
INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2011, VOL. 57, NO. 3, PP. 257–262
Manuscript received June 19, 2011; revised September 2011. DOI: 10.2478/v10177-011-0034-7

Implementation and Analysis of Elliptic
Curves-Based Cryptographic Algorithms in the

Integrated Programming Environment
Robert Lukaszewski, Michal Sobieszek, and Piotr Bilski

Abstract—The paper presents the implementation of the Ellip-
tic Curves Cryptography (ECC) algorithms to ensure security
in the distributed measurement system. The algorithms were
deployed in the LabWindows/CVI environment and are a part of
its cryptographic library. Their functionality is identical with the
OpenSSL package. The effectiveness of implemented algorithms
is presented with the comparison of the ECDSA against the DSA
systems. The paper is concluded with future prospects of the
implemented library.

Keywords—Cryptography, distributed measurement systems,
integrated programming environments.

I. INTRODUCTION

CURRENTLY one of the most pressing issues in the
distributed measurement and control systems (DMCS)

is security of the data transmitted between the nodes. Large
distances between operational units enable the intruder to
penetrate the system’s infrastructure. The problem becomes
more important as the wireless technologies (Bluetooth, Zig-
Bee or WiFi) gain popularity. Although some standards have
cryptographic protocols embedded (ZigBee or WiFi), there are
multiple specialized protocols without the required security.
With the increasing terrorist threat it is important to ensure
safety in systems crucial for the society [1]. Design of the
measurement system software is based on the specialized
integrated programming environments, such as LabVIEW,
VEE or LabWindows/CVI. They include multiple libraries
with functions for communication, signal processing and
mathematical operations. Unfortunately, cryptographic algo-
rithms are still absent, justifying their implementation in user-
defined modules. Similar attempts have been made [2] with
promising results. Elliptic curves cryptography (ECC) is a
set of methods for encrypting and decrypting data based on
algebraic operations in the finite field of integer numbers. It
is currently popular and widely exploited because of its small
memory requirements and computational resources compared
to other methods [3]. These algorithms can be implemented
in small devices such as embedded systems, smart cards
and sensor grids. Their advantage is high efficiency. The
latter is important, as multiple applications of DMCS require
working in the real-time mode. This imposes keeping the time

R. Lukaszewski, M. Sobieszek, and P. Bilski are with the Insti-
tute of Radioelectronics, Warsaw University of Technology, Warsaw,
Poland (e-mails: r.lukaszewski@ire.pw.edu.pl, m.j.sobieszek@elka.pw.edu.pl,
p.bilski@ire.pw.edu.pl).

P. Bilski is also with the Department of Applied Informatics, Warsaw
University of Life Sciences, Warsaw, Poland (e-mail: piotr bilski@sggw.pl).

limitations, which is possible only for operations fast enough.
The paper presents the implementation of the ECC library in
the LabWindows/CVI environment. It is a popular tool for
designing DMCS using the C language. As it lacks the proper
cryptographic library, it was a good target to implement it. Two
methods of assimilating the algorithms into LabWindows/CVI
were selected. The first one consists in obtaining the ready-
made dynamically linked library - DLL (such as in OpenSSL)
called from the C code in the programming environment. The
second option is to adapt the library to the form accepted
by the environment. The paper presents implementation and
verification of both solutions in the LabWindows/CVI. In
section II fundamentals of cryptography required to implement
the project are introduced. Section III contains description of
the ECC library for LabWindows/CVI. In section IV efficiency
tests of the library are presented. Finally, section V contains
conclusions and future prospects.

II. CRYPTOGRAPHY IN DMCS

The multitude of devices used in DMCS requires uniform
methods of data transmission. Most systems use computer net-
work with WiFi or Ethernet standard. In the TCP/IP protocol
stack, used in local and wide area networks (LAN and WAN,
respectively), there are means of security. Unfortunately, in-
dustrial networks often have minimal functionality because
of the high efficiency and determinism requirements. Here,
cryptographic algorithms should be individually implemented.
The domain has a long history and is based on numbers theory,
algebra, computer algorithms and the probability calculus.
Although there are multiple purposes of cryptography, in
DMCS it is used to ensure confidentiality of the transmitted
data. It is especially important in large facilities, such as
nuclear plants or water pumping stations, where parameters are
measured by sensors in remote locations and sent to processing
or control nodes (such as industrial or personal computers). To
avoid the intrusion, the plain data (measurements or control
commands) are encrypted using keys to obtain ciphers and
sent to the destination node (see Fig. 1). There, the cipher
is decrypted to get the plain data again. Two main aspects
of the security assurance are vital here: method (function) of
exchanging the plain data into the cipher and the key used
during this process. In the symmetric cryptography for both
encryption and decryption the same key is used. It must then
be kept secret from intruders. The best known algorithms are
DES (Data Encryption Standard), 3DES (Triple DES) and



258 R. LUKASZEWSKI, M. SOBIESZEK, P. BILSKI

AES (Advanced Encryption Standard) [2], [4]. Although the
symmetric cryptography is fast [5] and secure (it is resilient
to the attacks using quantum algorithms), the main problem
is the key distribution, difficult in DMCS. Therefore in the
Internet the asymmetric cryptography is a standard, where
the key is divided into two parts (public and private), one of
which is available for everyone in the environment. The main
idea is that the knowledge of the public key does not allow
the intruder to act as a legal party. If the public key is for
encryption, the intruder can use it to encrypt his data, but he
will not be able to decrypt anything encrypted by the private
key. The most popular asymmetric systems are Rabin’s cipher
or RSA (Rivest, Shamir, Adelman). Such systems are also
used for creating digital signatures: DSA (Digital Signature
Algorithm) and to distribute secret keys [4], [6]. The main
disadvantage of such cryptography is its potential security
problem. Quantum computation (Shor’s algorithm) is able to
compromise even the strongest RSA system [7].

Fig. 1. Structure of the contemporary DMCS.

The alternative for the traditional algorithms are elliptic
curves-based cryptographic (ECC) systems. It is a relatively
new approach (proposed in 1985 by Miller and Koblitz) to
obtain the fast and reliable public key cryptography. The
elliptic curve E over the field F is the following curve (1):

Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (1)

Its solutions are rational points P=(x,y) with the additional
“point of singularity” O. The points (x,y) form a group G,
with O being its identity element. If F is finite, the cardinality
of a group is also finite [8]. In practice, a1, a2, a3 are equal
to zero, so (1) is simplified to (2).

Y 2 = X3 + aX + b (2)

where a,b ∈ F . The elliptic curves were successfully used
in solving multiple problems (proof of the Great Fermat
Theorem) [9]. The ECC systems are useful in cryptography
because of the difficulties in finding the discrete logarithm
in the group (x,y), i.e. for given g, y ∈ G, where g is the
base of the group G, finding the integer value x such that
gx = y. Usually the group is a cyclic group (ring of inte-
gers) modulo n. The problem (called Elliptic Curve Discrete
Logarithm Problem - ECDLP) has multiple solutions (for
instance, Pohling-Hellman, Pollard or Shanks methods), they
have the exponential computational complexity. This enables
using shorter keys in ECC than in traditional cryptography,

TABLE I
NIST GUIDELINES FOR PUBLIC KEY SIZES FOR AES

ECC Key Size RSA Key Size Ratio AES Key Size
(bits) (bits) (bits)
163 1024 1:6 –
256 3072 1:12 128
384 7680 1:20 192
512 15360 1:30 256

maintaining the same security level (see Table 1) [10]. It
is important in embedded systems and other small devices
with limited memory and processor’s speed [3]. The ECC is
approved by NIST [10] for the commercial usage.

The application of elliptic curves to cryptography can be
explained using the ECDH system. Here both nodes in DMCS
willing to communicate (N1 and N2) must define the param-
eters: the rational point P of the elliptic curve E. Both are
public constants. Then the procedure is as follows:

1) Both nodes randomly generate two integers, k1 and k2,
which are private keys of N1 and N2, respectively.

2) Nodes compute parts of the public key: k1 ·P and k2 ·P
and exchange them through the communication medium.

3) Both nodes are able to compute k1 · k2 · P obtaining
the same secret information, which cannot be acquired
by the intruder without knowing both k1 and k2. In
particular, he cannot calculate it from k1 ·P and k2 ·P ,
although P is known.

Currently the minimum acceptable level of security requires
the 128-bit key (in AES). Similar ECC systems (ECDH,
ECDSA and SHA-256) require 256-bit keys. Analogous se-
curity in traditional asymmetric algorithms (DH, DSA, RSA)
requires 2048-bit keys. The 256-bit key AES and 384-bit ECC
are required to encrypt and decrypt top secret data [11].

III. ECC IMPLEMENTATION IN LABWINDOWS/CVI

The adaptation of ECC algorithms in LabWindows/CVI
environment used the OpenSSL project, which source code
is freely available. Its aim is to provide universal security
tool for the Internet. It implements Secure Sockets Layer
(SSL) and Transport Layer Security (TLS), openssl command
tools and cryptographic library, i.e. libcrypto . Therefore it
is a good source of the ready-made algorithms, requiring
adjustment to the programming environment format. Also,
OpenSSL is quickly developing; the presented work used
version 0.8.9j, although currently version 1.0.0d is available.
The implementation exploited the code of the libcrypto library
in two ways (see section 1). Firstly, it was compiled to the
DLL file, which could be called from the LabWindows/CVI
code. To do that, the Microsoft Visual Studio 2008 was
used. Secondly, the code was modified to the native format
of the environment (further called CVL). This way it could
be used as any other part of the environment code. In this
task, LabWindows/CVI 9.0 was used. The first task, i.e.
creating the DLL file, is easy. It requires only executing the
configuration script, creating the makefile for the Visual Studio
C/C++ compiler. To build the library, the nmake command
was applied. On the other hand, compilation of the library
under LabWIndows/CVI was difficult. The built-in C compiler



IMPLEMENTATION AND ANALYSIS OF ELLIPTIC CURVES-BASED CRYPTOGRAPHIC ALGORITHMS IN THE INTEGRATED PROGRAMMING ENVIRONMENT 259

is simple and does not provide multiple features offered by,
for instance, Microsoft Visual C/C++ or Borland C. It does
not support the assembler code, used by OpenSSL creators
to increase efficiency of some algorithms. Although there is
the method of assimilating the code ignoring unacceptable
fragments, the speed of the resulting algorithm is slower than
in the original version. To adapt the external library to the
form acceptable by the specialized environment, the designer
must know the structure of the software project created for
the needs of DMCS. This imposes the knowledge of all
file types used in the environment and relations between
them. In LabWindows/CVI the configuration of the designed
program is stored in the project file (see Fig. 2). It contains
general information about program properties and the list of
internal files. These are: user interface (i.e. the front panel
of the designed instrument), code files (standard c files) and
library (header) files (containing definitions of structures and
functions used inside the program). The external files (DLLs)
can also be accessed here, through the environment interface.
The functionality of library files is facilitated by their function
panels.

Fig. 2. Structure of the project in LabWindows/CVI environment.

The process of creating the native library consisted in two
phases. The first one was to change the OpenSSL code to
the form accepted by the integrated environment. The second
step was to compile the modified code and transform it into
the standard LabWindows/CVI form. The procedure requires
the general knowledge about the process of compiling and
loading the project into the memory of the operating system
[12]. Particular stages are in Fig. 3.

Modification of the libcrypto code to be usable and compil-
able under LabWindows/CVI was also difficult, as it does not
use makefiles. Therefore the file prepared for MS Visual Studio
was useless. Rules for compilation are in the project file (with
.prj extension). To use the OpenSSL source code, its c files
were included in the project. To correctly build the library here,
the preprocessor directives had to be prepared. They make the
code platform-independent and all compilers know what to do
with particular parts of the program. The majority of directives
refers to header files, because they are available only for the
specific operating system. In various platforms the same oper-
ations are performed by different versions of the code. In par-
ticular, the macrodefinitions to modify included indication of
the 32-bit operating system (OPENSSL SYSNAME WIN32
and MK1MF PLATFORM VC WIN32). Also the definition

Fig. 3. Processing of the user program.

OPENSSL IMPLEMENTS strncasecmp had to be created to
add the declaration of the strncasecmp function. It compares
(case-insensitive) n characters of two strings. In LabWin-
dows/CVI there are multiple header files named identically
as in MS Windows. Some functions and structures required to
import the OpenSSL code are in the lowlvlio.h file. Other had
to be defined from scratch or rewritten under the same name.
In the presented project, the following changes in the original
cryptographic code had to be performed:

• Implementation of the structure from the times.h file,
responsible for storing the duration of the operation
measured by the times() function. In LabWindows/CVI
variables of the clock t type and clock() function were
used instead.

• The Microsoft-native tchar type was replaced by ANSI
char type.

• The fileno() function, returning the open file descriptor
had to be defined from the beginning.

• The mode of opening the file. According to ANSI, for
changing the mode of the open file into binary, the
setmode() function is used. Because in LabWindows/CVI
there are no such function, all files were opened in the
binary mode by default.

After making the code compilable and linkable, the project
was translated into the libcrypto.lib file. Finally, the LabWin-
dows/CVI function panel files (with .fp extension) had to be
created. With them, using both types of libraries (DLL and
native) is identical. After importing the library to the project
functions can be used as any other, existing in the environment.
The functionality of the library is available through the tree
(Fig. 4). Selection of the particular function using the left
mouse button opens the function panel (Fig. 5) allowing for
inserting values of input variables. Under the panel the code
is generated. It is copied to the program file.

The functionality of the libcrypto library includes symmetric
encryption and decryption systems (such as Blowfish, AES,



260 R. LUKASZEWSKI, M. SOBIESZEK, P. BILSKI

Fig. 4. Cryptographic library for LabWindows/CVI after import.

Fig. 5. The ECDSA do sign function panel in LabWindows/CVI.

RC5), public key cryptography (DSA, RSA, DH), digital
signature systems (MD4, MD5, SHA-256, etc.). Support for
X.509 certivicates and random number generator are also
included. All algorithms are available through the LabWin-
dows/CVI standard design interface and can be used as any
other libraries.

IV. TESTS OF THE ECC ALGORITHMS EFFICIENCY

Experiments with both versions of the library were per-
formed on the personal computer equipped with Intel Pentium
4 processor (2.8 GHz) and 1 GB of RAM. The operating
system was Windows XP. During experiments the system was
in the “clean boot” mode, where only basic services are run.
This allowed to minimize the influence of other applications
to the tested software. In the general purpose operating system

(GPOS) interaction with the user (such as moving the mouse
cursor) disturbs the execution and scheduling of working
processes. Experiments consisted in measuring mean and
maximum durations of creating digital signatures using the
ECDSA method with their verification. The second group of
experiments covered establishing a key pair using the EDSH
algorithm. Tests were performed for both libraries: CVL and
DLL. The following section contains results for combinations
of algorithms and libraries with necessary comments. The
standard method of time measurement in C is the GetTick-
Count function. It is not appropriate for measuring durations of
presented operations because of small resolution (10 ms) [13].
Digital signatures require more accurate measurements of the
QueryPerformanceCounter and QueryPerformanceFrequency
functions (available in MS Windows). The first one stores
the actual value of the high resolution counter. To obtain the
time measurement, this value is divided by the result of the
second function. This way the time measurement is taken
in the number of counter increments per second. The timer
frequency is constant in a single operating system execution
[14].

A. ECDSA Examinations

This algorithm is analogous to DSA. The experiments
shown large differences between creating the signature and its
verification (see Fig. 6). Durations of both operations increase
with increasing the key length.

Fig. 6. Mean times of creating and verifying signature using ECDSA method
from CVL.

The requirement of the real-time mode in the DMCS makes
the mean durations a not adequate efficiency measure. More
important are maximum times of the algorithm execution,
which give the knowledge of the method behavior in the worst
case. Both durations are proportional to the key length. The
signature verification is longer than its creation (see Fig. 7).
In GPOS the exact duration of the operation can never be
determined accurately. The measured time depends on the
operating system’s state and configuration of other processes
in memory [15].

Similar results were obtained for the DLL version of the
library. The relation between the signature generation and
verification is the same as for CVL. The DLL-based solu-
tion works faster - three to seven times, depending on the
key length (see Fig. 8 and 9). This is because the DLL



IMPLEMENTATION AND ANALYSIS OF ELLIPTIC CURVES-BASED CRYPTOGRAPHIC ALGORITHMS IN THE INTEGRATED PROGRAMMING ENVIRONMENT 261

Fig. 7. Maximum times of creating and verifying signature using ECDSA
method from CVL.

code was optimized by the Visual Studio compiler, while
the LabWindows/CVI compiler required modifications in the
code, degrading its effectiveness (see section 3). This is also
confirmed by previous research [16].

Fig. 8. Mean times of creating and verifying signature using ECDSA method
from DLL.

Fig. 9. Mean times of creating and verifying signature using ECDSA method
from DLL.

B. ECDH Examinations

Experiments regarding the second algorithm had similar
structure. Results obtained for DLL are, as before, much

faster than their counterparts for CVL. The phenomenon of
increasing the algorithm time with increasing key length is
also visible here (see Fig. 10 and 11).

Fig. 10. Mean times of creating and verifying signature using ECDH method
from DLL and CVL.

Fig. 11. Mean times of creating and verifying signature using ECDSH
method from DLL and CVL.

C. Comparison Between DSA and ECDSA
The presented results were used to compare mean durations

of generating and verifying digital signatures for DSA and
ECDSA systems in both versions of libraries. The comparison
between algorithms must be based on configurations giving
the same security level, which is obtained using different key
lengths. For example, the ECDSA with 192-bit key assures
similar security as DSA with 1024-bit key, which is currently
minimal, considered safe. The 224-bit ECDSA key reflects the
2048-bit DSA key, and so on. Again DLL-based algorithms
work faster than the ones from CVL. The shortest durations
were obtained using ECDSA algorithm from DLL (see Fig.
12).

Comparison between mean times of digital signatures ver-
ification (see Fig. 13) gives similar results as during their
generation. The CVL-based DSA is the slowest solution, while
the DLL-based ECDSA - the fastest.

The ECDSA system requires much shorter keys (even 9
times) to assure the same level of security as DSA. Storing
them requires larger memory and processor time. Therefore
ECDSA is more attractive for both general purpose (such as
Internet) and specialized (industrial networks) systems.



262 R. LUKASZEWSKI, M. SOBIESZEK, P. BILSKI

Fig. 12. Mean duration of generating the digital signature - comparison of
algorithms and libraries.

Fig. 13. Mean duration of verifying the digital signature - comparison of
algorithms and libraries.

V. CONCLUSIONS

The paper presented the implementation of the ECC al-
gorithms in the integrated programming environment on the
example of LabWindows/CVI. The library from the OpenSSL
package was assimilated to the form acceptable by this en-
vironment using two approaches (DLL and native). Exper-
iments were conducted to show effectiveness of both solu-
tions for the particular algorithms. The comparison between
the traditional digital signature algorithms and their ECC-
based counterparts was performed. Functions and algorithms
originating from the DLL library are always the fastest
ones. The LabWindows/CVI-native version is not optimized
because of multiple drawbacks, for example elimination of
the assembler code, which is faster than the one written
in C. Also, ECDSA system is faster than DSA, requiring
shorter keys to get the same security level. This confirms
usefulness of the ECC algorithms, which probably will become
the predominant standard in the nearest future. Although the
DLL-based system is more efficient and flexible, the native

library gives open-source advantages. The designer has the
control over all function applied in the code and is able to
modify it from the programming environment level. The DLL
requires additional mechanisms to ensure software integrity
(for instance, applying infrastructure certificates to sign parts
of the code). Increasing role of security in DMCS makes
implementation of cryptographic algorithms and procedures
in specialized software development environments needed and
useful. The designer should be able to apply fundamental
security measures to the software targeted for industrial com-
puters and embedded systems. Therefore works similar to [2]
should be continued in the future. Adjusting existing library
to the programming environment’s needs is simpler and faster
than creating a new one from scratch. As most cryptographic
algotihms is already implemented, such an approach decreases
the duration of the design procedure. Therefore the approach
presented in the paper should be applied whenever there is the
need to add the functionality to the specialized environment.

REFERENCES

[1] W. Winiecki, T. Adamski, P. Bobinski, and R. Lukaszewski, “Bez-
pieczenstwo rozproszonych systemow pomiarowo-sterujacych (rsps),”
Przeglad Elektrotechniczny, vol. LXXXIV, pp. 220–227, May 2008, in
Polish.

[2] P. Bilski and W. Winiecki, “Multi-core implementation of the symmetric
cryptography algorithms in the measurement system,” Measurement,
no. 43, pp. 1049–1060, 2010.

[3] The basics of ecc. [Online]. Available:
http://www.certicom.com/index.php/the-basics-of-ecc

[4] A. Menezes, P. Oorschot, and S. Vanstone, Eds., Handbook of Applied
Cryptography. CRC Press Inc., 1997.

[5] T. Good and M. Benaissa, “Aes on fpga: from the fastest to the smallest,”
in Proc. Cryptographic Hardware and Embedded Systems (CHES’2005),
Edinburgh, United Kingdom, Aug 2005, pp. 427–440.

[6] B. Schneier, Applied Cryptography, 2nd ed. New York: John Wiley &
Sons, 1996.

[7] D. Mermin, “Breaking rsa encryption with a quantum computer: Shor’s
factoring algorithm,” Lecture notes on Quantum computation, pp. 481–
681, 2006.

[8] N. Koblitz, Algebraic Aspects of Cryptography. Springer-Verlang
Gmbh, 1999.

[9] D. Henderson, A. Menezes, and S. Vanstone, Guide to Elliptic Curve
Cryptography. Springer-Verlang Gmbh, 2004.

[10] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, Recommendation
for Key Management Part 1: General (Revised), National
Institute of Standards and Technology (NIST) Recommendation
for Cryptographic Key Management Standard 800-57, March
2007. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/800-
57/sp800-57-Part1-revised2 Mar08-2007.pdf

[11] N. S. Agency. Nsa suite b cryptography. [Online]. Available:
http://www.nsa.gov/ia/programs/suiteb cryptography/index.shtml

[12] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
John Wiley & Sons, 2003.

[13] Microsoft. How to use queryperformancecounter to time code. [Online].
Available: http://support.microsoft.com/kb/172338

[14] ——. Queryperformancefrequency function. [Online]. Available:
http://msdn.microsoft.com/en-us/library/ms644905(VS.85).aspx

[15] P. Bilski and W. Winiecki, “Time optimization of soft real-time virtual
instrument design,” IEEE Transactions on Instrumentation and Mea-
surement, vol. 54, no. 4, pp. 1412–1416, Aug 205.

[16] R. Lukaszewski and M. Sobieszek, “Biblioteka kryptograficzna w lab-
windows,” in Metrologia dzis i jutro, Gdansk, Poland, 2009, pp. 113–
120, in Polish.


