) the smallest number of assignments 1 to the variables

which solve the SAT-equation is wanted.

We do not want to repeat the details of the used approach

of matrix multiplication on the GPU of this research in an

early stage. Using GPU of 64 cores to solve a UCP of 256

clauses with 16 variables the run time was reduced by a factor

of 3.4 [7]. We are sure that much larger improvements will

be possible. One additional technical problem is that all data

must be moved first from the main memory to the memory

of the GPU before the power of the GPU can be used for

computation. After the computation additional time is needed

to move the results back to the main memory.

D. Computation on a Multi-Core CPU

The recent improvements in computer hardware [8] increase

the computation power of modern PCs and lead to challenges

for software development due to the multi-core architecture.

How the relatively small number of processor cores can be

utilized efficiently? In [9] we published some approaches

which show that a strong improvement can be reached even

with 4-cores of the CPU of a modern PC. As discussed already

in Subsection IX-C we solved the special SAT-problem UCP.

First we simply split the Boolean space into four subspaces

of equal sizes and applied the DIF-based algorithm of Subsec-

tion VII-B. This approach, called Uniform Distribution, has

a bad load-balancing but reached for the largest benchmark

(256 clauses of 32 variables) the shortening form 734.171

seconds using one single processor core to 31.931 seconds

using all four cores of the CPU in parallel. Hence, the runtime

0

5
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0 50 100 150 200 250 300

time ratio: 1 processor / 4 processors

number of clauses

linear speedup
24 variables
32 variables

Fig. 4. Time ratio between the sequential solution on a single processor
core and the parallel solution Uniform Distribution on 4 processor cores for
solving the SAT-problem UCP using the DIF-based algorithm.
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Fig. 5. Master – worker architecture of a PC with 4 cores.

could be reduced in this case by a factor of 22.99 which is

significantly larger than the number of the used 4 processor

cores. Figure 4 shows the details of these benchmark experi-

ments.

Next we improved the load-balancing in the approach

Adaptive Distribution in such a way that a larger number

of subtasks is created by a master process and assigned on

demand to three worker processes. Figure 5 shows the used

architecture of the 4 processor cores.

Despite the restriction from four to three working processor

cores the much better load-balancing and the smaller subtasks

reduced the runtime of the previously mentioned example

to 3.099 seconds. Hence, the time could be reduced in this

case by an additional factor of 10.3 in comparison to the

Uniform Distribution using 4 cores which is an improvement

in comparison to a single processor core of 236.9. The reason

of this impressive speedup is based on a special utilization of

the implemented concurrent approach. Each worker sends the

results of the unate covering problem for the assigned subspace

to the master process. These results include both the minimal

number of values 1 in this partial solution and the number of

such minimal solutions. The master process handles the partial

solutions in the following way:

• If the master process already knows solutions with

a smaller number of values 1, the received solutions with

a larger number of values 1 are omitted immediately.

• If the master process already knows solutions with the

same number of values 1, the received solutions are

accumulated.
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Fig. 6. Time ratio between the sequential solution on a single processor
core and the parallel solution Adaptive Distribution on 4 processor cores for
solving the SAT-problem UCP using the DIF-based algorithm.

• If the master process knows so far only solutions with

more values 1, the stored accumulated solution is replaced

by the new better solution.

Using this simple algorithm, the master process knows the

smallest number of values 1 found so far by the concurrent

worker processes. On each request of a worker for the next

subtask, the master process sends both the number of the

next subspace and the smallest solution found so far. This

information helps the worker process to simplify the evaluation

algorithm because large solutions must not be taken into ac-

count anymore. Figure 4 shows the details of these benchmark

experiments.

The serious super-linear speedup was reached because the

available set of processor cores is not used only for the

computation of the assigned subtasks, but mainly as source of

knowledge that restricts the effort for the subsequent subtasks.

Finally, we created the Intelligent Master approach. The

knowledge about the smallest number of values 1 of a solution

known so far is not only used by the workers but also by the

master. This approach relies on the aim that solution vectors

with the smallest number of values 1 are wanted. A subspace

is defined by fixing a certain number of variables; (x1 = 0;

x2 = 1; x3 = 1; x4 = 0; x5 = 1) defines, for instance, one

of 32 subspaces where the first 5 variables are fixed. If a

solution of two values 1 is already known, it can be concluded

that no solution results from this subspace since already three

variables have the value set to 1.

The measured runtime of the previously mentioned UCP

example of 32 variables in 256 clauses is 2.061 seconds.

Hence, the runtime could in this case be reduced by an

additional factor of 1.5 in comparison with the Adaptive

Distribution using 4 cores which is an improvement in com-

parison to a single processor core of 356.2. Figure 4 shows

the serious super-linear speedup reached by the Intelligent

Master approach for benchmark experiments of 32 variables.

The distributed solution itself is a source for the remarkable

super-linear speedup, even when a small number of cores is
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Fig. 7. Time ratio between the sequential solution on a single processor core
and the parallel solution Intelligent Master on 4 processor cores for solving
the SAT-problem UCP using the DIF-based algorithm.

used.

X. HIGHER LEVEL MODELS

Mapping a real-life problem into s SAT-model is a very

strong formalization. Relationships of the real life problem are

expressed by a huge number of very simple clauses. Properties

of the given problem are distributed over a large number of

clauses and will not be explicitly visible anymore.

Alternatively higher-level models can be applied. We in-

troduce this higher-level approach by means of a well-known

example.

Over the last years a Japanese game with the name Sudoku

became very popular. It is played mostly on a board with

9 × 9 fields, but other square numbers are also possible, such

as 4 × 4 or 16 × 16 or even 25 × 25. It is easy to understand

and a bit challenging for human beings, and it can be used

comfortably to spend waiting time on airports or similarly. But

there are also mathematical and logical properties that deserve

some attention.

There is a quadratic board of, for instance, size 9 × 9.

In each column, in each row and in nine sub-squares of size

3 × 3 the values 1, . . . , 9 have to be set such that in each

column, in each row and in each sub-square each value is

used once and only once.

5 3 7

6 1 9 5

9 8 6

8 6 3

4 8 3 1

7 2 6

6 2 8

4 1 9 5

8 7 9

Some values already have been set, and the other values

have to be found according to the existing values. We enu-

merate the columns from the left to the right and the rows
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bottom-up (in the same way as a normal planar coordinate

system).

We know at least two papers that are using SAT-models

of the game and existing SAT-solvers for the solution of the

problem [10], [11]. These papers used the following approach:

a binary variable xijk describes the content of the field

(i, j), 1 ≤ i, j, k ≤ 9:

xijk =

{
1 if the value on the field (i, j) = k
0 if the value on the field (i, j) 6= k

The transformation into a SAT-problem uses several steps:

(xij1 ∨xij2 ∨xij3 ∨xij4 ∨xij5 ∨xij6 ∨xij7 ∨xij8 ∨xij9) = 1

expresses the requirement that one of the numbers 1, . . . , 9
must be used for the field (i, j). Such a disjunction must be

written for each field of the board which results in 81 clauses

which must be satisfied simultaneously.

The second step expresses all the constraints for rows,

columns and squares as clauses as well. For example for the

field (1, 1) and the value 1 on this field, no other value can

be on this field:

x111 → x112, x111 → x113, . . . , x111 → x118, x111 → x119.

The same set of clauses must be written for the other values

2, . . . , 9 on the same field. The requirements for the first

column can be expressed in the same way:

x111 → x121, x111 → x131, . . . , x111 → x181, x111 → x191.

The constraints for the row are given as

x111 → x211, x111 → x311, . . . , x111 → x811, x111 → x911,

and finally we must consider the value 1 in the respective

square:

x111 → x221, x111 → x321, . . . , x111 → x231, x111 → x331.

Again all these clauses have to be written for all numbers

from 1 to 9 and finally for all fields. By using the rule

x→ y = x ∨ y

the whole set of implications can be transformed into disjunc-

tions, all of them must be satisfied at the same time, and this

is the problem in SAT-format. Each satisfying set of values

for the binary variables is a solution of the Sudoku.

We will show that this game easily can be modeled by using

a logic equation, with ternary vectors as the most appropriate

data structure. Actually, the logic equation does not even have

to be written down; the ternary vectors can be generated

directly.

We are using the same encoding as the two other papers

mentioned above:

xijk =

{
1 if the value on the field (i, j) = k
0 if the value on the field (i, j) 6= k

The constraints can be stated by one single conjunction for

each number on each field:

K111 =x111x112x113x114x115x116x117x118x119 ∧

x121x131x141x151x161x171x181x191 ∧

x211x311x411x511x611x711x811x911 ∧

x221x231x321x331.

This conjunction describes completely the setting of 1 on the

field (1, 1) and all the consequences. There are 729 of such

conjunctions which are defined uniquely. It is important to

understand that not only the requirement in terms of 9 variable

xijk of each field (i, j) is taken into consideration, but the

conjunctions Kijk so that all the consequences resulting from

a given setting are used immediately. The existing knowledge

or constraints are directly built into the ternary vectors.

Now we must express the possibilities of the game. In order

to do this, we can use one of the following four types of

equations.

1) The equation

(K111 ∨K112 ∨K113 ∨K114∨

K115 ∨K116 ∨K117 ∨K118 ∨K119) = 1

describes that one of the 9 values must be assigned to

one field (the field (1, 1) is only an example).

2) The equation

(K111 ∨K121 ∨K131 ∨K141∨

K151 ∨K161 ∨K171 ∨K181 ∨K191) = 1

describes that the values 1 must be assigned to one of

the fields in a column (column 1 and value 1 are only

examples).

3) The equation

(K111 ∨K211 ∨K311 ∨K411∨

K511 ∨K161 ∨K711 ∨K811 ∨K911) = 1

describes that the values 1 must be assigned to one of the

fields in a row (row 1 and value 1 are only examples).

4) The equation

(K111 ∨K121 ∨K131 ∨K211∨

K221 ∨K231 ∨K311 ∨K321 ∨K331) = 1

describes that the values 1 must be assigned to one of

the fields in a subsquare (the first subsquare and value

1 are only examples).

Each type of these equations generates a system of 81

disjunctions that must be satisfied at the same time. They are

completely equivalent, one system can be selected once and for

ever. All the conjunctions are represented by ternary vectors,

and this representation can be generated before any real

game which is given by special settings. Each ternary vector

will have 729 components, and all intersections from the left

to the right have to be calculated. Since the values which have

already been set result in one vector for the given field, many

of these matrices will have only one row (30 in the given

example). Therefore it is advisable (however, not necessary),
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to intersect the single vectors first, because thereafter many

intersections will be empty. This algorithm does not need any

considerations for special cases. If there are no solutions, then

the intersection will be empty at a given point of time, if there

is a unique solution, then we will have precisely one vector

in the final intersection, and more than one solution will be

expressed by the respective number of vectors.

The solution set S consists of all binary vectors of the length

729 that solve the SAT-problem of the given Sudoku. Each

solution vector includes exactly 81 values 1 that indicate the

solution numbers associated to the fields. The remaining 648
components of each solution vector carry the value 0. Thus, by

taking the index (i, j, k) of the values 1 in the solution vector,

a representation of the value k in the field(i, j) of column i
and row j can be established.

As a summary we can see that the solution of the problem

has two steps. The first phase covers the modeling of the

problem and the calculation of partial solution sets (or solution

candidates). Of course the first phase depends on the problem

to be solved – in our case any Sudoku game.

The second phase mainly considers the different action

possibilities and combines these possibilities by ∨ operations.

The intersections of the different possible actions are evaluated

by the intersections of the respective ternary vectors.

The advantage of this new approach in comparison with the

known traditional SAT-models is the simultaneous assignment

of values to many variables. In case of a 9×9 Sudoku a single

assignment specifies additionally 28 variables of the solution

space, and this strongly restricts the remaining search space.

XI. ONE INTERESTING EXAMPLE AND EXPERIMENTAL

RESULTS

There are many interesting problems of the game – one

of these problems, for instance, is the question: How many

settings are necessary to define one and only one unique

solution? In [12] an example with 16 settings has been given

that has precisely two solutions. It is not known whether there

are other examples with 16 settings and one or two solutions.

It is known, however, that there are many unique solutions

when the number of settings is equal to 17. The concept of

a unique solution still has to be defined properly because such

operations like relabeling of entries, reflection, rotation, . . . of

a valid Sudoku give other valid Sudokus.

We used the Sudoku of Figure 8 as an example. The two

solutions are shown in Figure 9. The second solution can be

found easily by exchanging 8 and 9 in the first solution.

The program has built the game matrix (which can also

be stored before any real game) in the first phase using 515

milliseconds. The two solutions have been determined by the

solution program in the second phase after 16 milliseconds.

In case of a 16× 16 board the matrix of the partial solution

sets required approximately 2 Megabyte. Each row of this

matrix includes one value 1, 54 values 0. The remaining values

of the 4096 variables are filled with dashes. Therefore we

decided to store only the index values of the elements with the

value 0 and 1 and to generate any vector of a partial solution

set at the time when it is required. Without any other changes

1 5

3

2 4

3 4 7

2 6 1

2 5

7 3

1

Fig. 8. Difficult Sudoku example having only 16 settings.

Solution 1

1 8 3 9 6 7 4 2 5

4 6 9 5 3 2 8 1 7

7 5 2 1 4 8 6 9 3

6 2 1 4 7 3 5 8 9

5 3 4 8 1 9 7 6 2

8 9 7 2 5 6 3 4 1

2 1 6 3 8 5 9 7 4

9 7 5 6 2 4 1 3 8

3 4 8 7 9 1 2 5 6

Solution 2

1 9 3 8 6 7 4 2 5

4 6 8 5 3 2 9 1 7

7 5 2 1 4 9 6 8 3

6 2 1 4 7 3 5 9 8

5 3 4 9 1 8 7 6 2

9 8 7 2 5 6 3 4 1

2 1 6 3 9 5 8 7 4

8 7 5 6 2 4 1 3 9

3 4 9 7 8 1 2 5 6

Fig. 9. All solutions of the Sudoku given in Figure 8 having only 16 settings.

the problem of a 16 × 16 Sudoku that maps into a problem

of 4096 variables and 111616 clauses could be solved within

about two and a half minutes.

XII. APPLICATIONS AND EXPERIMENTAL RESULTS

Based on this methodology, many other problems have

been solved. It will not be very difficult to apply the same

methodology.

1) It is expected that on a chessboard of size n × n
with k additional pawns n + k queens can be placed

without threatening each other. Here one solution has

been represented for one pawn on a board of size 8× 8.



248 C. POSTHOFF, B. STEINBACH

Q

Q

Q

Q P Q

Q

Q

Q

Q

One result for two pawns is shown next.

Q

Q

Q

Q P Q

Q

Q P Q

Q

Q

2) The case of k = 0 is the “normal” problem of arrange-

ments of queens on a chessboard n × n that has been

solved as well up to n = 18.

3) There are many problems asking for minimum and max-

imum numbers, for instance, how many bishops are at

least required to cover all the fields on a chessboard, or

how many bishops can at most be placed on a chessboard

without covering each other etc. These problems also

have been solved on boards of size m × n for many

values of m and n.

4) The same relates to graph problems, such as Hamiltonian

and Eulerian paths in a graph, the minimum number of

nodes with a given property or the maximum number of

nodes with a given property etc.

5) As a last example we will show the solution of coloring

problems. Our method can be applied to color any graph.

As example we use the graph called Birkhoff’s Diamond

shown in Figure 10 (a).

The structure of a graph can be described using an

adjacency matrix. A value 1 in the row i and column j
indicates an edge from node i to node j in the graph.

In case of an undirected graph we get a symmetric

adjacency matrix. The graph Birkhoff’s Diamond has

the following adjacency matrix.

ABD =



















0100011100
1010000110
0101000010
0010100011
0001011001
1000101000
1000110101
1100001011
0111000101
0001101110



















Using the adjacency matrix (5) the partial solution sets

can be generated directly. The logic variables describe

whether a certain color is assigned to a node of the graph

or not. Hence, the number of required variables is equal

(a)

(b)

Fig. 10. Birkhoff’s diamond: (a) uncolored graph, (b) one solution using 4
colors.

Fig. 11. Generated matirx of the partial solution sets to color the graph of
Birkhoff’s diamond using four colors.
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TABLE IX
CALCULATION OF ALL SOLUTIONS TO COLOR THE BIRKHOFF’S

DIAMOND USING 3, 4 OF 5 COLORS

number of time in
nodes colors variables solutions seconds

10 3 30 0 0.00
10 4 40 576 0.00
10 5 50 40800 0.02

TABLE X
CALCULATION OF ALL SOLUTIONS TO COLOR THE BIRKHOFF’S

DIAMOND AND GRAPHS THAT INCLUDE TWO OR FOUR SUCH GRAPHS

USING 4 COLORS.

number of time in
nodes colors variables solutions seconds

10 4 40 576 0.00
20 4 80 99888 0.20
40 4 160 100800 4.97

to the product of the number of nodes and considered

colors.

xcn =

{
1 if the color on the node n = c
0 if the color on the node n 6= c

These partial solution sets cover the restrictive rules.

When a color is assigned to one node, it is not allowed

that:

a) another color is assigned to the same node, and

b) the some color is assigned to another node con-

nected by an edge.

Figure 11 shows the generated matrix of the partial

solution sets (mpss) in the XBOOLE monitor [3], [4].

Each row represents a conjunction Kcn covering seven,

eight or nine components.

The second phase of the new two-phase SAT-solver

is controlled by the requirement clauses. For graph

coloring we have the simple requirement that there must

be one color assigned to each node of the graph. In order

to find all allowed assignments of four colors for the

graph of Figure 10, we must solve the equation:

10∧

i=1

(K1 i ∨K2 i ∨K3 i ∨K4 i) = 1 . (5)

The time to solve this equation using the operations

UNI and ISC of XBOOLE [3] was less than a single

time-tick (15 ms). Figure 10 (b) shows one of the 576

solutions that have been found.

Two experiments demonstrate the power of this ap-

proach. In the first experiment we calculated all solutions

to color Birkhoff’s diamond using three, four or five

colors. Table IX summarizes these results.

In the second experiment we created several larger

graphs: we combined first two Birkhoff’s diamonds us-

ing some additional edges and thereafter four Birkhoff’s

diamonds in a similar way. Table X summarizes these

results.

XIII. CONCLUSIONS

There are several results presented in this paper.

1) Many finite discrete constraint-related problems can be

modeled as a SAT-problem. It has been shown that it

is not necessary to write down the huge number of

clauses of the conjunctive forms which must be solved

by a SAT-solver. Based on the explored properties of the

problem, it is possible to generate partial solution sets

of the restrictive properties of the problem.

2) A new implicit two-phase SAT-solver has been used. In

the first phase this SAT-solver creates partial solution

sets which are used in the second phase to calculate the

solution without any further decisions.

3) The matrix of the partial solution sets describes general

constraints of the problem without any consideration of

clauses.

4) The use of the partial solution sets in the second phase

of the SAT-solver allows to solve the SAT-problems very

fast. The partial solution sets help to restrict significantly

the enormous search space. The remaining clauses of the

problem are replaced by unions of partial solution sets

which speed up the solution procedure.

5) In many applications the Boolean modeling can be

considered as very efficient, and it is not necessary to

develop special algorithms; it is much easier to use

a general methodology based on ternary vectors.
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